
Chapter 27

Hamiltonian Chaos: Introduction

The topic of Hamiltonian chaos is a whole course in itself, and we will only touch
on a few highlights. For further information see Ott chapter 7, and review papers
by Berry [1] and Helleman [2]. The ideal pendulum discussed inchapter 2is an
example of a Hamiltonian system. In many ways this system is typical of the
ones taught in elementary courses on mechanics: the orbits are periodic and can
be constructed analytically or by perturbation theory. Other familiar examples are
a collection of simple harmonic oscillators, or a planet revolving around the sun.
All these systems are “integrable” and can be solved by various analytic means.
However these examples taught are selectedbecausethey are solvable, rather than
because they represent the typical behavior of Hamiltonian systems. Integrability
is in fact the exception, and most Hamiltonian systems will show complex, chaotic
dynamics.

A simple modification to the planetary problem illustrates the complexity of
the motion in nonintegrable systems. Consider a “solar system” consisting of a
binary pair of identical suns (coordinatesER1, ER2, momentaEP1, EP2) of large mass
M orbiting in thex − y plane. Now add a planet of small massm with an initial
condition on thez axis above the centre of mass of the two suns and with a velocity
in thez direction; by the symmetry of the system the small mass will remain on the
z axis and its dynamics is defined by the coordinatez andz-momentumpz. There
are 6 independent dynamical variables:X1, Y1, P1, P2, z, pz (thenX2 = −X1 etc.
and thez coordinate and momenta of the heavy masses are fixed by the stationarity
of the centre of mass). The energy and angular momentum are constants, leaving
a 4-dimensional dynamical system. The dynamics of this system turns out to
by quite complex. Consider the crossing timesτ1,τ2 . . . for which the “planet”
crosses the plane of the orbit of the “suns”. It can be shown that foranychosen
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sequence of numbers (e.g. random numbers) an initial condition of the 3 body
system can be found such that theτi reproduce this sequence, with escape to
infinity corresponding to the end of a finite sequence! Thus no matter how many
τi are measured, no prediction can be made for the nextτ in the dynamics.

The key difference between Hamiltonian and dissipative systems is that the
dynamics of the former preserves volume elements in phase space, whereas for the
latter volumes contract to zero. A consequence of the conservation of phase space
volumes is that attractors do not exist in Hamiltonian systems, and we are left with
the task of understanding the dynamics in thewholeof phase space. An example
is the 2d-circle map:

xn+1 = xn +�+ byn − K
2π sin 2πxn

yn+1 = byn − K
2π sin 2πxn

. (27.1)

This map describes the dynamics of the periodically kicked rotor (chapter 18). For
� = 0 the equation also describes the motion of a ball bouncing on an oscillating
surface. In both casesb measures the dissipation, andb = 1 for no dissipation.
The determinant of the Jacobean of the map is∣∣∣∣ 1+K cos 2πxn b

K cos 2πxn b

∣∣∣∣ = b, (27.2)

and the map is area preserving forb = 1 and dissipative forb < 1. The area
preserving case with� = 0 is called the standard map (and conventionally the
sign ofy is reversed)

xn+1 = xn + yn + K
2π sin 2πxn

yn+1 = yn + K
2π sin 2πxn

. (27.3)

These ideas are illustrated indemonstrations 1 and 2.

27.1 Formalism

27.1.1 Phase space

The phase space of a Hamiltonian system can be chosen asN “position” coordinates
forming a vectorEq andN conjugate “momentum” coordinatesEp forming anM =
2N dimensional phase space. The dynamics is determined by a Hamiltonian
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H( Ep, Eq, t) :

d Ep
dt
= −∂H

∂ Eq , (27.4)

d Eq
dt
= ∂H

∂ Ep .

If H has no explicit time dependence i.e.H = H( Ep(t), Eq(t)) thenH is a constant
of the motiondH/dt = 0 that we identify with the energy.

Hamiltonian dynamics is volume preserving

E∇ · EVph = ∂

∂ Ep
d Ep
dt
+ ∂

∂ Eq
d Eq
dt
= 0. (27.5)

A stricter property (from which volume preserving follows) is the symplectic prop-
erty: if we have 3 orbits infinitesimally separated by(δ Ep, δEq) and

(
δ Ep′, δEq ′) then

d

dt

(
δ EpδEq ′ − δEqδ Ep′) = 0, (27.6)

or in integral form

d

dt

∮
γ

Ep · d Eq = 0 (27.7)

whereγ is a closed contour that evolves with the flow. (For a two dimensional phase
space the symplectic property is equivalent to the property of area preserving.)

