
Chapter 4

One dimensional Maps

The ordinary differential equation studied in chapters 1-3 provide a close link to
actual physical systems—it is easy to believe these equations provide at least an
approximate description of phenomenon in the real world. However it turns out to
be hard to prove mathematical results for such systems, and numerical evolution
with sufficient accuracy and over sufficient times to accumulate large amounts of
data for statistical analysis remains a limitation. As a result the study of “maps” has
played an important role in the understanding of chaos. In this chapter the study of
“one dimensional maps” is introduced, and in the next chapter “two dimensional
maps” are described.

4.1 Flows and Maps

4.1.1 Flows

The framework we have studied so far can be formalized as an set of ordinary
differential equations

U̇ = f (U ; r) (4.1)

whereU is a vector of phase space coordinates of dimensionN , andr is a vector
of control parameters. The equations are:

• autonomous: no time appears on the right hand side;

• deterministic: evolution is completely specified (by instantaneousU ), there
is no stochasticity in the equations;
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• dissipative: (for non-Hamiltonian systems)N dimensional volumes in phase
space shrink to a lower dimensional phase space giving attractors in phase
space.

The mathematical structure is that of smoothvector fieldsin RN , and the
solutionU(t), U(t0) = U0, is called a flow. This mathematical structure yields
useful theorems [1], for example thePoincaré-Bendixson theorem, which tells us
that the only long time asymptotic flows in two dimensions (N = 2) are fixed
points, limit cycles, and homoclinic or heteroclinic orbits. One consequence is
that there is no chaos in a two-dimensional phase space.

4.1.2 Maps

Maps give an evolution analogous to (4.1) but with a discrete “time”

Un+1 = F(Un; r) (4.2)

whereUn is anN -dimensional vector with componentsU(i)n andF is a map from
RN ontoRN . These evolution equations are again autonomous and deterministic.
The effect of the evolution on volumes in phase space is given by the JacobeanJ

J =
∣∣∣∣det

∂F (i)

∂U(j)

∣∣∣∣ . (4.3)

If J = 1 volumes are preserved under the iteration and the map is calledvolumeor
area preserving; if J < 1 (on average) volumes decrease and the map isdissipative.

There are a number of ways to connect maps with flows:

• We can integrate the flow for timesnτ with τ some chosen fixed interval.

• The map can be theN−1 dimensional Poincar´e section of anN dimensional
flow.

In these two cases a smooth flow gives a smooth map with a smooth, unique
inverse (because we can integrate the flow backwards in time over the finite
intervalτ ) i.e. is adiffeomorphism.

• We can construct a “one dimensional return map” as illustrated in chapter 1.
In this case the map is an idealization, and need not be invertible.

Alternatively, the modeling of the physical system may be most appropriate in
terms of a discrete time, for example population dynamics may be best described
in terms of annual populations.



CHAPTER 4. ONE DIMENSIONAL MAPS 3

Figure 4.1: Some One Dimensional Maps

4.2 Examples of 1-d maps

Some examples of one dimensional maps are listed here and shown in figure4.1.
Many are motivated in terms of their simplicity.

1. The Lorenz map: given by plottingZmax
n+1 againstZmax

n whereZmax
n is the

value of theZ coordinate at itsnth maximum. The empirical form of the
map) for Lorenz’s parameter choice is sketched in figure 1: there is no
analytic expression.

2. The tent map:

F(x) =
{

ax x < 1
2

a(1− x) x > 1
2

(4.4)

for 0 ≤ a ≤ 2.
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3. The quadratic or logistic map

F(x) = ax (1− x) (4.5)

for 0 ≤ a ≤ 4.

4. The shift map:

F(x) = 2x mod 1 (4.6)

5. The sine map

F(x) = a

4
sin(πx) (4.7)

for 0 ≤ a ≤ 4.

It is conventional to scale variables so that the interval 0≤ x ≤ 1 is mapped
into itself. The ranges of the control parametera quoted are the limits for when
this condition is satisfied.

