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Pattern Formation in Spatially Extended Systems

Lecture 2: Symmetry

» Rotational invariance near threshold
¢ Amplitude equation
¢ Swift-Hohenberg equation
e Translational invariance: the phase equation
¢ Near threshold
¢ Far from threshold

» Defects
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Rotational Symmetry: Linear Instability

Patterns
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Rotational Symmetry: Amplitude Equation

For a 2d, rotationally invariant system the gradient term is more complicated
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Rotational Symmetry: Amplitude Equation

For a 2d, rotationally invariant system the gradient term is more complicated
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Note: the complex amplitude can only descrdmeall reorientations of the stripes.
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Rotational Symmetry: Amplitude Equation

For a 2d, rotationally invariant system the gradient term is more complicated
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Note: the complex amplitude can only descriimeall reorientations of the stripes.

Isotropic system gives anisotropic scaling= ¢ /2& X; y = e Y& /q.) Y2 Y
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

yv =[r— (Vi + D%y — >
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

oy =[r—(Vi+D7y —y°
« originally introduced to investigateniversalaspects of the
transition to stripes
e later used to study qualitative aspects of stripe pattern formation

e no systematic derivation: model rather than controlled
approximation
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Swift-Hohenberg equation

Simple equation for anrder parameten/ (x, y, t) that is rotationally
Invariant in the plane and captures the same physics as the amplitude
equation

oy =[r—(Vi+D7y —y°
« originally introduced to investigateniversalaspects of the
transition to stripes
e later used to study qualitative aspects of stripe pattern formation

e no systematic derivation: model rather than controlled
approximation

e equation is relaxational
sV

o = 5 V= //dxdy {—%mpz + 3 [(V2+ 1)w]2 + %w“}
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation

g = 15 e — £5(q — 90)%Vq
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

g = 74 1[e — (€3/492) (4% — ¢5?1¥q
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Vg = 7 e — (65/442)(q® — 421
* In real space this gives

oV (x, y, 1) = e¥ — (§5/492) (V2 + q2)*y
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Y = 7o e — (E§/4a2)(a® — a)?1vrg
* In real space this gives
oV (x, v, 1) = ey — (€5/442) (V2 + 42y
» Add simplest possible nonlinear saturating term

w0y (x, y, 1) = e — (§5/492) (VS + ¢O%Y — goy®
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Motivation

« Mode amplitudeyq(t) at wave vector satisfies linear equation
Vg = 75 e — £5(q — 40)°1¥q

* To be able to write this as a local equation for the Fourier transiptm vy, ¢)
approximate this by

Y = 7o e — (E§/4a2)(a® — a)?1vrg
* In real space this gives
oV (x, v, 1) = ey — (€5/442) (V2 + 42y
» Add simplest possible nonlinear saturating term
w0y (x, y, 1) = ey — (65/449) (VT +4)* — goy°
 Alternatively can think

A(x, y)e' % = Y (x,y)

Back Forward



Newton Institute, 2005Pattern Formation in Spatially Extended Systems - Lecture 2

Relaxation to steady state
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(from Greenside and Coughran, 1984)
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Coarsening in a periodic geometry
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Generalized Swift-Hohenberg models

Qualitatively include other physics:
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Qualitatively include other physics:

e breaky — —y symmetry to modehon-Boussinesgffects

oy =|r— (V2 + 2]y +yu? -y

Back Forward



Newton Institute, 2005Pattern Formation in Spatially Extended Systems - Lecture 2

Generalized Swift-Hohenberg models
Qualitatively include other physics:

e breaky — —y symmetry to modehon-Boussinesgffects
v =|r— (V2 + 2]y +yy? -y
* add mean flow/

@ +V -V =|r— (V2 + 12|y -y
V2V = g2. V(V%Y) x Vi
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Generalized Swift-Hohenberg models
Qualitatively include other physics:

e breaky — —y symmetry to modehon-Boussinesgffects
v =|r— (V2 + 2]y +yy? -y
* add mean flow/

@ +V -V =|r— (V2 + 12|y -y
V2V = g2 V(V2Y) x Vi

» change nonlinearity to make equation non-potential, e.g.

oy = [r = (V3 + 12|y + (V) vy
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Generalized Swift-Hohenberg models
Qualitatively include other physics:

e breaky — —y symmetry to modehon-Boussinesgffects
v =|r— (V2 + 2]y +yy? -y
* add mean flow/

@ +V -V =|r— (V2 + 12|y -y
V2V = g2 V(V2Y) x Vi

» change nonlinearity to make equation non-potential, e.g.
oy = |r = (V3 + 2]y + (V) 2v2y
* model effects of rotation

= [r = (V2 + 12|y — y®+ o2 V X [(VY)2VY] + g3V - [(V)2V ]
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Order parameter equation

The Swift-Hohenberg equation is motivated by projecting onto the weakly
growing modes near threshold, but then arbitrary simplifications are made

e wave number dependence of growth rate is approximated by
(9% — q2)*

« nonlinearity is simplified to local terng
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Order parameter equation

