
Chapter 9

Dimensions

9.1 Capacity and Hausdorff dimension

9.1.1 Capacity

The structure observed in the demonstrations of chaotic systems (e.g. the 2d
maps ofchapter 5)—the “chaotic attractor”—seems to be neither space filling (an
area for the 2d maps) or a simple curve (a line). This complex geometry can be
characterized by a non-integral dimension, and the structure is then called a fractal.

Thecapacityor box counting dimensionis a simple way of defining a nonin-
tegral dimension. It is related to the Hausdorff dimension, and is usually equal to
this (and often assumed to be so in the context of dynamical systems), although
there are counterexamples. The construction is as follows. Suppose we have a set
in anm-dimensional space. Imagine covering the space with equal sizem-cubes
of sideε, and count how manym-cubes contain points in the set, sayN (ε). The
capacity is defined as

DC = lim
ε→0

logN(ε)

log
(
ε−1

) (9.1)

i.e. N(ε) ∼ ε−DC . Often a sequence of box sizesεn = b−n is used, and other
shapes, and boxes not arranged on the regular mesh may also be used to find, for
example, the least number of boxes of sizeε to cover the set.

This definition gives sensible results for standard situations. For example, for
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a straight line of lengthL we needN(ε) = L/ε boxes to cover the line, so

DC = lim
ε→0

logL+ logε−1

logε−1
= 1 . (9.2)

Figure 9.1: The construction of the13 Cantor set

A famous example of a set with non-integral dimension is the “middle third
Cantor set”. This set is produced from the unit interval by successively removing
the middle one third of each line element remaining (see figure9.1). Iterating this
process indefinitely leaves a set of measure zero (the measure of the remaining line
elements at thenth level is

(2
3

)n
). The capacity may be found choosing boxes of

sizeεm =
(1

3

)m
. ThenN (εm) = (2)m so that

DC = lim
m→∞

m log(2)

m log(3)
= log 2

log 3
' 0.63 . (9.3)

For sets generated by iterating dynamical systems there are, of course, limita-
tions in applying this idea. For example, due to the finite data setN(ε)will clearly
saturate when there is one box per data point. On the other hand if the data is
perturbed by measurement error or experimental noise, the distribution of points at
fine scales will be disturbed, and again there will be deviations from the expected
behavior. Thus in practice logN(ε) will not be proportional to logε−1 for all ε.
Instead, plotting logN(ε) against logε−1 will yield a straight line only over some
intermediate range ofε where the asymptotic dependence is a reasonable approx-
imation, but the imperfections of the data at small scales is not yet a problem: the
slope of this intermediate range is used to estimateDC . This produces severe limi-
tations on the ability to measure dimensions accurately from real data, particularly
when the dimension becomes large. Even for numerically generated sets such as
for the Hénon map, accurate estimates are hard to get: due to the phenomenon
called “lacunarity” [1] the estimate of the dimension oscillates as the length scales
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over which the fit is made varies—for example, the variation is at about the 5%
level for fits over ranges from 2−4±2 to 2−10±2.

The box counting scheme for estimating dimensions of fractal sets of chaotic
attractors is implemented for the H´enon map indemonstration 1. The limitations
of the approach can be tested by varying the number of data points, range of fits
etc.

9.1.2 Hausdorff dimension

The Hausdorff dimensionDH is often equal to the capacity, but gives more reason-
able answers in some special cases. Since analogous formulations will be useful
later when we consider generalized dimensions, it is convenient to introduce the
definition here, although it is rarely implemented on experimental or numerical
data sets.

Cover the set withm-cubes of variable edge lengthli ≤ ε. Define a “partition
function”

0(d, ε) = inf
∑
i

ldi (9.4)

(inf means “the smallest”). Then it is found there exists aDH such that

0(d) = lim
ε→0

0(d, ε) =
{

0 for d > DH
∞ for d < DH

, (9.5)

thereby definingDH .
It is easy enough to see thatDC ≥ DH . To do this cover the set with the equal

size boxes as in the definition ofDC . Then because of the inf in the definition of
0 we have

0(d, ε) ≤ N(ε)εd ∼ ε−DCεd. (9.6)

Thus

0(d) ≤ lim
ε→0

ε−(DC−d)→ 0 for all d > DC (9.7)

and soDC cannot be less thanDH .
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9.2 Generalized Dimensions

The capacity and Hausdorff dimensions are purely geometric, making no mention
of the measure of the attractor, i.e. the number of times the dynamics visits differ-
ent regions of the phase space. This may make them hard to calculate, since rarely
visited regions may contribute significantly to the dimension. In addition a single
number is certainly an incomplete characterization of the sets encountered in dy-
namical systems, which are typically not self similar as in the one-third Cantor set.
Thegeneralized dimensionsare an attempt to address these issues. There are two
formulations, analogous to the formulations of the capacity and Hausdorff dimen-
sions, that are usually taken as giving the same result. The former is most useful
for actual implementation on real data sets, the later for theoretical manipulations.

9.2.1 Box counting approach

Cover the attractor with boxes of sizeε and define the probability of finding a point
in theith boxpi = Ni/N withNi the number out of a totalN points in theith box.
Thepi are estimates of the measure associated with the box

∫
Vi
ρ(x) dV . Theqth

generalized dimensionDq is defined as

Dq = lim
ε→0

1

q − 1

log
∑
i p

q

i

logε
. (9.8)

The generalized dimensions of the H´enon attractor are investigated suing the
box counting algorithm indemonstration 2.

