
Chapter 3

Non-linear Oscillators

The study of non-linear oscillators has been important in the development of the
theory of dynamical systems. Van der Pol and Van der Mark (1927) [1] studying
a simple non-linear electronic circuit (a neon tube was the non-linear element)
experimentally found, but were not much interested in, “noisy behavior” that we
would now identify as chaos, and Carwright and Littlewood (1945) [2] studied
chaos like behavior in a non-linear oscillator, predating Lorenz’s work by decades.
In this chapter the equations for two famous non-linear oscillators will be studied:
the “Van der Pol oscillator”, and (mainly through exercises) the “Duffing oscil-
lator”. Both are simple equations, and correspond quite closely to experimental
phenomena.

The motivation for this study are:

• general interest;

• to introduce more of the language of dynamical systems;

• to extend our intuition on the diagnostic schemes such as Poincar´e sections;

• to introduce the important phenomenon of frequency locking in non-linear
oscillators;

• to present some analytic approaches for dealing with non-linear systems.

3.1 Van der Pol Oscillator
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The simple harmonic oscillator is generalized to include a non-linear damping.
The “dissipation” is in fact negative for small amplitudes, modelling instability and
feeding in energy, and becomes positive for large amplitudes. In the circuit studied
by Van der Pol and Van der Mark the negative dissipation comes from a negative
resistance region of theI − V characteristics of the neon tube. Because energy
is fed in to the oscillator, spontaneous sustained oscillations occur even without
periodic driving.

The equation is

ẍ − γ (1− x2) ẋ + x = g cos(ωDt). (3.1)

We will first study the oscillations for no drivingg = 0. Roughly we expect the
amplitude of the oscillations to grow until the average damping is zero.

As usual we can introduce phase space variables

ẋ = v

v̇ = γ
(
1− x2

)
v − x . (3.2)

For largeγ a different choice of variables (the Li´enard variables) is convenient:
define

ẏ = ẍ − γ (1− x2) ẋ (3.3)

so that

y = ẋ − γ
(
x − 1

3
x3
)

(3.4)

to give

ẋ = y + γ (x − 1
3x

3
)

ẏ = −x . (3.5)

3.1.1 Smallγ : Secular perturbation theory

Let us writeγ = ε to remind ourselves thatγ is a small parameter, and the equation
as

ẍ + x = ε (1− x2) ẋ (3.6)

so that on the left hand side we have the simple harmonic oscillator terms, and on
the right the small perturbation.
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For ε = 0 the solution is oscillations at frequency 1:

x = xo(t) = aei(t+φ) + c.c. , (3.7)

with the constantsa andφ undetermined. Forε 6= 0, we expect the right hand side
of (3.6) to fix the amplitude, and perhaps perturb the frequency toω = 1+ε1+· · · .
This means for the phase

φ ' φ0+ ε1t (3.8)

so that even for smallε, the change to the solution is not small for long times

ei(t+φ0+ε1t) 6= ei(t+φ0) (1+ ε1t + · · · ) . (3.9)

Such a perturbation is described assecular. We cannot therefore write a perturba-
tion expansion directly forx i.e. x ' x0+ εx1+ · · · . Instead we write

x = [A (T ) eit + c.c.]+ εx1+ · · · (3.10)

where we use a complex amplitudeA to combine both unknownsa, φ, and we ex-
pect the amplitude to have slow time dependenceA = A (T = εt)withAT = O(1)
(the derivative with respect to T). This is a general example of secular perturbation
theory [3] where a second slow time scale is introducedx = x(t, T = εt). With
this form we can demand that the correctionεx1 is indeed small.

