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Pattern Formation in Spatially Extended Systems

Lecture 3: Oscillatory Instabilities
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Outline
In this lecture | will discuss pattern formation in oscillatory systems.

As in the stationary case | will introduce the phenomenon using the
behavior near an instability from the stationary, spatially uniform state.

» Convective v. Absolute Instability
» Oscillatory Instability

o CGL equation

¢ Benjamin-Feir instability

¢ Properties of nonlinear waves

¢ Importance of spiral sources in 2d
* Wave Instability

¢ Unidirectional wave

o Counterpropagating waves
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Linear Instability

T Exponential growth: exp[oqt]

1 ! ! !

<“—\=211—>

SUqg(X, z, 1) = Ug(z) €'9%L ¢%a!
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Linear Instability

T Exponential growth: exp[oqt]

1 ! ! !

<“—\=211—>

SUqg(X, z, 1) = Ug(z) €'9%L ¢%a!

If . = —1Imo,. # 0 we have an instability to

» for q. = 0: a nonlinear oscillator which also supports travelling
waves

» for g. # 0: a wave pattern (standing or travelling)
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Linear Instability

T Exponential growth: exp[oqt]

1 ! ! !

<“—\=211—>

SUqg(X, z, 1) = Ug(z) €'9%L ¢%a!

If . = —1Imo,. # 0 we have an instability to

» for q. = 0: a nonlinear oscillator which also supports travelling
waves

» for g. # 0: a wave pattern (standing or travelling)

Important new conceptibsolutev. convective instability
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Absolute and convective instabllity

A A A

Amplitude
Amplitude
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Conditions for convective and absolute instability

» Convective instablility: same as condition for instability to
Fourier mode

 Absolute instability: for a growth rate spectrum,, the system Is
absolutely unstable if
Reo(qs) =0

whereq, is acomplexwave vector given by the solution of the
stationary phase condition
qu .
dq

0
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition
u,(X,t = 0) can be expressed as

o0 . o0 . /
up(x,t):f dqe’qx+aqtf dx"u,(x’, 0)e™ "'

—00 —00
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition
u,(X,t = 0) can be expressed as

o0 . o0 . /
up(x,t):f dqe’qx+aqtf dx"u,(x’, 0)e™ "'

—00 —00

Rewrite the integral as

(0,@] 00 ' /
up(x, ) =/ dx’up(x’,O)/ dg ¢'1x—x)+oqt
—0o0

—00
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition
u,(X,t = 0) can be expressed as

o0 . o0 . /
up(x,t):f dqe’qx+aqtf dx"u,(x’, 0)e™ "'

—00 —00

Rewrite the integral as

(0,@] 00 ' /
up(x, ) =/ dx'up(x', 0)/ dg ¢'1x—x)+oqt
—0o0

-0
For large time and at fixed distance the integral can be estimated using the stationary
phase method: the integral is dominated by the region around the complex wave number
q = ¢, given by the solution of
doy
dg

=0
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition
u,(X,t = 0) can be expressed as

o0 . o0 . /
up(x,t):f dqe’qx+aqtf dx"u,(x’, 0)e™ "'

—00 —00

Rewrite the integral as

(0,@] 00 ' /
up(x, ) =/ dx'up(x', 0)/ dg ¢'1x—x)+oqt
—0o0

-0
For large time and at fixed distance the integral can be estimated using the stationary
phase method: the integral is dominated by the region around the complex wave number
q = ¢, given by the solution of
doy
dg
Estimating the integral from the value of the integrand at the stationary phase point gives

=0

up(x =0,1) ~ %’
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition
u,(X,t = 0) can be expressed as

o0 . o0 . /
up(x,t):f dqe’qx+aqtf dx"u,(x’, 0)e™ "'

—00 —00

Rewrite the integral as

(0,@] 00 ' /
up(x, ) =/ dx'up(x', 0)/ dg ¢'1x—x)+oqt
—0o0

-0
For large time and at fixed distance the integral can be estimated using the stationary
phase method: the integral is dominated by the region around the complex wave number

q = ¢, given by the solution of
doy
dq
Estimating the integral from the value of the integrand at the stationary phase point gives

=0

up(x =0,1) ~ %’

Thus the system will be absolutely unstable forad2e> O.
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Nonlinear oscillators and waves

Insights from amplitude and phase equations
» Oscillatory instabilityg. = O
* Wave instabilityg. # O
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Oscillatory intability: Complex Ginzburg-Landau

