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Pattern Formation in Spatially Extended Systems
Lecture 2: Symmetry

* Symmetry and stripes

¢ Rotational invariance near threshold
» Amplitude equation
» Swift-Hohenberg equation

¢ Translational invariance: the phase equation
» Near threshold
x Far from threshold

¢ Defects

e Lattice states
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Rotational symmetry: linear instability

Patterns
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Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated
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Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

. 2
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Note: the complex amplitude can only descrdmeall reorientations of the stripes.
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Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

. 2
_ 2 L2 2
ToatA—SA—FSO 8X—Zay A—golAl A
C

Q2
q_QC:\/(Qc‘i‘Qx)Z‘FQ%_QC%Qx‘*‘z—q);

Note: the complex amplitude can only descriimeall reorientations of the stripes.

Isotropic system gives anisotropic scaling= ¢ /2& X; y = e Y& /q.) Y2 Y
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

yv =[r— (Vi + D%y — >
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« originally introduced to investigateniversalaspects of the
transition to stripes

Back Forward



Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 2

Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

yv =[r— (Vi + D%y — >

« originally introduced to investigateniversalaspects of the
transition to stripes

e later used to gualitative aspects of stripe pattern formation
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

oy =[r—(Vi+D7y —y°
« originally introduced to investigateniversalaspects of the
transition to stripes
e later used to gualitative aspects of stripe pattern formation

e no systematic derivation: model rather than controlled
approximation
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude

equation

Back

oy =[r—(Vi+D7y —y°
originally introduced to investigateniversalaspects of the
transition to stripes
later used to gualitative aspects of stripe pattern formation

no systematic derivation: model rather than controlled
approximation

equation is relaxational
sV

o = 5 V= //dxdy {—%mpz + 3 [(V2+ 1)w]2 + %w“}
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Motivation
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation

g = 15 e — £5(q — 90)%Vq
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

g = 74 1[e — (€3/492) (4% — ¢5?1¥q
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Vg = 7 e — (65/442)(q® — 421
* In real space this gives

oV (x, y, 1) = e¥ — (§5/492) (V2 + q2)*y
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Y = 7o e — (E§/4a2)(a® — a)?1vrg
* In real space this gives
oV (x, v, 1) = ey — (€5/442) (V2 + 42y
» Add simplest possible nonlinear saturating term

w0y (x, y, 1) = e — (§5/492) (VS + ¢O%Y — goy®

Back Forward



Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 2

Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Y = 7o e — (E§/4a2)(a® — a)?1vrg
* In real space this gives
oV (x, v, 1) = ey — (€5/442) (V2 + 42y
» Add simplest possible nonlinear saturating term
w0y (x, y, 1) = ey — (65/449) (VT +4)* — goy°
 Alternatively can think

A(x, y)e' % = Y (x,y)
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Relaxation to steady state

(b) T {c)

% Y %|
i TSN

s

T=00 F=37500 <XZ>=0080 T=955 F=-592 <XZ%:0046 T-2455 F=.600 < XZ2=00463

1

T=3085 F2gl3 <¥2>=00472 T=4508 F=-622 <¥2>:00477 T=6605 F=-632 <¥E>-0048)

(from Greenside and Coughran, 1984)
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Coarsening in a periodic geometry
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Generalized Swift-Hohenberg models

Qualitatively include other physics:
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Generalized Swift-Hohenberg models
Qualitatively include other physics:

° Y — —y¥ symmetry

oy =|r— (V2 + 2]y +yu? -y
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Generalized Swift-Hohenberg models
Qualitatively include other physics:

o W — —y¥ symmetry
oy =|r— (V2 + 2]y +yy? -y
 add mean flow

@ +V -V =|r— (V2 + 12|y -y
V2V = g2. V(V%Y) x Vi

Back Forward



Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 2

Generalized Swift-Hohenberg models
Qualitatively include other physics:

o W — —y¥ symmetry
oy =|r— (V2 + 2]y +yy? -y
 add mean flow

@ +V -V =|r = (V2 + 12|y -y
V2V = g2 V(V2Y) x Vi

» change nonlinearity to make equation non-potential, e.g.