The Swift-Hohenberg equation is motivated by projecting onto the weakly
growing modes near threshold, but then arbitrary simplifications are made

e wave number dependence of growth rate is approximated by
(g% — q2)*
« nonlinearity is simplified to local terng>

The order parameter equation (Pesch 1996) is derived by removing these
approximations

aqu — )‘(Q)WQ + //dqlquK(q, di, QZ)walﬁquq—ql—qZ
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The Swift-Hohenberg equation is motivated by projecting onto the weakly
growing modes near threshold, but then arbitrary simplifications are made

e wave number dependence of growth rate is approximated by
(g% — q2)*
« nonlinearity is simplified to local terng>

The order parameter equation (Pesch 1996) is derived by removing these
approximations

aqu — )‘(Q)WQ + //dqlquK(q, di, QZ)ququwq—ql—qz

and add mean flow as in SH equation.
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Order parameter equation

The Swift-Hohenberg equation is motivated by projecting onto the weakly
growing modes near threshold, but then arbitrary simplifications are made

e wave number dependence of growth rate is approximated by
(9% — q2)*
« nonlinearity is simplified to local terng>

The order parameter equation (Pesch 1996) is derived by removing these
approximations

3qu — )‘(Q)WQ + //dqlquK(q, di, CIZ)ququ%”q—ql—qz

and add mean flow as in SH equation.

This approach is rotationally invariant, and removes the limitations of the
Swift-Hohenberg equation, but seems only easy to formulate in Fourier
representation. It is not known how to treat real boundaries properly.
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Phase dynamics
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Phase dynamics

* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.

* A constant phase change is just a spatial shift of the pattern.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.
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* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude of the internal structure
relaxation and a particularly simple description is obtained.
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* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude of the internal structure
relaxation and a particularly simple description is obtained.

* The phase variable describes the symmetry properties of the system: the
connection between symmetry and slow dynamics is known as Goldstone’s
theorem.
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Phase dynamics
* The local structure of a stripe patternstscoqq - X + 0) 4+ harmonics.
* A constant phase change is just a spatial shift of the pattern.

- A phase change that varies slowly in space (over a lemgthsay, withy small)
will evolve slowly in time.

* For small enoughy the phase variation is slow compared with the relaxation of
other degrees of freedom such as the magnitude of the internal structure
relaxation and a particularly simple description is obtained.

* The phase variable describes the symmetry properties of the system: the

connection between symmetry and slow dynamics is known as Goldstone’s
theorem.

* Near threshold is simply the phase of the complex amplitude, and an equation
for the phase dynamics can be derived from the amplitude equatign<$oe
(Pomeau and Manneville, 1979)
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Equation for small phase distortions near threshold
For a phase variatiofh = kx + 56

0,60 = D380 + D 13560
with diffusion constants for the state with wave numbet ¢. + k

g — 3§§k2

Di= &) ez
0

1.k
Dy = (&1, l>q—.
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Equation for small phase distortions near threshold

For a phase variatiofh = kx + 56
0,60 = D380 + D 13560

with diffusion constants for the state with wave numbet ¢. + k

& — 3E2k2

Dy = (£2¢71Hy2 =07
1.k

Dy = (575 l)q—.

A negative diffusion constant leads to exponentially growing solutions, i.e. the state with
wave numbey. + k is unstable to long wavelength phase perturbations for

&ok| > £%/2/4/3  longitudinal (Eckhaus)
k<O transverse (ZigZag)
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Stability balloon near threshold

\ V/S/)AV//////%

existence band
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Phase dynamics away from thresh@tCC and Newell, 1984)

Away from threshold the other degrees of freedom relax even more
quickly, and so idea of a slow phase equation remains.

| \

0=12m
6=0 6=2mt 6=41 6=8m =10
\ N AN ~—

o pattern is given by the lines of constant phas# a local stripe
solution;

e wave vectolq is the gradient of this phase= V6.
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A nonlinear saturated straight-stripe solution with wave vegter gX is

u=u,©,z1) 0 =qgx
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A nonlinear saturated straight-stripe solution with wave vegter gX is
u=u,©,z1) 0 =qgx

For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

u~u,@,z,1)+ 0®), q = VO(X)

whereq = q(nX) so thatvq = O(n).
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For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

u~u,@,z,1)+ 0®), q = VO(X)

whereq = q(nX) so thatvq = O(n).

We can develop an equation for the phase variation by expanding in

1(q)9;0 = =V -[qB(q)]
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Back

A nonlinear saturated straight-stripe solution with wave vegter gX is
u=u,©,z1) 0 =qgx

For slow spatial variations of the wave vector over a length sgatehis
leads to the ansatz for a pattern of slowly varying stripes

whereq = q(nX) so thatvq = O(n).
We can develop an equation for the phase variation by expanding in
1(q)9;0 = =V -[qB(q)]

The form of the equation derives from symmetry and smoothness
arguments, and expanding up to second order derivatives of the phase.

