Lecture 2 Supplementary Notes: Derivation of the Phase Equation

Michael Cross, 2005

Derivation from Amplitude Equation

Near threshold the phase reduces to the phase of the complex amplitude, and the phase equation can be
derived by “adiabatically eliminating” the relatively fast dynamics of the magnitude. The basic assumption
is that we are looking at the dynamics driven by gradual spatial variations of the phase, i.e. that derivatives of
6 are small. For simplicity we will also assume that we are looking at small deviations from a straight stripe
pattern, so that the phase perturbations themselves may also be considered small. This ledieéo the
phase diffusion equation first derived by Pomeau and Manneville (1979). We will consider the full nonlinear
phase equation in the more general context away from threshold.

Consider the (scaled) amplitude equation
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Look at small perturbations about the stdte= age'*X with a2 = 1 — K?,

A = ae'kXel?, a =ag +éa
Expand in
» small phase perturbatiodsand amplitude perturbationa

» small derivatives o (up to second order)

Then using
e KXem1089. A = dra +iadr0,

the real part of the equation gives the dynamical equation,fand the imaginary part of the equation gives
the dynamical equation f@. The real part gives

drda = —2a28a — 2K ax dx6 + 9%8a

For time variations on &-scale much longer than unity, the term on the left hand side is negligibléaand
is said to adiabatically follow the phase perturbations. The terdgéa will lead to phase derivatives that
are higher than second order, and so can be ignored. Hence
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The imaginary part gives
agdr6 ~ 2K dx8a + ax 320 + ax K 926.

Eliminatingda and usingz2 = 1 — K2 gives
1-3K?

the phasdaiffusion equatiorin scaled units.
Returning to the unscaled units we get the phase diffusion equation
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with diffusion constants for the state with wave numbet q. + k (with & related tok by k = &5 Lel/i2K)
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A negative diffusion constant leads to exponentially growing solutions, i.e. the state with wave number
g. + k is unstableto long wavelength phase perturbations for

|Eok| > €%2/+/3 Dy < 0: longitudinal (Eckhaus)
k<0 D, < 0: transverse (ZigZag)

General Method

Away from threshold the internal degrees of freedom as well as the overall magnitude again relax rapidly
compared to the phase variable for gradual spatial variations of the phase. The method of multiple scales can
again be used to derive the equation for the phase equation. This application of the method is a little different
from the derivation of the amplitude equation in that the slow scale is not determined by an independent
parameter such as but itselfdefineghe small parameter. The small parameter is essentially the reciprocal
of the length scale of the spatial variation (in units of the periodicity of the pattern).

The starting point for the derivation of the phase equation is the definition of the phase variable in terms
of the wave vector field

VO(xy,t) =q(X, T), (1)

or

0 = /q(X,T)-de. (2)
In these equations a slow space variableas been introduced. It is defined as
X = nXy, 3)

wheren is the small parameter such that the slow spatial variations of interest in the pattern occur over a
length scale of order unity in thé variable. Similarly a slow time scalg is introduced

T =, 4)

where the scaling witly? anticipates the diffusive nature of the dynamics. The wave vector defines the
orientation and local periodicity of the pattern: this variable therefore varies on the long length scale, and is
a function of the slow variabl¥, but not of the fast variabbe. In turn this slow spatial variation will induce
dynamics on the slow time scale. Note that By applies in regions of smooth variation of the pattern, away
from defects and disordered regions.

The expressions Eqsl)( (2) are not easy to work with, because they mix the fast and slow coordinates
X1, X in an inconvenient way To develop the systematic perturbation expansion it is useful to introduce a
scaledphase variabl® (X, T), through

O = o, )]



so that the derivatives @ with respect toX are O (1) (the first derivative is just the wave vector). In terms
of the scaled phase we have

4(X) = VxO(X), mmzmewm. ®)

This clever trick allows the inclusion in the same formal expansion scheme of both the first derivatjve of
which is O (1) and gives the local wave vector, and higher derivativeg, afhich areO (n), and give the
slow spatial variation.

With the definitions Eq.&), the derivation of the phase dynamics follows quite closely the multiple scales
derivation of the amplitude equation. In the present case, we expand the evolution equations for the fields
u(x, t) in powers ofn, corresponding to the slow spatial variationopf

The zeroth order solution far (i.e. no effect of the spatial variation gj is the fully nonlinear, spatially
periodic solutionug(X., z), which corresponds to the ideal stripe state with wave vegtoSinceuq is
periodic inx, with period 2rg~* in the § direction, we redefine the spatially periodic function in terms of
the phase

Uq(xi, Z) = Uq(ea Z)’ 0= q-Xg. (7)
The expansion in powers a@fis then

uxy,z, ) =u®@, z; X, T) + nu® + ..., (8)

where the dependencewf’ on the slow variableX, T arises through the implicit dependenceqyiX, T).
In particular we have for the zeroth order term

u®@, z; X, T) = Ugx.1) (6, 2). ©)

Equation B)is substituted into the evolution equations for the system, and terms at each ondaein
collected. To derive the lowest order phase equation, we need only go up to terms that are firstsrder in
These terms arise from slow spatial derivatives, slow time dependence, and also the#imEq. @).