4.3 Iterating 1-d maps

The iteration of one dimensional maps is easy to see graphically: if we ploty =
F(x) andy = x the iterations are given by successive steps between these two
curves:

y = F(xn) xn+1 = y (4.8)

Successive iterations from a given initial values are given by successive oper-
ations of the mapF , an operation known as “functional composition”:

x1 = F(x0)

x2 = F(x1) = F(F(x0))
...

xn = F(xn−1) = F(F . . . F (x0))

. (4.9)

The (somewhat confusing) notationF 2(x) is used forF(F(x)) i.e. the order 2
functional composition. Note this is not the square(F (x))2! We can study every
4th (for example) iteration ofF by iteratingF 4, etc.
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It should be evident from the graphical scheme that the intersectionxf of
y = F(x) with y = x is a fixed point of the iteration i.e.

F(xf ) = xf . (4.10)

We can easily answer the question of whether an initial condition close toxf
approaches the fixed point under iteration (when we call the fixed point stable) or
moves away from it (unstable fixed point) by linearizing the evolution aboutxf :
write x = xf + δx and then using a Taylor expansion withF ′(x) the derivative of
the function

xn+1 = xf + δxn+1 = F(xx + δxn) ' F(xf )+ δxnF ′(xf ) (4.11)

so that

δxn+1 = F ′(xf )δxn (4.12)

and|δxn| will increase on successive iterations for
∣∣F ′(xf )∣∣ > 1. Thus the fixed

point is stable for
∣∣F ′(xf )∣∣ < 1 and is unstable for

∣∣F ′(xf )∣∣ > 1.
In the quadratic map, when the fixed pointxf is stable almost all initial con-

ditions lead to an orbit that converges to the fixed point (x = 0 andx = 1 being
exceptional initial conditions). What happens whenxf becomes unstable (which
happens ata = 3)? For this map, for nearby values ofa the orbits converge to an
orbit which alternately visits two valuesx1 andx2: this is the discrete time ver-
sion of a limit cycle or periodic orbit (here period 2). The second iterate function
y = F 2 yields three intersections with the liney = x. It is easy to check that at
two of these the magnitude of the slope

∣∣dF 2/dx
∣∣ is less than unity, i.e. there are

two stable fixed points ofF 2, and these correspond tox1 andx2. The third fixed
point ofF 2 is unstable:xf is of course an unstable fixed point ofF 2.

These points are illustrated indemonstrations 1-2.

4.4 Bifurcations in 1-d maps

As the map parametera is changed, the character of the long time solution may
dramatically change, from a fixed point to a period two limit cycle for example.
These changes are calledbifurcations.The bifurcations that occur, and the different
types of orbits, are well shown by the “bifurcation map”. This is constructed with
the parametera along the abscissa, and all values ofx visited (after some number
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of iterations to eliminate transients) plotted as points along the ordinate. A fixed
point orbit over a range ofa appears as a single curve, which splits into two curves
at the bifurcation to the period 2 orbit etc. Chaotic dynamics, where the orbit
visits an infinite number of points (otherwise the orbit would repeat, and therefore
be periodic) appears as bands of continua of points (subject to limitations of how
many points are actually plotted in the implementation).

The bifurcation maps of our one dimensional maps show that even these very
simple dynamical systems show an amazingly rich bifurcation structure (demonstration 3).
This complexity in the quadratic map was studied by May [2] in the context of
population dynamics.

4.5 Invariant measure

Since we cannot expect to know the chaotic dynamics precisely, we need a sta-
tistical description. From the bifurcation map it appears that for some parameter
values the iterated points cover intervals of the line with some density or probabil-
ity distribution. We can use this to define the “invariant measure” of the attractor.
We first define the measureρ(x, x0) as the density of points atx given by iterating
many times from the initial pointx0, i.e.

ρ(x, x0)dx = lim
N→∞

1

N
× n(x, x0), (4.13)

with n(x, x0) the number of
{
FN(x0), F

N−1(x0) . . . F (x0)
}

in lengthdx aboutx,
or perhaps

ρ(x, x0) = lim
N→∞

1

N

N∑
i=1

δ(x − F i(x0)), (4.14)

although in this last compact form we may need to fuzz out the delta function
until after theN →∞ limit is taken, since, for example, if the attractor is a fixed
point (where the measure should be concentrated at the fixed point) the orbit never
exactly reaches the fixed point for any finiteN .