Now it is a simple matter of substituting

ẋ = (εAT + iA) eit + c.c.+ εẋ1+ · · · (3.11)

ẍ = (ε2ATT + 2iεAT − A
)
eit + c.c.+ εẍ1+ · · · (3.12)

into the full equation and collecting terms at each order inε.
At O(ε1) we get

ẍ1+ x1 =
(−2iAT + iA− i |A|2A

)
eit − iA3e3it + c.c. . (3.13)

If we can solve this equation for (a finite)x1 we are done. However this is the
equation for a driven, ideal oscillator, and the first term on the right is driving at the
resonant frequency: hence to get a finite result we must put this driving strength
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to zero. This “solvability condition” finally yields an equation for the unknown
amplitude

AT = 1

2

(
1− |A|2)A (3.14)

or going back to the unscaled time coordinate

dA

dt
= ε

2

(
1− |A|2)A . (3.15)

This can be written in magnitude-phase formA = aeiφ:

da
dt
= ε

2

(
1− a2

)
a

dφ
dt
= 0× ε +O (ε2

) (3.16)

and we see that the magnitude grows until saturation ata = 1, and in this particular
case there is no frequency shift atO(ε), so that the long time solution isx = 2 cost .

Formally, the solvability condition can be expressed by the statement that the
right hand side of (3.13) must be “orthogonal to the zero mode of the adjoint of the
linear operator” on the left hand side of the equation. (In this case the operator is
∂2/∂t2+ 1, the adjoint operator is the same, and the zero eigenvalue mode is just
e±it ). This formulation is illustrated in the appendix, working through the problem
in the(x, v) phase-space description.

The small amplitude oscillations are illustrated indemonstration 1.

3.1.2 Largeγ : singular perturbations and relaxation oscilla-
tions

For largeγ we rescale the variablesy = γ Y , t = γ T , x = X, and introduce the
small variableη = γ−2 to give in the Liénard coordinates

η
dX

dT
= Y +

(
X − 1

3
X3
)
, (3.17)

dY

dT
= −X. (3.18)

If we first try settingη = 0, we run into contradictions: e.g. starting off at positive
X the second equation saysY decreases in time (untilX hits zero), whereas the

Demo1.html
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Figure 3.1: Relaxation Oscillations

first equation would say thatY has a minimum value of -2
3. Thus the term inη is

not uniformly small, and completely changes the dynamics. A perturbation which
increases the order of the differential equation is known as a singular perturbation.
For smallη we can divide the oscillation cycle into two pieces: either

• the right hand side of (3.17) is small soY ' − (X − 1
3X

3
)

and the dynamics
is on anO(1) time scale (inT ), or

• the right hand side of (3.17) is O(1), thenX changes very rapidly over a
short time scaleO(η−1) and in this time, according to (3.18) we may take
Y to be constant.

Thus the orbit follows the curveY ' − (X − 1
3X

3
)
in phase space at a rate given

by dY/dT = −X until reaching the extrema, when the orbit “jumps branches” at
constantY (see figure3.1).

Returning to the original variables, we see thatẋ = v = γ [Y − (−X + 1
3X

3
)]

is given by the height between the dashed and solid curves in the figure. It is then
easy to sketch the orbit in the(x, v) phase space, and alsox andv as a function of
time.

The relaxation oscillations can be studied indemonstration 2.

Demo2.html
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3.1.3 Driven oscillations: frequency locking

What happens if we now add driving at a frequencyωD which is not the frequency
of free oscillations? We might expect two possibilities. Firstly the two oscillations
might continue independently, much like they did in the driven linear oscillator
(chapter 2). A power spectrum should show signatures at both frequencies. Al-
ternatively the internal oscillator might be captured by the drive, so that there are
oscillations at a single frequency (and harmonics): this case is known as locked. A
sharp way to discriminate between these two possibilities is to ask what happens as
a parameter (e.g. the drive amplitude or the dissipation) is smoothly varied. In the
locked case, the frequencies of the peaks in the spectrum should remain fixed over
a finite range of parameter values. In the unlocked case, at least some frequencies
should vary continuously. In this case the frequency ratios (of internal oscillator
peaks to drive frequency) are necessarily passing through irrational values—such
motion with two incommensurate frequencies is known as quasi-periodic motion.

