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Pattern Formation in Spatially Extended Systems

Lecture 3: Oscillatory Instabilities
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Oscillatory Instabilities

If ωc = − Im σqc 6= 0 we have an instability to

• a nonlinear oscillator forqc = 0 which also supports travelling

waves

• a wave pattern (standing or travelling) forqc 6= 0
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Oscillatory Instabilities

If ωc = − Im σqc 6= 0 we have an instability to

• a nonlinear oscillator forqc = 0 which also supports travelling

waves

• a wave pattern (standing or travelling) forqc 6= 0

Important new concept: absolute v. convective instability
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Absolute and convective instability
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Conditions for convective and absolute instability

• Convective instability: same as condition for instability to

Fourier mode

• Absolute instability: for a growth rate spectrumσq , the system is

absolutely unstable if

Reσ(qs) = 0

whereqs is acomplexwave vector given by the solution of the

stationary phase condition

dσq

dq
= 0
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as (for simplicity restricting attention to one dimension)

up(x, t) =
∫ ∞
−∞

dq eiqx+σq t
∫ ∞
−∞

dx′ up(x′,0)e−iqx
′
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In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as (for simplicity restricting attention to one dimension)

up(x, t) =
∫ ∞
−∞

dq eiqx+σq t
∫ ∞
−∞

dx′ up(x′,0)e−iqx
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Rewrite the integral as

up(x, t) =
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−∞
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−∞

dq eiq(x−x′)+σq t
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as (for simplicity restricting attention to one dimension)

up(x, t) =
∫ ∞
−∞

dq eiqx+σq t
∫ ∞
−∞

dx′ up(x′,0)e−iqx
′

Rewrite the integral as

up(x, t) =
∫ ∞
−∞

dx′up(x′,0)
∫ ∞
−∞

dq eiq(x−x′)+σq t

For large time and at fixed distance the integral can be estimated using the stationary

phase method: the integral is dominated by the region around the complex wave number

q = qs given by the solution of
dσq

dq
= 0
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as (for simplicity restricting attention to one dimension)

up(x, t) =
∫ ∞
−∞

dq eiqx+σq t
∫ ∞
−∞

dx′ up(x′,0)e−iqx
′

Rewrite the integral as

up(x, t) =
∫ ∞
−∞

dx′up(x′,0)
∫ ∞
−∞

dq eiq(x−x′)+σq t

For large time and at fixed distance the integral can be estimated using the stationary

phase method: the integral is dominated by the region around the complex wave number

q = qs given by the solution of
dσq

dq
= 0

Estimating the integral from the value of the integrand at the stationary phase point gives

up(x = 0, t) ∼ eσqs t
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Derivation of condition for absolute instability

In the linear regime the disturbance growing from any given initial condition

up(x, t = 0) can be expressed as (for simplicity restricting attention to one dimension)

up(x, t) =
∫ ∞
−∞

dq eiqx+σq t
∫ ∞
−∞

dx′ up(x′,0)e−iqx
′

Rewrite the integral as

up(x, t) =
∫ ∞
−∞

dx′up(x′,0)
∫ ∞
−∞

dq eiq(x−x′)+σq t

For large time and at fixed distance the integral can be estimated using the stationary

phase method: the integral is dominated by the region around the complex wave number

q = qs given by the solution of
dσq

dq
= 0

Estimating the integral from the value of the integrand at the stationary phase point gives

up(x = 0, t) ∼ eσqs t

Thus the system will be absolutely unstable for Reσqs > 0.
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Nonlinear oscillators and waves

Insights from amplitude and phase equations

• Oscillatory instabilityqc = 0

• Wave instabilityqc 6= 0
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Oscillatory intability: Complex Ginzburg-Landau

Re σq

q

qc=0

nonl inear
wave states

Im σq≠0

1d: ∂T Ā = (1+ ic0)Ā+ (1+ ic1)∂
2
XĀ− (1− ic3)

∣∣Ā∣∣2 Ā
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Oscillatory intability: Complex Ginzburg-Landau

Re σq

q

qc=0

nonl inear
wave states

Im σq≠0

1d: ∂T Ā = (1+ ic0)Ā+ (1+ ic1)∂
2
XĀ− (1− ic3)

∣∣Ā∣∣2 Ā
2d: ∂T Ā = (1+ ic0)Ā+ (1+ ic1)∇2⊥Ā− (1− ic3)