Im o #0
q —q =0
Re oq‘ 9%
nonlinear
wave states
>
q

1d:  9rA=(1+ico)A+ (L+ic1)d3A— (1—ica)|A|°A
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Oscillatory intability: Complex Ginzburg-Landau

Im o #0
q —q =0
Re oq‘ 9%
nonlinear
wave states
>
q

1d:  9rA=(1+ico)A+ (L+ic1)d3A— (1—ica)|A|°A

2d:  drA=(1+ico)A+A+ic)VIA— (L—ic3)|A[°A
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Simulations of the CGL equation

General equation (2d)

0rA=(1+ic)A+A+ic)VZA—(L—icy)|A|°A

Case simulatede; = 0 (choice of parameteryy = —c3 (for simplicity of
plots)

0rA=(1—ic)A+V2A—(1—ic3)|A|°A
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Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave
solutions, but with properties that are strange to those of us brought up on
linear waves:

Back Forward
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Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave
solutions, but with properties that are strange to those of us brought up on

linear waves:
* Waves annhilate at shocks rather than superimpose

» Waves disappear at boundaries rather than reflect (not shown)

« Defects: importance as persistent sources

» Spiral defects play a conspicuous role, because they are
topologically defined

 Instabilities can lead to spatiotemporal chaos
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Wave solutions
0rA = (1+ico)A+ (L+ict)VEA—(1—ic3)|A]°A
Travelling wave solutions
AK(X, T) = aKei(K'X_QKT)

ay =1-K* Qg =—(co+c3)+ (c1+c3)K?

Group speed
S=dQg/dK = 2(c1+ c3)K
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Back

Wave solutions
oA = (1+ico)A+ (1+ic)ViA—(1—ic3)|A|°A
Travelling wave solutions
AK(X, T) = aKei(K-X—QKT)
ay =1-K* Qg =—(co+c3)+ (c1+c3)K?

Group speed
S=dQg/dK = 2(c1+ c3)K

Standing waves, based on the addition of wavdsé ahd—K can be
constructed, but they are unstable towards travelling waves
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Stability analysis
A (X.T) = (ax + Sa)e' KX—Q&T+56)
Forsmall slowly varyingphase perturbations
3780 + Sdx80 = Dy (K)d%80 + D (K)3250

with longitudinal and transverse diffusion with constants

1—vK?

D (K)=(1- Cl@;)m

D, (K)=(1-cic3)

with
3—c1c3 + 20%

1—cic3

Yy =
« Dy = 0= Benjamin-Feir instability (longitudingal sideband instability
analogous to Eckhaus) for
K| > Ag=v""

leaving a stable band of wave numbers with width a fractioh of the
existence band.

* For 1— c1c3 < O all wave states are unstable (Newell)
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Stability balloon
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Forward

13



Tel Aviv, January, 2006Pattern Formation in Spatially Extended Systems - Lecture 3

Shocks: the nonlinear phase equation

For slow phase variations about spatially uniform oscillations (now
keeping all terms up to second order in derivatives)
070 = Q4+ aV20 — B(V,60)?
with
o =1-—cqc3

p=ci1+c3
QQ=co+c3
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Cole-Hopf transformation

The Cole-Hopf transformation
x(X,Y, T)=exp[-B6(X,Y, T)/a]
transforms the nonlinear phase equation intdlitisar equation fory
or X = ocV)z(X
Plane wave solutions
x = exp[(FBK X + B°K°T)/a]
correspond to the phase variations

0 =+KX — BK°T
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Back

Cole-Hopf transformation (cont)

Since they equation idinear, we can superimpose a pair of these
solutions

x = exp[(=BKX + B°K*T)/a] + exp[(+BK X + B°K*T)/a]
The phase is
6 = —BK2T — %In[z coshBK X /a)].
For large| X | the phase is given by (assumig& positive)

0 > —KX — BK°T — Texp(—2BK X/a) for X — 400

l.e. left moving waves plus exponentially decaying right moving waves
with the decay lengthy /28 K. Similarly for X — —oo get left moving
waves with exponentially small right moving waves.
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Shocks
(a) —> <
(b) —> ShO_CJ( <
|\ |
LU (Y
N/ 4
VI

—>

* Shocks are sinks, not sources

* For positive group speed shocks between waves of different
freugency move so that the higher frequency region expands
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‘

Back

Spiral Defects

N\ i/

m-armed spiral: %ve -dl=m x 27
A = a(R)e! K(RR+mo—-2,T)
with for R — oo

a(R) - ax ~ K(R) — K, with  Qx(K,) = Q,
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Unigqueness

A key question is whether there is a family of spirals giving a continuous
range of possible frequenci€x, or there is a unique spiral structure with

a prescribed frequency that selects a particular wave number (or possibly
a discrete set of possible spirals).

