
Physics 127a: Class Notes

Lecture 10: Other Ensembles/Thermodynamic Potentials

Thermodynamic potentials

We can define various other ensembles, by considering systems in equilibrium with reservoirs under var-
ious combinations ofE,V,N transfer. This leads using similar methods tothermodynamic potentials
(cf. A,�, . . .) that are functions of thenatural variablesthat are fixed in the particular equilibrium (e.g.
T ,N, V forA). These are useful in describing physical systems in these equilibrium situations. The handout
Thermodynamic Potentialsbrings together the various equilibria and corresponding thermodynamic poten-
tials.

The thermodynamic potentials are useful in various ways, as will be listed below. We have derived the
results in specific cases, and I will not repeat the derivations here.

• The thermodynamic potential increases (S) or decreases (all others) in the relaxation of a prepared
macroscopic fluctuation to equilibrium when the appropriate natural variables are held fixed.

• The thermodynamic potential is a maximum (S) or minimum (all others) in equilibrium, again when
the appropriate natural variables are held fixed.

• The probability of a macroscopic fluctuation at fixed natural variables is given bye−β1(potential) (or
eβ(T1S) = e1S/k for the entropy).

• Different potentials are related by aLegendre transformation, e.g.

E(S)→ A(T ) = E(S)− T S with T = ∂E

∂S
→ S(T ) (1)

(more on this later)

• The thermodynamic identityd(potential) = . . ., e.g.

dE = T dS − PdV + µdN (2)

dA = −SdT − PdV + µdN (3)

gives the differential form of the dependence on the natural variables. This is useful in relating the
fieldsT ,µ, P and conserved variablesE,V,N or entropy to derivatives of the potentials. Furthermore,
equating the cross derivatives

∂(potential)

∂V1∂V2
= ∂(potential)

∂V2∂V1
(4)

gives usMaxwell Relations. These are useful in relating different thermodynamic measurements (see
an elementary thermodynamics book). For example, forA, equating the expressions

∂

∂T

((
∂A

∂V
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V
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gives us the Maxwell relation (
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V

=
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)
T

. (7)
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• There are a couple of other identities between partial derivatives that are purely mathematical relation-
ships, with no physical content, but are useful in manipulating thermodynamic quantities.

The first thing to note is that (
∂x

∂y

)
z...

= 1(
∂y

∂x

)
z...

(8)

where in the partial derivatives we hold everything else constant. This relation follows in the same
way as for full derivatives.

Now suppose we have a functional relationship

z = z(x, y). (9)

Then we can write the differential expression

dz =
(
∂z

∂x

)
y

dx +
(
∂z

∂y

)
x

dy. (10)

Now forming the derivative with respect toy at constantz (dz = 0)(
∂z

∂x

)
y

(
∂x

∂y

)
z

+
(
∂z

∂y

)
x

= 0, (11)

which gives (
∂z

∂y

)
x

= −
(
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)
y

(
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)
z

(12)

or (
∂x

∂y

)
z

= −
(
∂z
∂y

)
x(

∂z
∂x

)
y

. (13)

Using Eq. (8) we can write this in a symmetric form that is convenient to remember (known as the
reciprocity theorem) (

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (14)

• Extensivity can be used to “build” a system out of elementary sub-units with the increments given by
the thermodynamic identity. This givesEuler Relationsfor the potentials, e.g.

E = T S − PV + µN, (15)

A = −PV + µN. (16)

Differentiating one of these and comparing with the thermodynamic identity gives theGibbs-Duhem
relation

dµ = −sdT + vdP (17)

showing thattwointensive variables are enough to define the thermodynamic state of a single component
system.

• The thermodynamic potentials have various physical uses, e.g.

– the free energyA is the mechanical work available at fixed temperature

– the change in enthalpyH = E + PV gives the heat released in a chemical reaction at fixed
pressure
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Note

• The entropy appears with different signs and an extraT factor in various of these. This reflects the

different convention in definingS = k ln
(∑

j,accessible

)
compared withA = −kT ln

(∑
j e
−βEj

)
for

example, rather than any fundamental difference.

• Many of these results can be derived by considering system+reservoir as an isolated super-system.

