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linear instability

nonlinear saturation

stability balloon

amplitude equation
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The formation of spatial structure in systems that are:
o driven...
 dissipative...
 therefore, nonequilibrium...
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Pattern formation

The formation of spatial structure in systems that are:

e driven...

dissipative...

therefore, nonequilibrium...

characterized by energy injection, transport, and dissipation...

and so cannot be described in terms of the minimization of a (free)
energy
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Microwave background from a 8@y 100 portion of the sky showing
fluctuations of about 16*K . (Boomerang project).
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Angular power spectrum of Boomerang data.
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Wind-swept sand at the Kelso dune field of the Mojave desert in
California. The ripple spacing is about 10 cm.
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Photomicrographs of snowflakes by Wilson Bentley.
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Starving slime mold colony in the early stages of aggregation. The light
regions correspond to cells that are moving with a speed of about
400 min~! towards higher secretant concentrations (chemotaxis).
[Figure from Florian Siegert].
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Vertically shaken layer of fluid [From Kudrolli, Pier, and Gollub]
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ball diameter

Vertically shaken layer of tiny balls (layer depth 1.2mm

0.15-0.18mm) [From Melo, Umbanhowar, and Swinney]
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Perturbations
grow

Perturbations
decay

Equilibrium
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Pattern formation occurs in a spatially extended
system when the growing perturbation about the
spatially uniform state has spatial structure (a mode

with nonzero wave vector).
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Dynamical Equations

| shall confine my discussion to systems far from equilibrium that are
macroscopic and continuous.

These are defined by dynamical equations that

» Reflect the laws of thermodynamics and the return to (local)
equilibrium

» Are the familiar phenomenological equations

Leads us to the study ofonlinear, deterministic, PDEs
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Back

Equations for Convection (Boussinesq)

oY@, +Vv-V)V=—Vp+ RT2+ V?V

0, +Vv-V)T = V°T
V.v=0

Boundary conditions

v=0 at z=0,1

T:<

1 at z=0
O at z=1
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Equations for Convection (Boussinesq)

oY@, +Vv-V)V=—Vp+ RT2+ V?V
0, +Vv-V)T = V°T
V.v=0

Boundary conditions
v=0 at z=0,1

1 at z=0
O at z=1

T:<

Conducting (no pattern) solution:= 0,7 =1 —z
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A first approach to patterns: linear stability analysis
1. Find equations of motion of the physical variablgs, y, z, t)
2. Find theuniformbase solution,(z) independenbf x, y, ¢

3. Focus on deviation fromy
U(X, 1) = Up(z) + dU(X, t)

4. Linearize equations aboug, i.e. substitute into equations of part (1)
and keep all terms with just one powerdaf. This will give an
equation of the form

3,8u = L su

whereL may involveu, and include spatial derivatives acting &m

5. Sincel is independent af, y, r we can find solutions

SUq(X L, z, 1) = Uq(z) &' 9%+ e
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Exponential growth: exp[cqt]

! ! !

+«—\=217q—>

dUq(X1, z,t) = Uq(2) ¢! dXL goal
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Exponential growth: exp[cqt]

! ! !

+«—\=217q—>

dUq(X1, z,t) = Uq(2) ¢! dXL goal

Re oq gives exponential growth or decay
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Exponential growth: exp[cqt]

! ! !

+«—\=217q—>

SUg(XL, z,1) = Ug(z) €'+ e
Re oq gives exponential growth or decay

Im oq = —wq gives oscillations, waves (4L ~@a?)

Imoqg =0 = Stationary instability
Im oq #0 = Oscillatory instability
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Exponential growth: exp[cqt]

! ! !

+«—\=217q—>

SUg(XL, z,1) = Ug(z) €'+ e
Re oq gives exponential growth or decay

Im oq = —wq gives oscillations, waves (4L ~@a?)

Imoqg =0 = Stationary instability
Im oq #0 = Oscillatory instability

For this lecture | will look at the case efationary instability

Back

Forward

19



Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 1

Rayleigh’s calculation

T

OIOIOIOIOIOIOIOIOO

T+AT

8T, (x,z) = (q2 + nz)zcos(nz) coggx),

Sw, (x, 7) = q* cogwz) codgx),
Sug(x,z) = —imq sin(rrz) sin(gx).
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Rayleigh’s calculation

(a‘laq + 72+ qz)(ch + 72+ qz) — qu/(yr2 + qz) =0
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Parabolic approximation near maximum

A

Re oq

SN

/% N\
R>R,
/\ o
R<R,

For R nearR. andg nearg,

Reog =10 '[e —&0° (¢ —q0)?]  with &=
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Parabolic approximation near maximum

A
Re a,
q
/S
R>R_
R=R_
R<R_
For R nearR. andg nearg,
R — R,

Reog =10 '[e —&0° (¢ —q0)?]  with &=
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Neutral stability curve

I
l
de “
Setting Reoq = 0 defines the neutral stability curve= R.(q)