9.2.2 Partition function approach

The approach of the Hausdorff dimension is generalized. Cover the set withm-
boxes of sizeli ≤ ε. Define the partition function

0(q, τ, ε) =
 inf

∑
i

p
q
i

lτi
q ≤ 1, τ ≤ 0

sup
∑
i

p
q
i

lτi
q ≥ 1, τ ≥ 0

(9.9)

and then there exists aτ(q) that

0(q, τ ) = lim
ε→0

0(q, τ, ε) =
{

0 for τ < τ(q)

∞ for τ > τ(q)
. (9.10)
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The dimensionDH
q is then defined as

DH
q =

τ(q)

q − 1
. (9.11)

9.2.3 Properties

It can be shownDq ′ ≤ Dq for q
′
> q. Sets for whichDq is not a constant are

known as multifractals. CertainDq have simple interpretations or are particularly
easy to calculate.

Capacity, Hausdorff Dimension,q = 0

Clearly from the definitions theq = 0 generalized dimension reduces to the ca-
pacity or Hausdorff dimension, e.g. for the box counting algorithmD0 = DC .

Information Dimension, q = 1

ForD1 we calculateDq for q → 1 (since
∑
i pi is 1 and the log is zero):

D1 = lim
ε→0

1

q − 1

log
∑
i pip

q−1
i

logε
' lim

ε→0

1

q − 1

log
∑
i pi

[
1+ (q − 1) logpi

]
logε

(9.12)

so that

D1 = lim
ε→0

−∑i pi logpi
− logε

. (9.13)

This expression tells us how the information scales with the box size, and soD1 is
called the information dimension.

Since to calculate the dimensionD1 each box is weighted with the measure,
this is the dimension that characterizes most directly the measure of the attractor.
The following constructions also typically lead to a value equal toD1:

• Theθ -Capacity is defined in terms of the number of boxesN(ε; θ) of sizeε
needed to cover thesmallestset containing a fractionθ of the total measure

DC(θ) = lim
ε→0

logN(ε; θ)
log

(
ε−1

) . (9.14)
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TypicallyDC(θ) = D1 for θ < 1. Of courseDC(1) = DC . Since usually
D1 < D0 = DC , and the number of boxes of sizeε needed to cover a set
scales as(1/ε)DC , this means that almost all of the measure of the set is
contained in a tiny fraction of the boxes needed to cover the set, and the
fraction goes to zero in the limitε goes to zero. A consequence of this is that
it is hard to calculateDC which depends on numerous points that contribute
little to the measure i.e. are visited rarely in an evolution.

• The pointwise dimensionDp(x) is defined in terms of how the measure
pε(x) associated with a box of sizeε at the pointx on the attractor scales
with ε i.e. pε ∼ εDpor more precisely

Dp(x) = lim
ε→0

logpε(x)

log(ε)
. (9.15)

Typically Dp(x) is independent ofx for almost allx (with respect to the
measure of the attractor) and is then equal to the information dimensionD1.
However characterizing the set ofx giving other pointwise dimensions is
another way of characterizing the strange attractor, as we will see in the
next chapter.

Correlation Dimension q = 2

ForD2 we have

D2 = lim
ε→0

log
∑
i p

2
i

logε
. (9.16)

But
∑
i p

2
i is the probability that two points lie within cells of lengthε, and scales

in the same way as the probability that two points in the data set are separated
by a distance less thanε, which is determined by the pair correlation function.
ThusD2 is called the correlation dimension, and can be estimated from a pairwise
manipulation of the data, a much easier task than box counting: define

C(ε) = lim
N→∞

1

N2

N∑
i,j

2(ε − ∣∣Exi − Exj ∣∣) (9.17)

with 2 the unit step function. Then

D2 = lim
ε→0

logC(ε)

logε
. (9.18)
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Figure 9.2: Lyapunov Dimension. In the example shown the first three Lyapunov
exponents are positive, and soµ(n) = ∑n

i=1 λi is an increasing function ofn up
to n = 3. The sumµ is positive up ton = 4, givingν = 4. DL is the intersection
with theµ = 0 axis given by linear interpolation.

9.3 Lyapunov Dimension

Dimensions are a static characterization of the attractor. Nevertheless the attractor
is formed by the dynamical system, and so it is interesting to look for a connection
between dimensions and dynamical diagnostics. Kaplan andYorke [2] proposed a
dimension based on the Lyapunov exponents:

DL = ν + 1

|λν+1|
ν∑
i=1

λν, (9.19)

whereν is the largest integer for which the sum of the firstν exponentsµ (ν) =∑ν
i=1 λν is positive. (Ifν equals the dimension of the phase space, thenDL = ν.)

This result can be motivated by noting thatλ1 + λ2 + · · · λn gives the rate of
expansion or contraction of ann dimensional volume in phase space.DL is the
estimate of the dimension of the volume that neither grows nor decays (figure9.2).
Since the exponents are defined by averaging over the attractor, with more weight
given to regions visited more often, Kaplan and Yorke conjectured thatDL might
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be equal to the information dimensionD1:

Conjecture:DL = D1. (9.20)

This result is true for the Bakers’ map, and appears to be true numerically for the
Hénon map, but is probably not a general result.
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