Physics 127a: Class Notes

Lecture 13: Ideal Quantum Gases
Quantum States
Consider an ideal gas in a box of sidesvith periodic boundary conditions
v(x+L,yz)=v(,yz)  etc 1)

For a single patrticle the wavefunction of the energy eigenstate satisfies

hz
and the eigenstates are plane waves
1 .
Pk (X) = \/—Velk'x (3)

with V = L3. The eigenstates are labelled by a wave vektovhich to satisfy the periodic boundary
conditions must be of the form

2 . " .
k = Tn(l, m, n) I, m, n integers (positive, negative or zero). 4)
The energy eigenvalues are
h%k?
=—. 5
= (5)
For N particles we must construct the many particle wavefunafioxy, Xo, . . . Xy) satisfying

h? &

—— ) V¥ =EVY, (6)
2m “

the periodic boundary conditions, and in addition symmetry restrictions under the interchange of any two
particles in the wavefunction

Bosons: (integer spin particles)

W(X1, X2, o . Xy oo Xpy o Xy) = W(Xq, X2, .. Xp, v o Xy - - . XN) @)

Fermions: (half integral spin particles)

W(X1, X2, .. Xgy oo Xpy o Xy) = —W(Xg, X2, ... Xpy oo Xgy oo XN). (8)

Without the symmetry restriction the eigenstates would be the products of the single particle eigenstates

D (X1, X2, -+ - XN) = Py (X1) Pk, (X2) - - . iy (Xiv) 9

with k, any choice of the single particle wave vectors (not necessarily all different). The symmetry require-
ments are given by taken appropriate linear combinations of the product wavefunctions with the particles
permuted amongst the different single particle states (these necessarily all are degenerate, so that the linear
combination is also an eigenstate):



Bosons:
D (X1, Xz, ... Xn) = Cp Y Py (X1) iy (X2) . . - iy (X)] (10)
P

whereP permutes the particle coordinates, the sum runs over all permutatioagasmd normalization
constant that we will not need to calculate. For example for two particles and single particl&kstates
andk’ with k # k’

D (X1, X2) = % [k (X1)Pr (X2) + Pr (X2) i (X1)] - (11)
Fermions: It is easiest to use thglater determinanhotation
O, (X1) P (X2) o i (Xy)

Pk, (X)) P, (X2) - P, (Xv)

CD(X]_, X2, ... XN) = CF (12)

Gy (X)) Py Xy)  -- Pry (Xvy)

with Cr another normalization constant. Note, for Fermions, alfyenust be different for a nonzero
result—thePauli exclusion principle

An important consequence of the (anti)symmetrization is that the quantum state is completely specified
by how many times eac§y appears in the wave function. We call this tiecupation numbeof the state
¢k and denote it byx. We do not have to say which particle is associated with each single particle state as
we would for distinguishable particles. The $&t} completely defines the quantum state

|®) < {nk} (13)

and to count the states we only need to count the number of differght= {n,}. For example, for 3 Bosons
in 2 single particle states we would have jimar states|3, 0, |2,1), |1, 2), |0, 3) (where|ny, ny) is the
state with single particle state 1 occurrimgtimes and single particle state 2 occurringtimes).

Distribution of particles amongst degenerate levels

To illustrate the different counting of states for particles of different statistics we consider the problem of a set
of single particle energy levels with degeneracyg;,—there areg; single particle eigenstates at the energy

¢;. We want to calculate the number of many-particle statel sfich particles, wher&’; particles are in

each single particle level (so that the energy of the state)s; N;¢;). We call this the statistical weight
W{N;}. You can probably see where this would come up in calculating the canonical partition function for
example, although in practice, it is often best to do the counting for each case needed by hand, rather than
using the formulas derived below.

Bosons Each single particle state may contairlQ.. N; particles, and we havg “boxes” to place a total

of N; particles. The counting is easily done by representing a particulads;at& . ngi> by the schematic
formee||e| e e| .-, where eachhdenotes the wall to a new box and eaathenotes a particle (so this state
would be|2, 0, 1, 2. ..)) The number of different states is then given by the number of ways we can arrange
N; + g; — 1 particles and walls along the line, so that

(N;i + g — D!
W{N;} = Hm (14)

i



Fermions Each single particle state may only contain O or 1 particles, so we just have t&¥piek of the
g; states which will contain a particle

|
Wit =T, —wor @)

i

Obviouslyg; > N; for all i for the state to exist.

Boltzmann Statistics It is interesting to consider a fictitious system of distinguishable identical particles,
and then reduce the statistical weight by the Gibbs fastbr For distinguishable particles we first have
to pick out which particles to put into each set of degenerate ley&Ig[([; N;! ways of choosing). Then

for each particle in théth set of levels we need to pick out which level to put it i’ (ways of choosing).
Reducing the product b¥! gives

N;
wivy =[5 (16)

Note that this expression is tlegge degenerachmit g; > N;, 1 of eitherthe Boson or Fermions expressions.