The parameters(q), B(g) are system dependent functions depending on
the equations of motiony,, etc.
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Small deviations from stripes
t(q)9,0 = =V - [qB(q)]
Ford = gx + 66 this reduces to

0,80 = D (q)0780 + D1 (q)0580

with
B
DL@) =~ 5
1 d(gB(q))
D”(Q):_r(q) qdqq
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Small deviations from stripes
t(q)9,0 = =V - [qB(q)]
Ford = gx + 66 this reduces to

0,80 = D (q)0780 + D1 (q)0580

with
B
DL@) =~ 5
1 d(gB(q))
D”(Q):_f(q) qdqq

A negative diffusion constant signals instability:
* [¢B(q)]' < 0: Eckhaus instability

* B(q) < 0O: zigzag instability
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Phase parameters for the Swift-Hohenberg equation

qB(q) | >\
i \
0.05 | \
i \
\
\
\
\
\
N 0.8 0.9 1.1 g 12
\‘ S
\\
\
N\
N, - i
Seel LT -0.05 |
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Application: wave number selection by a focus

V.(@Bg)=0 = fB(qm Adi=0

C
gB(g)=— — 0

r r—oo

l.e.g — gy with B(gr) = 0, the wave number of the zigzag instability!
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Mean Flow

The assumptions motivating the general form of the phase equation namely rotational
symmetry and a smooth expansion in the phase gradients, seem mild.
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The assumptions motivating the general form of the phase equation namely rotational
symmetry and a smooth expansion in the phase gradients, seem mild.

However the assumptions break down and the equatimcasrect for Rayleigh-Bénard
convection (and many other fluid systems), because the smoothness assumption for the
expansion in slow gradients in the phase breaks down.
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Mean Flow

The assumptions motivating the general form of the phase equation namely rotational
symmetry and a smooth expansion in the phase gradients, seem mild.

However the assumptions break down and the equatimcasrect for Rayleigh-Bénard
convection (and many other fluid systems), because the smoothness assumption for the
expansion in slow gradients in the phase breaks down.

The breakdown can be traced to the existence of a large-scale horizontal flow with

nonzero mean across the depth which advects the stripes giving an extra term in the
phase dynamics

;0 — 0,0 +V - V6.
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Mean Flow

The assumptions motivating the general form of the phase equation namely rotational
symmetry and a smooth expansion in the phase gradients, seem mild.

However the assumptions break down and the equatimcasrect for Rayleigh-Bénard
convection (and many other fluid systems), because the smoothness assumption for the
expansion in slow gradients in the phase breaks down.

The breakdown can be traced to the existence of a large-scale horizontal flow with
nonzero mean across the depth which advects the stripes giving an extra term in the
phase dynamics

2,0 — 0,0 +V - V6.

The advection horizontal velocity is in turn driven by the pattern. Writing in terms
of a stream functiog so thatV = (—9,¢, 9x¢)

VJZ_Q‘:2~VJ_XV=)/2'VJ_X[kV’(kA2)]
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(a) (b)

5
)

/\_
__/_\_
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3 convection cells with different side wall conditions: (a) rigid; (b) finned,;
and (c) ramped. Case (a) is dynamic, the others static.

[Paul, MCC, and Fischer (2002)]
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Focus/target defect

Wavevector winding number = 1
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Disclinations

(a) (0

JE= =
A Y

K A

Winding numbers: (a3; (b) 1; (c) -1
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Il

1
Phase winding numbe& 2—§£V9 dl=1
T

Dislocation
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Back

Dislocation climb

il

Smooth motion through symmetry related states

vg ~ B(q — qa)
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Ll

Motion involves stripe pinch off, and is pinned to the periodic structure

Dislocation glide
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Spiral Dynamics:experiments of Plapp et al. (1998)
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Dislocation motion

vg = wrqg = B(q(ra) — qa)

Spiral motion from phase equation

.19
w=—-1, ——(rqB(q))
r or
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Dislocation motion
Vg = wrqg = B(q(ra) — qa)
Spiral motion from phase equation
o=t ey
r or
Approximatingz, ~ T and? ¢ B(q) = a(q — qr) gives
q(r) —qr = —owr/2a + crt.

Evaluating at; and combining with Eqg. (*) gives.
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Dislocation motion
Vg = wrqg = B(q(ra) — qa)
Spiral motion from phase equation
o=t ey
r or
Approximatingz, ~ T and? ¢ B(q) = a(q — qr) gives
q(r) —qr = —owr/2a + crt.

Evaluating at; and combining with Eqg. (*) gives.

Is this relevant to spiral defect chaos?
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Conclusions

In today’s lectures | have described the implications of symmetry on the
theoretical methods for stationary patterns:

e amplitude equation in 2d
« Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.
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« Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.

| then briefly discussed topological defects.

An important topic | did not discuss is the competition between different
planforms (stripes, lattices, quasicrystals).
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Conclusions

In today’s lectures | have described the implications of symmetry on the
theoretical methods for stationary patterns:

e amplitude equation in 2d
« Swift-Hohenberg equation and generalizations
e phase equation

The methods have various advantages and disadvantages, and have given
great insights, but none is a complete approach even near threshold.

| then briefly discussed topological defects.

An important topic | did not discuss is the competition between different
planforms (stripes, lattices, quasicrystals).

Next lecture: oscillatory instabilities.
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