In the perturbative case of smallγ = ε, and with small drive amplitudeg = ε×
2F near resonanceωD = 1+ε1 (withF and1 of order unity) we can calculate the
phenomenon of frequency locking analytically, using secular perturbation theory.
The calculation is quite complicated, and is relegated to an appendix. The results
are displayed in figure3.2. The analysis is performed in terms of the behavior of an
“amplitude equation” as in the secular perturbation theory above, and in particular
stable fixed points of this equation corresponds to locked behavior of the oscillator.
As might be expected, frequency locking occurs when the driving strength is large,
and the frequency difference small. However the details are complicated, and we
will see that this is generally true for frequency locking.

The quasiperiodic motion and phenomenon of frequency locking are illustrated
in demonstrations 3-4.

3.1.4 Chaos

As far as is known the periodically driven Van der Pol oscillator does not show
chaos in the sense of a strange attractor—the attracting orbits are the limit cycles
and quasiperiodic orbits discussed above. Cartwright and Littlewood [2] however
studied chaotic like behavior for very special initial conditions on the boundaries
of the basin of attraction of the limit cycles.

Demo3.html
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3.2 Duffing Oscillator

The Duffing oscillator is the motion of a particle in a quartic potential well

V (x) = ±1

2
x2+ 1

4
x4+ 1

4

giving the equation of motion (including dissipation and periodic driving)

ẍ + γ ẋ ± x + x3 = g cos(ωDt). (3.19)

The positive sign corresponds to an anharmonic well, and can be used to study the
phenomenon of frequency pulling. With the negative sign (the “inverted” Duffing
equation) the fixed pointx = 0 is unstable, and there are potential minima atx =
±1. Small amplitude oscillations occur near these minima, and larger amplitude
motion extends between the two minima. An experimental implementation of the
Duffing equation is the “Moonbeam”[3] consisting of a flexible beam that oscillates
in the double well potential formed by the elastic restoring forces and two magnets.
Again introducing the phase space coordinates(x, v = ẋ, θD = ωDt) gives the
autonomous equations

ẋ = v

v̇ = −γ v ∓ x − x3+ g cosθD
θ̇D = ωD

. (3.20)

The Duffing oscillator, and the Moonbeam, do appear to show chaos.
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Figure 3.2: Locking in the van der Pol Oscillator. (The “fixed points” in the labels
refer to results in the perturbation analysis, not to the orbits themselves.)



CHAPTER 3. NON-LINEAR OSCILLATORS 9

Appendix

Secular perturbation theory in phase space coordinates

Redoing the secular perturbation theory for the Van der Pol oscillator illustrates
the more general formulation of the theory. The ideas are sketched very briefly
here. For more details see e.g. Bender and Orszag [4]. In phase space coordinates
the Van der Pol equation becomes[

d

dt
−
(

0 1
−1 0

)](
x

v

)
= ε

(
0(

1− x2
)
v

)
. (21)

The solution is expanded(
x

v

)
= A (T ) eit

(
1
i

)
+ c.c.+ ε

(
x1

v1

)
+ · · · (22)

where the vector(1, i) is the eigenvector of the problem withε = 0. Substituting
into the equation, and collecting terms at each order inε gives atO(ε1)[

d

dt
−
(

0 1
−1 0

)](
x1

v1

)
= eit

[
−∂A
∂T

(
1
i

)
+
(

0
i
(
1− |A|2A)

)]
+ c.c.+ terms ine±3it (23)

The adjoint of the operator on the left is

L+ =
[
− d
dt
−
(

0 −1
1 0

)]
and the zero eigenvalue eigenvectors satisfyingL+u(+) = 0 are

u(+) =
(

1
±i

)
e±it . (24)

The solvability condition is then< u(+)RHS >= 0, where the scalar product
involves an integration over one time period and the vector scalar product, i.e.∫ 2π

0
dt (1,±i) e±it

{
eit
[
−∂A
∂T

(
1
i

)
+
(

0
i
(
1− |A|2A)

)]
+ · · ·

}
= 0

(25)

The time integration over one period extracts thee∓it terms from{} and the matrix
product then yields the same amplitude equation as before.
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Frequency Locking in the Driven Van der Pol Oscillator

This appendix goes beyond the level of the course, and is here for your interest
only.