We would hope that the measure is a property of the attractor, and is independent
of the choice of initial pointx0, except for a number of “bad choices” such as at
unstable fixed points or unstable periodic orbits. Thus we would hope thatρ(x, x0)

is independent ofx0 for “almost all” x0, i.e. except for a set of measure zero (with
respect to the physical Lebesgue measure of the unit interval), and then defines the
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measure of the attractorρ(x). By construction this measure is “invariant” i.e. is
unchanged by iterating the map variable: ify = F(x) thenρ(y)dy = ρ(x)dx since
all points in the intervaldx end up in the intervaldy = F ′(x)dx. The definition also
incorporates the notion of ergodicity, i.e. “time averages equal measure averages”
for almost all initial conditions (with respect to the initial Lebesgue measure).

An alternative path, which does not make reference to a second measure for dis-
cussing the initial conditions, is to focus on the “invariant measures”, i.e. measures
that are left unchanged by the dynamics. There are typically an infinite number
of invariant measures (again, a measure concentrated on an unstable fixed point
or orbit is invariant): some process is needed to select the physical measure that
will presumably be useful experimentally or numerically. A physically appealing
process, attributed to Kolmogorov, is to add a small amount of random noise to
the dynamics, which will usually yield a unique measure, and then to let the noise
strength tend to zero. Other schemes, which have advantages in constructing math-
ematical proofs, have also been discussed, for example see [1] which provides a
useful discussion of the interplay of mathematical and physical ideas. An invari-
ant measure that cannot be decomposed into different pieces that are themselves
invariant is said to be ergodic. The ergodic theorem then tells us that time averages
can be replaced by measure averages, again for almost all initial conditions, but
now almost all means except for a set of measure zero with respect to the invariant
measure.

In certain cases the invariant measure can be constructed directly from its
definition. Consider a density of points aftern iterationsρn(x). Then under
iteration of the map the density evolves according to the Frobenius-Perron equation:

ρn+1(y) =
∫
dx δ [y − F(x)] ρn(x) (4.15)

which implements the idea that all points in the intervaldx end up in the intervaldy
wherey = F(x) anddy = F ′(x)dx. The invariant measure is given by equating
ρn andρn+1, and the approach to the invariant measure from an initial density
ρ0(x) can also be studied.

The invariant measure often shows considerable structure. For example the
quadratic map ata = 4 has square root singularities at the endpoints:ρ(x) ∝
1/
√
x (1− x), and at values ofa intermediate between 0 and 1 shows a rich

structure of singularities (seedemonstration 4).
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4.6 Lyapunov exponents

The idea of the instability of a fixed point can be generalized to make the idea of
“sensitive dependence on initial conditions” more quantitative. Equation4.12can
in fact be used for the expansion of a small separation at anyxn

δxn+1 = F ′(xn)δxn (4.16)

so that the product of the derivatives at successive iterations gives us the expansion
(or contraction) of the separation between the iterates of nearby points.

More precisely we start with initial conditionsx0 andx0 + ε and ask for the
distance between thenth iterates, which we expect to grow as

|δxn| = εenλ(x0) (4.17)

whereλ(x0) is the Lyapunov exponent for the initial conditionx0, i.e.

λ(x0) = lim
n→∞ lim

ε→0

1

n
log

∣∣∣∣Fn(x0+ ε)− Fn(x0)

ε

∣∣∣∣ = lim
n→∞

1

n
log

∣∣∣∣dFn(x0)

d(x0)

∣∣∣∣ .
(4.18)

For systems with an ergodic invariant measure the limit exists and is independent
of the initial conditionx0 for almost all initial conditions (e.g. not those points
exactly on unstable periodic orbits), and will be denotedλ and called theLyapunov
exponentof the map. The derivative can be evaluated by the chain rule in terms of
derivatives ofF at the intermediate iterations

dFn(x0)

d(x0)
= F ′(xn−1)F

′(xn−2) . . . F
′(x1)F

′(x0). (4.19)

Thus we can compactly write

λ = 〈log
∣∣F ′∣∣〉 (4.20)

where the average〈〉 is over the iterations of the map.
A positive value ofλ corresponds to the difference between closely spaced

initial conditions growing (on average exponentially) with iteration i.e. to sensitive
dependence on initial conditions. Thus a positive Lyapunov exponent is a signature
of chaos, and may be used as a defining criterion.

The Lyapunov exponent of the tent map is easily calculated since
∣∣F ′∣∣ = |a| for

all values ofx. Thusλ = log |a| and we expect chaotic dynamics for 1< a ≤ 2.
The Lyapunov exponentλ(a) for other maps is shown indemonstrations 5-6.
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