A perturbative treatments of the CGLE for small+ ¢3 about the real
amplitude equation predicts a unigue stable spiral structure, with a wave
numberkK; that varies as (Hagan, 1982)

1.018 T

K expl— .
P er + e Pl 2|61+63|]
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Stability revisited
* Wave number of nonlinear waves determined by spirals

* Only BF stability of waves aK relevant to stability of periodic
state

« Convective instability may not lead to breakdown

« Core instabilities may intervene

Back
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Back

Stability lines of the CGLE (unstable states are towards larger positig¢

solid line: Newell criteriorricz =1

dotted line: convective Benjamin-Feir instability of spiral-selected wavenumber
dashed: absolute instability of spiral selected wavenumber

dashed-dotted: absolute instability of whole wavenumber band
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Waves in excitable media

Waves in reaction-diffusion systems such as chemicals or heart tissue
show similar properties

[From Winfree and Strogatz (1983) and the website of G. Bub, McGill]
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Wave instabilities

Im o #£0
Re o A : o qc;tO
q
nonlinear
wave states
>
d. q

70(3; 4+ 59,)A = e(1+ico)A + E5(L+ic1)d°A — go(1 —ic3) |A|* A

No singlescaling ofx, r with ¢ eliminates the small parametefrom

equation.
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Formal multiple-scales derivation

Back
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Formal multiple-scales derivation

« Introduce reduced amplitude = ¢ 1A and the slow length scalé = ¢1/°x as usual.
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24



Tel Aviv, January, 2006Pattern Formation in Spatially Extended Systems - Lecture 3

Formal multiple-scales derivation
« Introduce reduced amplitude = ¢ 1A and the slow length scalé = ¢1/°x as usual.

« Introduce new time scalg, = /%t corresponding to the propagation time over the
slow length scale, as well as the usual time s@ate ¢t on which spreading and
dispersion occur.
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Formal multiple-scales derivation
« Introduce reduced amplitude = ¢ 1A and the slow length scalé = ¢1/°x as usual.

« Introduce new time scalg, = /%t corresponding to the propagation time over the
slow length scale, as well as the usual time s@ate ¢t on which spreading and

dispersion occur.
« Scaled amplitude is now written as a functionofind thetwo time scalesA (X, T,,T).
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Formal multiple-scales derivation
« Introduce reduced amplitude = ¢ 1A and the slow length scalé = ¢1/°x as usual.

« Introduce new time scalg, = /%t corresponding to the propagation time over the
slow length scale, as well as the usual time s@ate ¢t on which spreading and
dispersion occur.

« Scaled amplitude is now written as a functionofind thetwo time scalesA (X, T,,T).

» Lowest order equation is just the propagation
anA + Saxzi = 0.

Solution is thatA is a function of the reduced coordindte= X — sT, i.e.
A(X, T,,T)= A(&, T). Physically this corresponds to transforming to a frame moving
at the group speed

Back Forward
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Back

Formal multiple-scales derivation
Introduce reduced amplitude = ¢~1A and the slow length scalé = ¢1/%x as usual.

Introduce new time scalg, = ¢'/2¢ corresponding to the propagation time over the
slow length scale, as well as the usual time s@ate ¢t on which spreading and
dispersion occur.

Scaled amplitude is now written as a functionofind thetwo time scalesA (X, T,,T).

Lowest order equation is just the propagation
anA + Saxzi = 0.

Solution is thatA is a function of the reduced coordindte= X — sT, i.e.
A(X, T,,T)= A(&, T). Physically this corresponds to transforming to a frame moving
at the group speed

At next order dispersion, diffusion, and nonlinear saturation are found in the moving
frame
- .\ : - : 212 =
1007 A = (1+ico)A + (1+ic1)EGOFA — go(1—ic3) |A]” A.
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Formal multiple-scales derivation
Introduce reduced amplitude = ¢~1A and the slow length scalé = ¢1/%x as usual.

Introduce new time scalg, = ¢'/2¢ corresponding to the propagation time over the
slow length scale, as well as the usual time s@ate ¢t on which spreading and
dispersion occur.

Scaled amplitude is now written as a functionofind thetwo time scalesA (X, T,,T).

Lowest order equation is just the propagation
anA + Saxzi = 0.