B 2774
4

Rayleigh:  R.(q) 5 = R, , e =

Back

TT

V2

Forward

24



Tel Aviv, December, 2005Pattern Formation in Spatially Extended Systems - Lecture 1

Linear stability theorys often a useful first step in understanding pattern
formation:

« Often is quite easy to do either analytically or numerically
» Displays the important physical processes

» Gives the length scale of the pattern formatigg 1
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Linear stability theorys often a useful first step in understanding pattern
formation:

« Often is quite easy to do either analytically or numerically
» Displays the important physical processes
» Gives the length scale of the pattern formatigg 1

But:

* Leaves us with unphysical exponentially growing solutions
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Nonlinearity
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Re0q>0

----------- «—Dband of growing solutions—®#--------
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Back

Forward Bifurcation
dut
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Back

Backward Bifurcation
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Back

Patterns exist.
Are they stable?

No patterns

q. G
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Back

E=Eckhaus
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A E=Eckhaus
R Z=ZigZag
SV=Skew Varicose
O=Oscillatory
RC
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A E=Eckhaus
R Z=ZigZag
SV=Skew Varicose
O=Oscillatory
R c
Ov- Ys. e Os+  One q
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Tools for the Nonlinear Problem
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Amplitude Equations
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Systematic approach for describing weakly nonlinear solutions near onset
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Linear onset solution

SUg(XL,z,t) = [aoei(q_qc)'XLeReaqt] X [uq(z)eiqC'Xl] + c.c.

Small terms near onset Onset solution
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Linear onset solution

SUg(XL,z,t) = [aoei(q_qc)'XLeReaqt] X [uq(z)eiqC'Xl] + c.c.

Small terms near onset Onset solution

Weakly nonlinear, slowly modulated, solution

SuXp,z,t) =~ A(XL,1) x [ug(2)e'%*] + c.c.

Complex amplitude Onset solution
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Linear onset solution

SUg(XL,z,t) = [aoei(q_qc)'XLeReaqt] X [uq(z)eiqC'Xl] + c.c.

Small terms near onset Onset solution

Weakly nonlinear, slowly modulated, solution
SU(XL,2,1) = A(X1, 1) X |ug(@e%*] 4+ ce
Complex amplitude Onset solution

Substituting into the dynamical equations gives the amplitude equation,
whichin1ld g, = g.X, A = A(x, t)] is

100, A = eA + E50%A — go |A|* A, g =
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Pictorially

A convection pattern that variegaduallyin space

N

10 20 30 40 50

u x Re[A(x)e'9"]
qgc = 3.117, A(x) =14 0.1c050.2x)
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Complex Amplitude
Magnitude and phase df play very different roles

Alx,y,t) =a(x,y, t)eie(x’y’t)
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Complex Amplitude
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0

SUXy,z,t) = ae'? x eiqcxuqc(z) + c.c.
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Complex Amplitude

Magnitude and phase df play very different roles

Alx,y,t) =a(x,y, t)eie(x’y’t)

Sux,,z,t) = ae'

* magnitude: = |A| gives strength of disturbance

Back
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Complex Amplitude
Magnitude and phase df play very different roles

Alx,y,t) =a(x,y, t)eie(x’y’t)

Sux,,z,t) = ae'

 magnitudez = |A| gives strength of disturbance

« phase’d gives shift of pattern (byx = 86/q.)
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Complex Amplitude
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0

SUXy,z,t) = ae'? x eiqcxuqc(z) + c.c.

 magnitudez = |A| gives strength of disturbance

» phase’d gives shift of pattern (byx = 66/g.)— symmetry!
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Complex Amplitude

Magnitude and phase df play very different roles

Alx,y,t) =a(x,y, t)eie(x’y’t)

7 % eiqcxuqc(z) + c.c.

SU(Xy,z,t) = aeé'
 magnitudez = |A| gives strength of disturbance
» phase’d gives shift of pattern (byx = 66/g.)— symmetry!

« X-gradientd, 0 gives change of wave number= g. + 9,0
A = ae'*™ correspondstq = g, + k
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Complex Amplitude

Magnitude and phase df play very different roles

Alx,y,t) =a(x,y, t)eie(x’y’t)

0

SUXy,z,t) = ae'? x eiqcxuqc(z) + c.c.

magnitudez = |A| gives strength of disturbance

phase’d gives shift of pattern (byx = 6/g.)— symmetry!

x-gradientd, 0 gives change of wave number= ¢q. + 9,60
A = ae'*™ correspondstq = g, + k

y-gradientd, 6 gives rotation of wave vector through angl®/q.
(plus O[(3,6)?] change in wave number)
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The amplitude equation describes

oA = A+ E502A —

growth dispersion/diffusion
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Parameters

T00;A = cA + EG0%A — go |A|* A,

e control parameter = (R — R.)/R,
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« system specific constants, &g, go
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Parameters