Partition functions

Bose and Fermi gases Consider first the canonical partition function for an ideal Bose or Fermi gas. Since
the occupation numbefs,} uniquely defines the quantum state

Oy = Z/e—ﬂ > pepnp (17)
{"p}

where the sum is constrained (denoted by the prime) soz]gactp = N and for Fermions eaoty, can only
be 0 or 1. (For particles with spin, the lalpeteally stands fop, o with o the spin state.) The first constraint
is hard to calculate with. Instead we look at the grand canonical partition function

o0
OT, 1, V) = Z Z e P Zp(é‘p—#)l’lp. (18)
N=0 {np}
The sum over alN effectively removes the constraint, so that
Q= Z e P LpEp—inp (19)
{np}

with now the sum constrained only by statistics. The sum can now be written as a product over all momentum
states

o=[]% (20)
P
with Q, the grand canonical potential for the single particle spate

Qp= Y e, (21)

p

For the grand potentidk = —kT In Q this gives

Q=>"Q, with Q=-kTInQ, (22)
p
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For Fermions the sum ovey, is just two terms, and for Bosons the sum is a geometric series. The results
are
Q=FkT Y In(1£e P ) (23)

with the top sign for Fermions and the bottom sign for Bosons.

Usually we are dealing with a large system, and know the number of particles rather than the chemical
potential. We can evaluate(N, T, V) from u = —(92/9N)r.v. This givesN = Zp (n,;,) with the average
occupation number of the stategiven by

1

(I’lp> = ef}(gpflu) j: 1 (24)

(with the same sign convention).

“Boltzmann statistics” For the fictitious particles where we count the states as if the particles are distin-
guishable, and then divide by the Gibli$factor the statistical weight of the set of occupation numigess
is ]_[p(np!)‘1 (the number of ways of choosing whigh particles to put into each single particle staf@and

then divide byN!). So
AT, p, V) = ZZ H( ~her= “)”p) (25)

N=0{np} P
Using the same tricks as in the Bose and Fermi cases this can be rewritten as

Q= 1_[ Z — e*ﬂ(sp wnp (26)

p

=112 % (e7termo)™ 27)
p

p

1_[ exp —B(ep— l‘v) (28)
p

The grand potential is then

Q=—kT ) e Peo, (29)

Alternatively we can write Eq.25) using the multinomial (cf. binomial) expansion

1
OT, w, V) = Z ~i <Z eﬂ($p/L)> (30)
N=0" "~ p

oy

i and  Q;=) e (31)

p

giving the expression in terms of the canonical partition function of the “classical gas” we found earlier.
Note that the results can all be combined into

=Z€ﬁMNQN with Oy =
N=0

1
Q=—kT=) In(1 ~Aep=it) 32
aXp: (1+ ae ) (32)
N=Y 33
=2 e g (33)
p

with a = —1 for Bosonsa = +1 for Fermions, and — O for Boltzmann statistics.
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Momentum Sums

For a gas in 3d in a box of sidésthe allowed momenta ape= ik with k :%(Z, m, n) andl, m, n are any
integers. For larg&y, L we canusuallyreplace the discrete sum over momentay an integral

Vv
>~ e | [ [ dvandp. (34
p o

with the spin sum remaining. If we are summing an isotropic function, such as any function of the energy
f(e,)which is spin independent as in the expressions¥and N

V2s+ 1)V [
D ren =G | apamrsey (39)

with 2s + 1 coming from the spin degeneracy. Now we can transfornptimegration to an integration over
the energy(p) = ¢, to give

S e = [ de ot fe) (36)
p

with p(¢) the density of states (such thate)de is the number of single particle states between enetgies
ande + de)

V(25 4 1)p?
p(e) = 23—]7 (37)
2n%hide /dp
For the energy spectrum, = p?/2m this becomes
v o [(2m\*? |
— /2
o) = (2s + 1)m <F) e, (38)
The thermodynamic potential is then
1[~ —Ble—n)
Q=—kT= de p(e) In (14 ae P1) (39)
alo
and the number of particles is
N = Ood ith = 1 40
=/, e p(e) n(e) wi n(e) = P 1 a (40)
For classical particles in 3 dimensions the latter expression can be written
N 3 2 [ 12 1
V)x = (28 + 1)m/c; dy y m (41)

introducing the integration variable= e, and the thermal length = (h?/7mkT)Y2. Note the right hand
side is a function o8, and so this implicitly fixeg« (T, N/ V).
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