Stability and Convexity

The stability of macroscopic thermodynamic systems imposesconvexityconstraints on the thermodynamic
potentials.

For example consider the entropyS(E,N, V ) of a particular system.
Make two identical copies of the system, and place them in weak thermal content. For the combined

system of energy 2E, number 2N , volume 2V to be stable against a macroscopic fluctuation of the energy
partition toE +1E, E −1E we must have

S(E +1E,N, V )+ S(E −1E,N, V ) ≤ 2S(E, V,N), (18)

for any1E. Geometrically, any chord joining two points on theS(E) curve must liebelowthe curve (see
figure). We call such a curveconcave.

S

E
E+∆EE-∆E E

[S(E+∆E)+S(E-∆E)]/2

S(E) S

E

S

E

Not allowed Allowed

For small1E we get the differential condition(
∂2S

∂E2

)
N,V

≤ 0. (19)

The chord condition Eq. (18) is a stricter constraint.
Interchanging theE andS axes, we see that theE(S) curve must beconvexi.e. any chord must lieabove

the curve.
The condition is readily extended to the other thermodynamic potentials. They, like the energy, are

minimumin equilibrium, and so areconvexfunctions of any dependence on the extensive variablesE,N, V

by the same sort of stability argument, now in contact with the appropriate reservoirs. On the other hand
we will see that a Legendre transformation to an intensive conjugate variableT ,µ, P reverses the convexity.
Thus the thermodynamic potentialsA,G . . . are concavefunctions of the dependence on their intensive
natural variablesT ,µ, P .

Example 1: A(T ,N, V ) is aconcavefunction ofT , and aconvexfunction ofN andV .

Example 2: G(T , P,N) (the Gibbs potential) is aconcavefunction ofT andP , and aconvexfunction of
N .
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Legendre Transforms

We have derived various thermodynamics potentials that naturally depend on different variables, e.g. the
energyE(S, V,N) that appears in the microcanonical ensemble describing an isolated system andA(T , V,N)

that appears in the canonical ensemble describing a system in contact with a heat bath at temperatureT .
These are related by

A = E − T S, (20)

an example of a Legendre transformation. It is informative to understand such Legendre transformations in
a more general context.

Since we can consider each pair of variables separately (i.e.S, T or P, V etc.), lets look at a thermo-
dynamic potentialY (X) with thermodynamic identitydY = x dX introducing the variablex conjugate to
(paired with)X. Let’s suppose thatX is extensive, and thenx is intensive.

Y

X

ψ

slope x

Figure 1: Geometrical Picture of a Legendre trasnformationY (X)→ ψ(x).

Suppose we want to go from a representation in terms ofX to one in terms of the intensive variablex
defined by

x = ∂Y

∂X
(all other variables held constant). (21)

We could imagine simply using Eq. (21) to findX(x)which when substituted intoY (X) givesY (x). However
information is lost if we just knowY (x)—it is easy to see that knowingY as a function of the slope does not
uniquely specifyY (X).

Instead we use the idea of “Pluecker line geometry” that tells us that the curveY (X) may alternatively
be specified in terms of the tangents to the curve at each point: the curve is the envelope of the tangents. The
tangent at the pointX can be specified by the slopex(X) and the interceptψ on theY axis which by simple
geometry isψ = Y (X)− x(X)X, see figure (1). Therefore we define the Legendre transformed function as

ψ(x) = Y (X)− xX (22)

whereX(x) is given by inverting Eq. (21), which for a smooth concave or convex curve is unique (as we will
see, thermodynamic potentials have this “convexity property”). Furthermore we have

dψ = −Xdx (23)
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and then
∂2ψ

∂x2
= −∂X

∂x
= −1/

(
∂x

∂X

)
= −1/

(
∂2Y

∂X2

)
(24)

so that ifY (X) is smooth and convex (∂2Y/∂X2 > 0) thenψ(x) will be smooth and concave.

Y

X

ψ

x

Figure 2: Legendre transformation of aY (X) formed by the “common tangent” construction. (Note: the
dashed portion corresponds to unphysical results). The straight portion ofY (X) translates into a single point
of ψ(x) where the slope changes discontinuously.

Points (or lines) where the second derivative is zero or infinity arecritical pointsand correspond to phase
transitions. An example is shown in figure2.
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