100, A = eA + E50%A — g0 |A|* A,

» control parametesr = (R — R.)/R,
e system specific constants, &g, go

o 10, £o fixed by matching to linear growth rate
A = q e¥*1e%! gives pattern af] = g% + k)

oq = 10 & — &0%(q — qc)°]
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Parameters

100, A = eA + E50%A — g0 |A|* A,

» control parametesr = (R — R.)/R,
e system specific constants, &g, go

o 10, £o fixed by matching to linear growth rate
A = q e¥*1e%! gives pattern af] = g% + k)

oq = 10 & — &0%(q — qc)°]

¢ go by calculating nonlinear state at smakhndg = ¢..
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Scaling

100,A = A + E50°A — g0 | A% A, g=——°
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Scaling
100 A = eA + E20%°A — g |AIPA, &= —F

Introduce scaled variables

X = 8_1/2«‘;-'0 X
I = 8_11'0 T

A= (g/g0)/* A
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Scaling
100, A = eA + EGO°A — go|AI*A, &=

Introduce scaled variables

X = 8_1/2«‘;-'0 X
I = 8_11'0 T

A= (¢/g0)"* A

This reduces the amplitude equation toraversalform
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Back

Scaling

100, A = A + ES0PA — go|AIPA, &=

Introduce scaled variables

X = 8_1/2«‘;-'0 X
I = 8_11'0 T

A=(s/g0)"? A
This reduces the amplitude equation toraversalform
drA=A+0%A—|A]A

Since solutions to this equation will develop on scaéte¥’, T, A = 0(1)
this gives us scaling results for the physical length scales.
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Derivation

100, A = A + EE0°A — go|AIPA,  e=—=
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Derivation

100, A = eA + E50°A — g0 |A|° A, &=

o Symmetry arguments: equation invariant under:

o A(X1) — A(X))e'® with A a constant, corresponding to a
physical translation;

o A(X)) > A*(—X_), corresponding to inversion of the
horizontal coordinates (parity symmetry);

Back Forward
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Derivation

100, A = eA + E50°A — g0 |A|° A, &=

o Symmetry arguments: equation invariant under:

o A(X1) — A(X))e'® with A a constant, corresponding to a
physical translation;

o A(X)) > A*(—X_), corresponding to inversion of the
horizontal coordinates (parity symmetry);

» Multiple scales perturbation theory (Newell and Whitehead, Segel
1969)
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Derivation

100, A = eA + E50°A — g0 |A|° A, &=

o Symmetry arguments: equation invariant under:

o A(X1) — A(X))e'® with A a constant, corresponding to a
physical translation;

o A(X)) > A*(—X_), corresponding to inversion of the
horizontal coordinates (parity symmetry);

» Multiple scales perturbation theory (Newell and Whitehead, Segel
1969)

* Mode projection (MCC 1980)

Back Forward
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Back

Amplitude Equation = Ginzburg Landau equation
T00;A = eA + EG0%A — go|A|* A,

Familiar from other branches of physics:
* Good: take intuition from there
* Bad: noreally new effects
e.g. equation is relaxational (potential, Lyapunov)

oV

T()atA = — S A ,

V = /dx [—¢ Al + %go Al + &6 |3xA|2]

This leads to
dV

dr
and dynamics runs “down hill” to a minimum &f— no chaos!

— —T()_l/dx 10,A1° <0
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Example: one dimensional geometry with boundaries that suppress the pattern (e.g.
rigid walls in a convection system)

First consider a single wall

drA=A+%A—|APA  A©)=0

Al

A = ¢ tanh( X /v/2)
A=c"e/gY?tanhx/e)  with & =272

Back Forward
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A = ¢'%(e/g0)Y? tanh(x /€)

 arbitrary position of rolls

« asymptotic wave number is= 0, givingg = ¢g.: no band of
existence

Back
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A = ¢'%(e/g0)Y? tanh(x /€)

 arbitrary position of rolls

« asymptotic wave number is= 0, givingg = ¢g.: no band of
existence

Extended amplitude equation to next ordet ifMCC, Daniels,
Hohenberg, and Siggia 1980) shows

 discrete set of roll positions

« solutions restricted to a narro@(el) wave number band with
wave number far from the wall

A_& < g —(c <04E€
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 band ~
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V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)
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From Morris et al. (1991) and Mao et al. (1996)
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Back

—0 2 O
Mao et al. (1996)

0.2
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Two sidewalls

«— g2

Al
ReA
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Back

Conclusions

In today’s lectures | introduced some of the basic ideas of pattern
formation:

* linear instability at nonzero wave number;
e nonlinear saturation;
o stability balloons.

| then introduced the amplitude equation which is the simplest theoretical
approach that captures the key effects in pattern formation (growth,
saturation, and dispersion).

| focussed on the equation in one dimension, and on a phenomenological
derivation. You can find more technical aspects in the supplementary
notes.

Next lecture: the role of continuous symmetries — rotation and translation
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