The equation of motion is

ẍ + x = ε(1− x2)ẋ + g cos(ωDt) (26)

Now assumeωD = 1+ ε1 andg = 2εF with 1, F = O(1) i.e. weakdriving
near resonance, and write as before

x = A(T )eit + c.c.+ εx1+ . . .
with T = εt to give the slow time scale of the dynamics around the unperturbed
simple harmonic motion, and the driving term asεFei1T eit + c.c.. Collect all
terms atO(ε) to give

ẍ1+ x1 = (−2iAT + iA− i|A|2A+ Fei1T )eit − iA3e3it + c.c. (27)

The condition thatx1 be finite is again that the coefficient of the “resonant” termeit

vanish (or demand orthogonality to the zero eigenvalue eigenvector of the adjoint
operator i.e. multiply bye−it and integrate over the 2π period and require the
result to be zero):

AT = 1

2
A(1− |A|2)− i

2
Fei1T (28)

Note that the absence of any explicitε dependence in this equation shows that the
original choice of scaling ofg and1 with ε was correct. We want to look for the
possibility of locking to the external drive i.e.AT ∝ ei1T . It is then convenient
to introduceĀ defined byA = Āei1T which then satisfies the equation

ĀT + i1Ā = 1

2
Ā(1− |Ā|2)− i

2
F (29)

The question of locking or entrainment now reduces to the nature of the solutions of
(29). Fortunately since this is the equation for dynamics in a two dimensional phase
space (real and imaginarȳA) the possibilities for the asymptotic long time dynamics
are very limited. In fact a theorem called the Poincar´e-Bendixson theorem tells
us the only possibilities are fixed points, heteroclinic orbits connecting unstable
fixed points, or limit cycles. A stablefixed pointfor Ā corresponds to a locked
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Figure 3: Multiplicity of solutions

solution or entrainment ofx; a stablelimit cyclecorresponds to unlocked solution
or no entrainment (two frequencies). A full analysis of these possibilities in (28)
is still quite complicated because the possibility of more than one fixed point or
limit cycle has to be addressed.

We can at least easily address the existence of fixed points (ĀT = 0). In
this case taking the modulus squared of the equation gives the cubic equation for
ρ = |Ā|2:

σ 2ρ + ρ(1− ρ)2 = F 2 (30)

whereσ = 21. There will be three fixed points if this cubic equation has three
real roots, and one fixed point if there is only one root. The number of roots can be
determined by considering the extrema off (ρ) = σ 2ρ + ρ(1− ρ)2 determined
by

df

dρ
= 3ρ2− 4ρ + 1+ σ 2 = 0

i.e. ρ = ρ± = 2
3 ± 1

3

√
1− 3σ 2 which has real solutions providingσ < 1√

3
. In

this case we can substituteρ± back into (30) to find the values ofF at the extrema
Fmax(σ ) andFmin(σ ). So we have the following cases (see figure3):

(i) σ > 1√
3
: one fixed point

(ii) σ < 1√
3

and then
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(a) Fmin < F < Fmax: three fixed points

(b) F > Fmax or F < Fmin: one fixed point.

This gives the regions of one or three fixed points separated by the solid lines
in figure 2. We can then in principle test the stability of the fixed points: any
stablefixed point tells us that entrainment is a solution; asinglefixed point that is
unstabletells us that there must be a stable limit cycle (cf. the Poincar´e-Bendixson
theorem) so that the oscillators are definitely unlocked. Other possibilities, and
the coexistence of stable limit cycles (unlocked orbits) with the stable fixed points
(locked orbits) need more detailed analysis. The full analysis is described in section
2.1 of Guckenheimer and Holmes [5], and leads to the results plotted in figure 2.
(Note that the stability lines are qualitative sketches.)

In this particular case we have effectively calculated the Poincar´e section of
the driven oscillator: sinceε is small we can calculate the Poincar´e section from
the change inA due to the small incrementδT = ε × 2π .

December 24, 1999
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