∣∣Ā∣∣2 Ā
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Simulations of the CGL equation

General equation (2d)

∂T Ā = (1+ ic0)Ā+ (1+ ic1)∇2⊥Ā− (1− ic3)
∣∣Ā∣∣2 Ā

Case simulated:c1 = 0 (choice of parameter),c0 = −c3 (for simplicity of

plots)

∂T Ā = (1− ic3)Ā+∇2⊥Ā− (1− ic3)
∣∣Ā∣∣2 Ā

Simulations…
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Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave

solutions, but with properties that are strange to those of us brought up on

linear waves:
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Nonlinear wave patterns

As well as uniform oscillations, CGL equation supports travelling wave

solutions, but with properties that are strange to those of us brought up on

linear waves:

• Waves annhilate at shocks rather than superimpose

• Waves disappear at boundaries rather than reflect (not shown)

• Defects: importance as persistent sources

• Spiral defects play a conspicuous role, because they are

topologically defined persistent sources .

• Instabilities can lead to spatiotemporal chaos
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Wave solutions

∂T Ā = (1+ ic0)Ā+ (1+ ic1)∇2⊥Ā− (1− ic3)
∣∣Ā∣∣2 Ā

Travelling wave solutions

ĀK(X, T ) = aKei(K ·X−�KT )

a2
K = 1−K2 �K = −(c0+ c3)+ (c1+ c3)K

2

Group speed

S = d�K/dK = 2(c1+ c3)K
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Wave solutions

∂T Ā = (1+ ic0)Ā+ (1+ ic1)∇2⊥Ā− (1− ic3)
∣∣Ā∣∣2 Ā

Travelling wave solutions

ĀK(X, T ) = aKei(K ·X−�KT )

a2
K = 1−K2 �K = −(c0+ c3)+ (c1+ c3)K

2

Group speed

S = d�K/dK = 2(c1+ c3)K

Standing waves, based on the addition of waves atK and−K can be

constructed, but they are unstable towards travelling waves
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Stability analysis

ĀK(X, T ) = (aK + δa)ei(K ·X−�KT+δθ)

For small, slowly varyingphase perturbations

∂T δθ + S∂Xδθ = D‖(K)∂2
Xδθ +D⊥(K)∂2

Y δθ

with longitudinal and transverse diffusion with constants

D‖(K) = (1− c1c3)
1− νK2

1−K2 D⊥(K) = (1− c1c3)

with

ν = 3− c1c3+ 2c2
3

1− c1c3

• D‖ = 0⇒ Benjamin-Feir instability (longitudingal sideband instability
analogous to Eckhaus) for

|K| ≥ 3B = ν−1

leaving a stable band of wave numbers with width a fractionν−1 of the
existence band.

• For 1− c1c3 < 0 all wave states are unstable (Newell)



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 3 12

Stability balloon
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Shocks: the nonlinear phase equation

For slow phase variations about spatially uniform oscillations (now

keeping all terms up to second order in derivatives)

∂T θ = �+ α∇2⊥θ − β( E∇⊥θ)2

with

α = 1− c1c3

β = c1+ c3

� = c0+ c3
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Cole-Hopf transformation

The Cole-Hopf transformation

χ(X, Y, T ) = exp[−βθ(X, Y, T )/α]

transforms the nonlinear phase equation into thelinear equation forχ

∂T χ = α∇2
Xχ

Plane wave solutions

χ = exp
[
(∓βKX + β2K2T )/α

]
correspond to the phase variations

θ = ±KX − βK2T
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Cole-Hopf transformation (cont)

Since theχ equation islinear, we can superimpose a pair of these

solutions

χ = exp
[
(−βKX + β2K2T )/α

]+ exp
[
(+βKX + β2K2T )/α

]
The phase is

θ = −βK2T − α
β

ln[2 cosh(βKX/α)].

