
Chapter 8

Information and Entropy

8.1 Definitions

A sequence ofN coin tosses (of an assumed unbiased coin) has 2N possible out-
comes: there is an uncertainty in the outcome that we measure by the “entropy”
which is the log of the number of possible equally likely outcomes:

S = log 2N = N log 2. (8.1)

We could use the sequences e.g. heads,heads,. . . tail to send a message, and we
could send 2N different messages. The “information capacity” of this scheme is
again measured by the log of the number of possible messages

I = log 2N = N log 2. (8.2)

In this context we would often use base 2 for the log and say there areN bits of
information. An alternative point of view is that the measurement of a particular
result i.e. sequence of heads and tails has told us something about the system
and we have learnedN log 2 bits of information The ideas of uncertainty of out-
come (entropy) and what has been learned from a measurement (information) are
complementary.

Generalizing these ideas to a system ofN possible results with independent
probabilitiespi (that may be different) gives the expression for the entropy of the
systemS or the information learned by finding a particular result

I = S = −
N∑
i=1

pi logpi. (8.3)
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This result is familiar from thermodynamics (see below for a discussion of this
analogy) and is due to Shannon [1] in the context of information.

8.2 Dynamical Systems

In a dynamical system the entropy is defined through a partition of the phase space
with thepi given by the integral of the invariant measureρ(Ex) (probability density)
over theith element..

Define the partitionβ = {Bi} , i = 1 . . . N withBi non-empty, non-intersecting
sets that cover the attractor (e.g.n-boxes for ann dimensional phase space). Then
the probability of finding a point in the boxBi is

∫
Bi
dVi ρ(Ex). The entropy of the

partition of the dynamical system is defined as

S = −
N∑
i=1

pi logpi. (8.4)

This tells us about the uncertainty coming from the “random” aspect of the dy-
namics. This quantity is not immediately useful, since it depends on the scheme
of partitioning (e.g. the box size) as well as intrinsic properties of the attractor.
Two related quantities have been defined to give intrinsic properties. One is the
scaling of the entropy as the box size of the partition is reduced: this defines the
“information density” of the attractor and is discussed inchapter 9. The informa-
tion density is a static property of the attractor. A second quantity tells us how the
uncertainty or information of the system evolves in time, or under iteration for a
map. This is known as the Kolmogorov, Kolmogorov-Sinai, or metric entropy. A
useful reference is by Farmer [2].

8.2.1 Kolmogorov Entropy

The idea is usefully introduced using the shift map (figure8.1a).
Suppose we are limited to measuring the variablex to a precision of12, i.e.

we can only measure whetherx is in the range or12 < x < 1. We can ask how
our knowledge ofx = x0 increases if we iterate the map, measuringx after each
iteration with this same precision. Suppose after one iteration we findx1 to be in
the range 0< x < 1

2. Then we know thatx0 must lie in ranges of the interval
that are preimages of this range: the intersection of this result with the direct
measurement ofx0 has now localizedx0 to one quarter of the unit interval. As the
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Figure 8.1: Kolmogorov Entropy. (a) Entropy production in the shift map. The
heavy lines on the abscissa denote the preimages of 0< x < 1

2 on the ordinate,
and serve to refine the knowledge ofx. (b) Refining the partition: the preimages
of the boxB0 refine the partition.

iteration continues we learn 1 bit of information at each iteration, and this is the
Kolmogorov entropy of the dynamical system.

An alternative point of view is to suppose we know the initial valuex0 to a
certain precision (e.g. 8 bits). The Kolmogorov entropy tells us how the precision
of our prediction for the nth iteratexn decreases withn, due to the “sensitive
dependence on initial conditions”.

More generally we again define the partitionβ0 = {Bi} dividing the non-empty
region of phase space into non-overlapping boxesBi and we suppose that at each
iteration (or after each fixed time step) all we know is in which boxEx lies. We can
define the preimageM−1(Bi) of eachBi which is all points that will be mapped
into Bi after a single iteration or time step (figure8.1b). Note that this operation
does not require that the inverse mapping (time reversed dynamics) exists. The
measurement thatEx0 lies in boxi0 say, andEx1 lies in boxi1 then tells us thatEx0 in
fact lies in the regionBi0∩M−1(Bi1) i.e. the intersection ofBi0 with the preimage
of Bi1. The intersection of these two sets gives a finer partitionβ1 of the attractor
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Figure 8.2: Growth of uncertainty due to expansion at a rate given by the positive
Lyapunov exponents.

β1 =
{
Bi ∩M−1(Bj )

}
and the entropy of this partition is

S(β1) = −
∑
ij

pij logpij (8.5)

wherepij is the integral of the measure over the boxBi ∩M−1(Bj ). The Kol-
mogorov entropy is defined as the rate of change of entropy due to the finer parti-
tioning given by each iteration or time step

K = lim
m→∞

1

m
S(βm) (8.6)

(actually the sup of this over all choices of initial partitionβ0) with

βm =
{
Bi0 ∩M−1(Bi1) ∩M−2(Bi2) . . . ∩M−m(Bim)

}
. (8.7)

A positive value ofK may be used to define the existence of chaos.

8.2.2 Relationship with Lyapunov Exponents

Since the growth of uncertainty, or refinement of the partition, is due to the di-
vergence of nearby trajectories, it might be expected that there is a relationship
between the Kolmogorov entropyK and the Lyapunov exponents. In fact Ruelle
has shown thatK is bounded by the sum of positive exponents

K ≤
∑
λ(i)>0

λ(i) (8.8)



CHAPTER 8. INFORMATION AND ENTROPY 5

and the equality has been proven for the special class of “AxiomA” attractors. This
idea is easily motivated, since a box of sideε is expanded in the growing directions
to sidesεenλ

(1)
, εenλ

(2)
. . . etc, so that aftern iterations an initial condition in one

of the boxes will lie somewhere in one ofen(λ
(1)+λ(2)+··· ) boxes (figure8.2).

8.3 Comparison with Thermodynamics

The entropy in thermodynamic systems has dynamicalpredictivepower expressed
in the statement that “the entropy of an isolated system tends to increase with time”.
To put meaning into this statement we defineS(Wj) the entropy as a function of
certain macroscopic (or “thermodynamic”) variablesWj , whereS is given by
(8.3) with the sum over the microstatesi consistent with the macrostate values
Wj . The content of the statement is then that theWj will evolve in the direction
of increasingS. This profound result depends crucially on the Hamiltonian nature
of the underlying dynamics and the resulting Liouville’s theorem (the statement
that the probability measure in phase space evolves as an incompressible fluid).
This leads to the result that the probabilitiespi are knownindependently of a
detailed solution to the dynamics—in an isolated system each “state” or volume
of phase space is equally likely. In dissipative dynamical systems, where there is
no Liouville’s theorem and thepi are nota priori known, the concept of entropy
becomes descriptive (diagnostic) rather than predictive.
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