
Chapter 5

Two dimensional maps

One dimensional maps can only represent a truncated description of most physi-
cal dynamical systems, since the interesting maps—the ones with stretching and
folding—are necessarily non-invertible and cannot be iterated in the reverse di-
rection. On the other hand the dynamical equations of most physical systems can
be integrated backwards in time to find the unique point in phase space that is the
preimage of any point at the present time.Twodimensional maps

x
(i)
n+1 = Fi

({
x(j)n

})
i, j = 1,2 (5.1)

can be a faithful representation of a smooth flow in a three dimensional phase
space (e.g. as a Poincar´e section). It is hard in general to construct (except
numerically) the 2d map corresponding to a particular set of differential equations,
and equally to reconstruct the smooth flow given a map. However, 2d maps that are
invertible, but nevertheless show stretching and folding allowing positive Lyapunov
exponents, are useful models of chaotic systems. Here we introduce four examples
of two dimensional maps that have been discussed in various contexts. Further
two dimensional maps will be introduced later in the investigation of quasiperiodic
flows and their breakdown to chaos (chapters18and21).

5.1 Henon Map

A particularly simple example of a 2-dimensional map is the Henon map [1]. The
map iterates the point(xn, yn) via the equations

xn+1 = yn + 1− ax2
n

yn+1 = bxn
. (5.2)
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The proportional rate of expansion of an area of initial conditions is given by the
Jacobean

J =
∣∣∣∣∣det

∂Fi

∂x
(j)
n

∣∣∣∣∣ =
∣∣∣∣det

[ −2axn 1
b 0

]∣∣∣∣ = |b| (5.3)

so that forb = 1 the map isarea preservingand forb < 1 the map isdissipative,
with areas in phase space contracting at a constant proportionate rate. The latter
is the regime of dissipative chaos. There is a useful connection with the one
dimensional quadratic map in the strongly dissipative limit. We can rewrite the
iteration process as

xn+1 = 1− ax2
n − bxn−1 (5.4)

so that in the limitb→ 0 we have approximately

xn+1 ' 1− ax2
n (5.5)

i.e. the quadratic one dimensional map. Sinceyn+1 ∝ xn the plot of (xn, yn)
reproduces the map function in this limit.

For commonly chosen valuesa = 1.4, b = 0.3 the evolution shows complex
time behavior and the plot of the points visited in the long time limit (the attractor)
shows a rich and complicated structure, so that at least numerically it appears to
show chaos. (Again this appears to be one of those situations where for nearby
parameter values there are attracting periodic orbits, and it has not been proven
that for these particular values the orbit is chaotic, rather than periodic with a very
long period.) The structure can be investigated indemonstration 1. One difficulty
in studying the properties of the Henon map is that not all initial conditions iterate
to the attractor: outside of a finite “basin of attraction” the iterations diverge to
infinity.

5.2 Bakers’ Map

A simple two dimensional map known as the (generalized) baker’s map is useful
for illustrating many of the ideas for characterizing chaos.

The generalized bakers’map is defined as the transformation of the unit square
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Figure 5.1: The Generalized Bakers’ Map

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 :

xn+1 =
{
λaxn if yn < α

(1− λb)+ λbxn if yn > α

yn+1 =
{
yn/α if yn < α

(yn − α)/β if yn > α

(5.6)

whereβ = 1− α andλa + λb ≤ 1. This is shown pictorially in figure5.1. Note
that the unit square is mapped into two nonoverlapping vertical stripes within the
square, one in 0≤ x ≤ λa and one in 1− λb ≤ x ≤ 1. Forλa + λb = 1 the map
is area preserving; forλa + λb < 1 the map is dissipative.

For the dissipative map you can convince yourself of the following: aftern

iterations we haveCnm = n!
m!(n−m)! copies of stripes of widthλma λ

n−m
b ; and if we

define a uniform measure over the original unit square, the measure associated
with each stripe labelled bym at thenth iteration isαmβn−m and the measure is
uniform in they direction. The Bakers’ map is explored indemonstration 2.

The Bakers’ map is an example of an important class of maps for which the
attractor ishyperbolic, which we can define crudely as ones for which expanding
and contracting directions can be defined at each point, which are continuous across
the attractor and for which the expansion and contraction rates are bounded away
from zero. (For the Bakers’ map the expanding direction is they direction and the
contracting direction is thex direction, and the rates are uniform and set byα, β, λa
and λb.) Hyperbolicty allows various properties to be proved mathematically.
However most maps and flows that occur naturally are not hyperbolic. The Henon
map for example is not hyperbolic.
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5.3 The Duffing Map

This map is reminiscent of the Duffing equation discussed inchapter 3. It is defined
by the equations

xn+1 = yn
yn+1 = −bxn + ayn − y3

n

. (5.7)

The form of these equations can be motivated by using a finite difference approx-
imation to evaluate the derivatives in the Duffing equation using timestn = nh

with h a time step

dx

dt

∣∣∣∣
t=tn+1

' xn+2− xn
2h

(5.8)

d2x

dt2

∣∣∣∣
t=tn+1

' xn+2− 2xn+1+ xn
h2

(5.9)

and then making the replacementx(t = nh) → xn andyn = xn+1. Thus the
combinationyn−xn is closest to the velocity variable of the differential equations.

5.4 Kaplan-Yorke Map

The Kaplan-Yorke map is defined by:

xn+1 = axn mod 1
yn+1 = byn + cos(2πxn)

. (5.10)

It was used by Kaplan andYorke [2] in their paper introducing the idea of “Lyapunov
dimension” (seechapter 9).

The Duffing and Kaplan-Yorke maps are illustrated indemonstration 3.
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