oy = [r = (V3 + 12|y + (V) vy
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Generalized Swift-Hohenberg models
Qualitatively include other physics:

o W — —y¥ symmetry
oy =|r— (V2 + 2]y +yy? -y
 add mean flow

@ +V -V =|r = (V2 + 12|y -y
V2V = g2 V(V2Y) x Vi

» change nonlinearity to make equation non-potential, e.g.
oy = |r = (V3 + 2]y + (V) 2v2y
* model effects of rotation

= [r = (V2 + 12|y — y®+ o2 V X [(VY)2VY] + g3V - [(V)2V ]
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Phase dynamics
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Phase dynamics

* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.

* A constant phase change is just a spatial shift of the pattern.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude or the internal structure, and a
particularly simple description is obtained.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude or the internal structure, and a
particularly simple description is obtained.

* The phase variable describes the symmetry properties of the system: the
connection between symmetry and slow dynamics is known as Goldstone’s
theorem.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude or the internal structure, and a
particularly simple description is obtained.

* The phase variable describes the symmetry properties of the system: the

connection between symmetry and slow dynamics is known as Goldstone’s
theorem.

* Near threshold is simply the phase of the complex amplitude, and an equation
for the phase dynamics can be derived from the amplitude equatign<$oe
(Pomeau and Manneville, 1979)
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Equation for small phase distortions near threshold
For a phase variatiofh = kx + 56

0,60 = D380 + D 13560
with diffusion constants for the state with wave numbet ¢. + k

g — 3§§k2

Di= &) ez
0

1.k
Dy = (&1, l>q—.
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Back

Equation for small phase distortions near threshold

For a phase variatiofh = kx + 56
0,60 = D380 + D 13560

with diffusion constants for the state with wave numbet ¢. + k

g — 3§§k2

Di= &) ez
0

1.k
Dy = (575 l)q—.

A negative diffusion constant leads to exponentially growing solutions, i.e. the state with

wave numbey. + k is unstable to long wavelength phase perturbations for

£ok| > ¢1/2/4/3  longitudinal
k<O transverseg
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Stability balloon near threshold

\ V/S/)AV//////%

existence band

////////

stable band

iz
1.0
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Phase dynamics away from thresh@tCC and Newell, 1984)

Away from threshold the other degrees of freedom relax even more
quickly, and so idea of a slow phase equation remains.

| \

0=12m
6=0 6=2mt 6=41 6=8m =10
\ N AN ~—

o pattern is given by the lines of constant phas# a local stripe
solution;

e wave vectolq is the gradient of this phase= V6.
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A nonlinear saturated straight-stripe solution with wave vegter gX is

u=u,©,z,1) 0 =qgx
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A nonlinear saturated straight-stripe solution with wave vegter gX is
u=u,©,z,1) 0 =qgx

For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

u~u,@,z,1)+ 0®), q = VO(X)

whereq = q(nX) so thatvq = O(n).
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A nonlinear saturated straight-stripe solution with wave vegter gX is
u=u,©,z,1) 0 =qgx

For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

u~u,@,z,1)+ 0®), q = VO(X)

whereq = q(nX) so thatvq = O(n).

We can develop an equation for the phase variation by expanding in

1(q)9;0 = =V -[qB(q)]
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Back

A nonlinear saturated straight-stripe solution with wave vegter gX is
u=u,©,z,1) 0 =qgx

For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

whereq = q(nX) so thatvq = O(n).
We can develop an equation for the phase variation by expanding in
1(q)9;0 = =V -[qB(q)]

The form of the equation derives from symmetry and smoothness
arguments, and expanding up to second order derivatives of the phase.