For large|X| the phase is given by (assumingβK positive)

θ →−KX − βK2T − α
β

exp(−2βKX/α) for X→+∞ (5)

i.e. left moving waves plus exponentially decaying right moving waves

with the decay lengthα/2βK. Similarly forX→−∞ get left moving

waves with exponentially small right moving waves.
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Shocks

shock

(a)

(b)

• Shocks are sinks, not sources

• For positive group speed shocks between waves of different

freuqency move so that the higher frequency region expands
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Spiral Defects

m-armed spiral:
∮
∇θ · dl = m× 2π

Ā = a(R)ei(K(R)R+mθ−�sT )
with for R→∞

a(R)→ aK K(R)→ Ks with �K(Ks) = �s
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Uniqueness

A key question is whether there is a family of spirals giving a continuous

range of possible frequencies�s or whether there is a discrete set of

possible spiral structures or even a unique one with a prescribed frequency

that selects a particular wave number.

A perturbative treatments of the CGLE for smallc1+ c3 about the real

amplitude equation predicts a unique stable spiral structure, with a wave

numberKs that varies as

Ks → 1.018

|c1+ c3| exp[− π

2 |c1+ c3| ].

(Hagan, 1982)



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 3 19

Stability revisited

• Wave number of nonlinear waves determined by spirals

• Only BF stability of waves atKs relevant to stability of periodic

state

• Convective instability may not lead to breakdown

• Core instabilities may intervene
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Stability lines of the CGLE. Solid line: Newell criterionc1c3 = 1; dotted line:

(convective) Benjamin-Feir instability of spiral-selected wavenumber; dashed: absolute

instability of spiral selected wavenumber; dashed-dotted: abolute instability of whole

wavenumber band. Unstable states are towards larger postivec1c3.
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Waves in excitable media

Waves in reaction-diffusion systems such as chemicals or heart tissue

show similar properties

[From Winfree and Strogatz (1983) and the website of G. Bub, McGill]
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Wave instabilities

Re σq

qqc

qc≠0

nonl inear
wave states

Im σq≠0

τ0(∂t + s∂x)A = ε(1+ ic0)A+ ξ2
0 (1+ ic1)∂

2
xA− g0(1− ic3) |A|2A

No singlescaling ofx, t with ε eliminates the small parameterε from

equation.
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Formal multiple-scales derivation
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.

• Introduce new time scaleTp = ε1/2t corresponding to the propagation time over the
slow length scale, as well as the usual time scaleT = εt on which spreading and
dispersion occur.
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.

• Introduce new time scaleTp = ε1/2t corresponding to the propagation time over the
slow length scale, as well as the usual time scaleT = εt on which spreading and
dispersion occur.

• Scaled amplitude is now written as a function ofX and thetwo time scalesĀ(X, Tp, T ).
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.

• Introduce new time scaleTp = ε1/2t corresponding to the propagation time over the
slow length scale, as well as the usual time scaleT = εt on which spreading and
dispersion occur.

• Scaled amplitude is now written as a function ofX and thetwo time scalesĀ(X, Tp, T ).

• Lowest order equation is just the propagation

∂Tp Ā+ s∂XĀ = 0.

Solution is thatĀ is a function of the reduced coordinateξ = X − sTp, i.e.
Ā(X, Tp, T ) = Ā(ξ, T ). Physically this corresponds to transforming to a frame moving
at the group speeds.
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.

• Introduce new time scaleTp = ε1/2t corresponding to the propagation time over the
slow length scale, as well as the usual time scaleT = εt on which spreading and
dispersion occur.

• Scaled amplitude is now written as a function ofX and thetwo time scalesĀ(X, Tp, T ).

• Lowest order equation is just the propagation

∂Tp Ā+ s∂XĀ = 0.

Solution is thatĀ is a function of the reduced coordinateξ = X − sTp, i.e.
Ā(X, Tp, T ) = Ā(ξ, T ). Physically this corresponds to transforming to a frame moving
at the group speeds.

• At next order dispersion, diffusion, and nonlinear saturation are found in the moving
frame

τ0∂T Ā = (1+ ic0)Ā+ (1+ ic1)ξ
2
0∂

2
ξ Ā− g0(1− ic3)

∣∣Ā∣∣2 Ā.
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Formal multiple-scales derivation

• Introduce reduced amplitudēA = ε−1A and the slow length scaleX = ε1/2x as usual.

• Introduce new time scaleTp = ε1/2t corresponding to the propagation time over the
slow length scale, as well as the usual time scaleT = εt on which spreading and
dispersion occur.

• Scaled amplitude is now written as a function ofX and thetwo time scalesĀ(X, Tp, T ).

• Lowest order equation is just the propagation

∂Tp Ā+ s∂XĀ = 0.