Solution is thatA is a function of the reduced coordindte= X — sT, i.e.
A(X, T,,T)= A(&, T). Physically this corresponds to transforming to a frame moving
at the group speed

At next order dispersion, diffusion, and nonlinear saturation are found in the moving
frame
- .\ : - : 212 =
1007 A = (1+ico)A + (1+ic1)EGOFA — go(1—ic3) |A]” A.

Then use
9 — e %, oy — & 10, + 59y).
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Solutions

(3 + s3)A =e(1+ico)A + E5(L+ic))d?A — go(1—ic3) |A]° A
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Solutions

(3 + s3)A =e(1+ico)A + E5(L+ic))d?A — go(1—ic3) |A]° A

» Single wave in uniform periodic geometry (annulus): transform to moving frame and
eliminatesd, term
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Solutions
(3 + s3)A =e(1+ico)A + E5(L+ic))d?A — go(1—ic3) |A]° A

» Single wave in uniform periodic geometry (annulus): transform to moving frame and
eliminatesd, term

« (MCC 1986) Assume is smalls = ¢/2S and do usual scaling
(7 + SOx)A = (L+ico)A + (1+ic1)d3A — (1 —ic3) |A]° A
Also can treat counterpropagating waves for case with —x symmetry
(97 + Sx)Ag = (L +ico)Ag + (L +ic1)d3Ag — (L—ica) |Ag| Ag — g1(1 —ic) |AL|” Ag

c o . X A 1r 2R Cli 12
A1 — Sax)AL = (L+ico)AL + L +ic)dgAL — L—ic3) |AL| AL — g1(1 —ic2) |AR|“ AL
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Solutions
(3 + s3)A =e(1+ico)A + E5(L+ic))d?A — go(1—ic3) |A]° A

» Single wave in uniform periodic geometry (annulus): transform to moving frame and
eliminatesd, term

« (MCC 1986) Assume is smalls = ¢/2S and do usual scaling
(7 + SOx)A = (L+ico)A + (1+ic1)d3A — (1 —ic3) |A]° A
Also can treat counterpropagating waves for case with —x symmetry
(97 + Sx)Ag = (L +ico)Ag + (L +ic1)d3Ag — (L—ica) |Ag| Ag — g1(1 —ic) |AL|” Ag

c o . X A 1r 2R Cli 12
A1 — Sax)AL = (L+ico)AL + L +ic)dgAL — L—ic3) |AL| AL — g1(1 —ic2) |AR|“ AL

* (Knobloch and de Luca 1990) Fer= O (1) ande small, interaction with inhomogeneity
in medium or counterpropagating wavenisnlocale.g.

AL|* Ap > (L1 |AL|*aX) A
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Solutions

(3 + s3)A =e(1+ico)A + E5(L+ic))d?A — go(1—ic3) |A]° A

» Single wave in uniform periodic geometry (annulus): transform to moving frame and
eliminatesd, term

« (MCC 1986) Assume is smalls = ¢/2S and do usual scaling
(7 + SOx)A = (L+ico)A + (1+ic1)d3A — (1 —ic3) |A]° A
Also can treat counterpropagating waves for case with —x symmetry
(97 + Sx)Ag = (L +ico)Ag + (L +ic1)d3Ag — (L—ica) |Ag| Ag — g1(1 —ic) |AL|” Ag

c o . X A 1r 2R Cli 12
A1 — Sax)AL = (L+ico)AL + L +ic)dgAL — L—ic3) |AL| AL — g1(1 —ic2) |AR|“ AL

* (Knobloch and de Luca 1990) Fer= O (1) ande small, interaction with inhomogeneity
in medium or counterpropagating wavenisnlocale.g.

AL|* Ap > (L1 |AL|*aX) A

» (Martel and Vega 1998) “Hyperbolic” equations Wi'[hOliI terms
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Wave instabllity in 2d

[From La Porta and Surko (1998)]
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Other iIssues for wave instabilities
. i3 convectively unstable domain

* Global modes (e.g. far(x)): local absolutely unstable region
sustains disturbance in convectively unstable region (Chomaz et
al., 1988)

o Complex dynamics of counterpropagating waves in finite
geometry (e.g. )
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Conclusions

In this lecture | discussed pattern formation in oscillatory systems. Some
of the key concepts were:

» Convective v. Absolute Instability
» Oscillatory Instability

o CGL equation

¢ Benjamin-Feir instability

¢ Properties of nonlinear waves

¢ Importance of spiral sources in 2d
* Wave Instability

¢ Importance of propagation term
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