The parameters(q), B(g) are system dependent functions depending on
the equations of motiony,, etc.
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Small deviations from stripes
t(q)9,0 = =V - [qB(q)]
Ford = gx + 66 this reduces to

0,80 = D (q)0780 + D1 (q)0580

with
B
DL@) =~ 5
1 d(gB(q))
D”(Q):_r(q) qdqq
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Small deviations from stripes
t(q)9,0 = =V - [qB(q)]
Ford = gx + 66 this reduces to

0,80 = D (q)0780 + D1 (q)0580

with
B
DL@) =~ 5
1 d(gB(q))
D”(Q):_f(q) qdqq

A negative diffusion constant signals instability:
* [¢B(q)]' < 0: Eckhaus instability

* B(q) < 0O: zigzag instability
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Phase parameters for the Swift-Hohenberg equation

qB(q) | >\
i \
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Application: wave number selection by a focus

V.(@Bg)=0 = fB(qm Adi=0

C
gB(g)=— — 0

r r—oo

l.e.g — gy with B(gr) = 0, the wave number of the zigzag instability!
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Focus/target defect

Wavevector winding number = 1
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Disclinations

(a) (0

JE= =
A Y

K A

Winding numbers: (a3; (b) 1; (c) -1
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Il

1
Phase winding numbe& 2—§£V9 dl=1
T

Dislocation
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Back

Dislocation climb

il

Smooth motion through symmetry related states

vg ~ B(q — qa)
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Ll

Motion involves stripe pinch off, and is pinned to the periodic structure

Dislocation glide
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Spiral Dynamics: of Plapp et al. (1998)
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Dislocation motion
Vg = wrg = B(q(rq) — qa)
Spiral motion from phase equation

Tqate = -V [qB(Q)]

w=—1 133@ B(¢))
1y oy 154
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Dislocation motion

vy = wrq = B(q(ra) — qa) (*)

Spiral motion from phase equation

Tqate =—V. [qB(Q)]

19
W= -1, o (rgB(q))
Approximatingz, ~ T and? ¢ B(q) = a(q — qr) gives
q(r) —qr = —owr/2a + crt.

Evaluating at; and combining with Eq. (*) gives.
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Dislocation motion

vy = wrq = B(q(ra) — qa) (*)

Spiral motion from phase equation

Tqate =—V. [qB(Q)]

19
W= -1, o (rgB(q))
Approximatingz, ~ T and? ¢ B(q) = a(q — qr) gives
q(r) —qr = —owr/2a + crt.

Evaluating at; and combining with Eq. (*) gives.

Is this relevant to
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[From Bodenschatz et al., Phys. Rev. Léf, 3078 (1991)]

L attice States

Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 2
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Stripe state
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Sguare state

7 ~
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Rectangular (orthorhombic) state
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Hexagonal state
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Supersquare state
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Superhexagon state
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Quasicrystal state
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Back

Amplitude equation description

Introduce amplituded; for each “component” set of stripes

SU(Xp1,z,1) ~ ) Ai(Xy,1) X [uchi(z)eich’"“] + c.c.

For no space dependence

700;A; = €A; — go

AP+ GO |47
JF#l

A

e.g. forsquareswvould haveA; = Ao andf12 = /2 so need to know

G(r/2).

Find stationary solutionsnd test foistability.
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Hexagons withoutr — —u symmetry

Special case becauge + g2 + g3 = 0 leading to “3 mode resonance”
terms

100, A1 = eA1+ Yy A3A5 — go | |A11° + ) G(m/3) (|A2l° + |43]°) | A1
J#i _

. Mean square amplitude
TN q Mmphtos

> .
w

.....................................

™
.
. \J
.
.
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Conclusions

In the second lecture | have described the implications of symmetry on the
theoretical methods for stationary patterns:

e amplitude equation in 2d
» Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.
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Conclusions

In the second lecture | have described the implications of symmetry on the
theoretical methods for stationary patterns:

e amplitude equation in 2d
» Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.

| then briefly discussed:
 topological defects

e competition between different planforms (stripes, lattices,
guasicrystals).
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Conclusions

In the second lecture | have described the implications of symmetry on the
theoretical methods for stationary patterns:

e amplitude equation in 2d
» Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.

| then briefly discussed:
 topological defects

e competition between different planforms (stripes, lattices,
guasicrystals).

Next lecture: oscillatory instabilities.
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