Solution is thatĀ is a function of the reduced coordinateξ = X − sTp, i.e.
Ā(X, Tp, T ) = Ā(ξ, T ). Physically this corresponds to transforming to a frame moving
at the group speeds.

• At next order dispersion, diffusion, and nonlinear saturation are found in the moving
frame

τ0∂T Ā = (1+ ic0)Ā+ (1+ ic1)ξ
2
0∂

2
ξ Ā− g0(1− ic3)

∣∣Ā∣∣2 Ā.
• Then use

∂ξ → ε−1/2∂x, ∂T → ε−1(∂t + s∂x).
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Solutions

(∂t + s∂x)A = ε(1+ ic0)A+ ξ2
0 (1+ ic1)∂

2
xA− g0(1− ic3) |A|2A
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Solutions

(∂t + s∂x)A = ε(1+ ic0)A+ ξ2
0 (1+ ic1)∂

2
xA− g0(1− ic3) |A|2A

• Single wave in uniform periodic geometry (annulus): transform to moving frame and

eliminates∂x term
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Solutions

(∂t + s∂x)A = ε(1+ ic0)A+ ξ2
0 (1+ ic1)∂

2
xA− g0(1− ic3) |A|2A

• Single wave in uniform periodic geometry (annulus): transform to moving frame and

eliminates∂x term

• (MCC 1986) Assumes is smalls = ε1/2S and do usual scaling

(∂T + S∂X)Ā = (1+ ic0)Ā+ (1+ ic1)∂
2
XĀ− (1− ic3)

∣∣Ā∣∣2 Ā
Also can treat counterpropagating waves

(∂T + S∂X)ĀR = (1+ ic0)ĀR + (1+ ic1)∂2
XĀR − (1− ic3)

∣∣ĀR∣∣2 Ā− g1(1− ic2)
∣∣ĀL∣∣2 ĀR

(∂T − S∂X)ĀL = (1+ ic0)ĀL + (1+ ic1)∂2
XĀL − (1− ic3)

∣∣ĀL∣∣2 Ā− g1(1− ic2)
∣∣ĀR∣∣2 ĀL
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Solutions

(∂t + s∂x)A = ε(1+ ic0)A+ ξ2
0 (1+ ic1)∂

2
xA− g0(1− ic3) |A|2A

• Single wave in uniform periodic geometry (annulus): transform to moving frame and

eliminates∂x term

• (MCC 1986) Assumes is smalls = ε1/2S and do usual scaling

(∂T + S∂X)Ā = (1+ ic0)Ā+ (1+ ic1)∂
2
XĀ− (1− ic3)

∣∣Ā∣∣2 Ā
Also can treat counterpropagating waves

(∂T + S∂X)ĀR = (1+ ic0)ĀR + (1+ ic1)∂2
XĀR − (1− ic3)

∣∣ĀR∣∣2 Ā− g1(1− ic2)
∣∣ĀL∣∣2 ĀR

(∂T − S∂X)ĀL = (1+ ic0)ĀL + (1+ ic1)∂2
XĀL − (1− ic3)

∣∣ĀL∣∣2 Ā− g1(1− ic2)
∣∣ĀR∣∣2 ĀL

• (Knobloch and de Luca 1990) Fors = O(1) andε small, interaction with inhomogeneity

in medium or counterpropagating wave isnonlocale.g.∣∣ĀL∣∣2 ĀR → (
L−1

∫ ∣∣ĀL∣∣2 dX) ĀR
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Wave instability in 2d

[From La Porta and Surko (1998)]



Back Forward

Newton Institute, 2005:Pattern Formation in Spatially Extended Systems - Lecture 3 26

Other issues for wave instabilities

• Noise sustained structures in convectively unstable domain

• Global modes (e.g. forε(x)): local absolutely unstable region

sustains disturbance in convectively unstable region (Chomaz et

al., 1988)

• Complex dynamics of counterpropagating waves in finite

geometry (e.g. blinking states )
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Conclusions

In this lecture I discussed pattern formation near oscillatory instabilities.

Some of the key concepts were:

• Convective v. Absolute Instability

• Oscillatory Instability

� CGL equation

� Benjamin-Feir instability

� Properties of nonlinear waves

� Importance of spiral sources in 2d

• Wave Instability

� Importance of propagation term