For example, a spatial derivative actingwhf gives

vu® — gapu® + nvxu®. (10)

Higher order derivatives may also be needed, for example

VA — ¢232u? + nDdu? + 0 (n?), (11)

with the operatoiD defined by
D =29 Vx + (Vx - Q). 12)

Also, the time derivative gives
quD @, z: X, T) = n?370 du® 4 n?07u? = 130 ,u” + 0(n?). (13)

At O(n) there are also termgLu®, with L the linear operator given by linearizing the equations of motion
aboutu©@. We know from physical arguments thathas an eigenvector with zero eigenvalue, and so the
phase equation appears as the solvability condition that the equatioff'foas a finite solution. Here we
see the close similarity with the derivation of the amplitude equation. The zero mode in the present case
corresponds to a translation of the solution, and so takes theVrgfh.

This procedure is illustrated for the simple example of the Swift-Hohenberg equation in the following
section.
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Figure 1: Plot ofy B(¢g) in the phase equation for the Swift-Hohenberg model. A control parameter value of
r = 0.25 was used in constructing the plot. The solid line is whgrend (¢ B)" (with the prime denoting
theq derivative) are positive, the dashed line is wher8)’ is negative, the dotted line whekeis negative,

and the dashed-dotted line where bétland (¢ B)" are negative. The range gffor the solid curve is the
wave number band for which stripes are linearly stable against long length scale perturbations.

Phase Equation for the Swift-Hohenberg Equation

The Swift-Hohenberg equation is the equation for a real scalardiettere we will use the equation in two
space dimensions, when it can be written in the form

duX, 1) =ru — (V2 + %u — u®, (14)
with X = (x, y), andVv? = 32 + 85,. As in Eq. @), we expand: as an expansion in powers pfto give
ux,t) =u®@,z; X, T) + nu® + h.ot., (15)
with X, T the slow space and time variables, as in Egg)( andu© the zeroth order solution
w0, 2 X, T) = itgx 1) (6), (16)

wherei, (6 = gx) is the nonlinear, spatially periodic, time independent solution for straight stripes which
satisfies
riig(0) — (%07 + 1%y (6) — i (0) = 0. (17)

The h.o.t. in Eq.15) denotes terms that are second order and higher in
We now substitute Egq16) into the evolution equation, Eql4). We will need the rather complicated
operator involving up to fourth order derivatives

(V2 + 12— [(¢?92+1) + 1D [(¢%9F — 1) + nDd] + h.ot. (18)
= (¢%07 + 1)* + 1 {2084(¢%07 + DD +[29 - Vx(¢?)]d;} + h.ot.. (19)
The other terms in Eql#) are easy to evaluate up to first ordemin

du(X, t) = n(9r®)dyui,(0) + h.o.t., (20)
ru—u® — rilg — 122 + 7 [r — 3513] u? + h.ot.. (21)



Now collecting terms a© (n) we find the equation
[r — (¢%0F + D? — B2 | uD = (3r©)dpitg (0) + {205 (¢°0F + DD +[2q - Vx(¢7)]05} g (0).  (22)
It is straightforward to check thapi, is a zero-eigenvalue eigenvector of the operator on the left hand side
[r — (¢%0F — 1)* — 3i2] dpity = O, (23)

as is expected from the translational symmetry. The operator acting’dn Eq. (22) is self adjoint, and so
the solvability condition, that the right hand side have ho component along this eigenvector, reduces to the
orthogonality condition for the right hand side wihv,:

2w 21
(0r©) / d6 (dpitg)? + / d0(Bgity) {206(q°9; + DD +[20- Vx(gD]9;}a, =0.  (24)
0 0

After integrating by parts with respect fasome terms in the second integral, and rearranging, this reduces
to

2 2
(aT@))/ d9(89ﬁq)2=Vx-{q/ do [qz(agﬁq)z—(agﬁq)z]}. (25)
0 0
Eq. 25 is in the form introduced in the lecture (returning to unscaled variables)
7(q)3,0 =V - [¢B(q)] (26)
with
1 [ _ 2
)= [ doc@ui,, (27a)
T Jo
N P )
B(g) = — do [q*(35iq)* — (3pitg)?]. (27D)
0

(Since we can multiply andB by the same arbitrary constant without changing the equation, | have included
a normalization constant/x in these expressions for convenience.)

These integral expressions depend on knowing the full nonlinear, but spatially periodic stripe solutions to
some satisfactory level of approximation. A simple lowest order mode truncationigives:, cost, 6 =
qx, with

4
a2 = 3 [r — @*—D?]. (28)

Then we find
(q) = aj, (29a)
B(q) = (¢° — Dal. (29b)

The functionag is positive everywhere between the neutral stability curve of the uniform state, and goes to
zero on the neutral stability curve. The functiBiig) changes sign af = 1. It is useful to ploty B(g),

since the slope of this curve is needed to calculate the parallel diffusion constant, and the figasdof

(g B)' with the prime denoting the derivative with respecytare important in determining the stability of

the stripe state against long wavelength perturbations. The dependemg@®nfthe wave numbey for the
Swift-Hohenberg model at = 0.25 is shown in the figure.
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