27.1.2 Canonical transformations

A transformation to a new set of coordinates
( Ep′, Eq ′) that leads to equations of mo-

tion in the same form as (27.4) is said to be canonical. A canonical transformation
can be formed from a generating functionS( Ep′, Eq, t) that is a function of theold
position andnewmomentum coordinates. The change of variables is then given
by the implicit equations

Eq ′ = ∂S( Ep′, Eq, t)
∂ Ep′ , Ep = ∂S( Ep′, Eq, t)

∂ Eq . (27.8)

It can be checked that the new variables satisfy the symplectic condition. The new
Hamiltonian is given by

H ′( Ep′, Eq ′, t) = H( Ep, Eq, t)+ ∂S/∂t. (27.9)
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27.1.3 Reduction to maps

For a time independentN -dimensional Hamiltonian system the dynamics is con-
fined to a 2N − 1 dimensional constant energy surface. The intersection with a
constantq0 plane gives a 2N−2 dimensional surface and the dynamics is given by
a map on this surface. For a time periodicN -dimensional Hamiltonian, periodτ ,
the phase space coordinates( Ep, Eq) at timesnτ are related by a time independent,
2N -dimensional map (c.f. the periodically kicked pendulum). In either case it
may be shown that the map is symplectic.

The symplectic property shows that the eigenvalues giving the behavior of a
small displacement from a fixed point of the map must come in(λ,1/λ) pairs
(the Lyapunov exponents come in± pairs). This can be shown by choosing the
3 trajectories in the definition of the symplectic property to be the fixed point and
trajectories along the eigenvectors.

For a two dimensional map there are three possible types of behavior typical
near a fixed point:

1. Hyperbolic fixed point:λ > 1, 1/λ < 1 withλ real and positive. Trajectories
near the fixed point are hyperbolic, with growth in one direction i.e. the fixed
point is “linearly unstable”

2. Elliptic fixed point: λ,1/λ = e±iφ. The trajectories near the fixed point
are elliptic and points remain in the vicinity of the fixed point, and the fixed
point might be called “linearly stable”.

3. Hyperbolic with reflection:|λ| > 1, 1/ |λ| < 1 with λ real and negative. As
type 1, but with an alternation of the sign of the displacement from the fixed
point at each iteration.

27.2 Constants of the motion and integrability

The Poisson bracket{} of two quantities (c.f. commutator in quantum mechanics)
is defined as

{A,B} = ∂A

∂ Eq ·
∂B

∂ Ep −
∂A

∂ Ep
∂B

∂ Eq . (27.10)
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A quantityf ( Ep, Eq) that has zero Poisson bracket with the Hamiltonian is a constant
of the motion:

df

dt
= ∂f

∂ Eq
d Eq
dt
+ ∂f
∂ Ep
d Ep
dt
= {f,H } = 0. (27.11)

A time independent Hamiltonian for a 2N dimensional phase space is said to
be integrable if there areN independent constants of the motionfi that are in
“involution” i.e.

{
fi, fj

} = 0. One of the constants is the energy. The motion lies
on the surface of anN -dimensional torus. A canonical transformation of variables
can be made to “action-angle” variables

( Ep, Eq)⇒
( EI , Eθ) (27.12)

with 0 ≤ θ < 2π such that the Hamiltonian is only a function of theEI , i.e.
H = H( EI ). The EI are then constants of the motion, and theEθ , corresponding to
the angles around the torus, advance at a constant rate:

d EI
dt
= 0; d Eθ

dt
= Eω( EI ) = ∂H

∂ EI . (27.13)

The action variables can be related to the original( Ep, Eq) through

Ii = 1

2π

∮
Ci

Ep · d Eq (27.14)

with the integration around theith axis of the torus.

A simple example of an integrable system is a set ofN harmonic
oscillators (of unit mass)

H =
∑
j

1

2

(
p2
j + ω2

j q
2
j

)
. (27.15)

The transformation to action-angle variables is

pj =
(
2Ijωj

)1/2
cosθj , qj =

(
2Ij/ωj

)1/2
sinθj , (27.16)

and then the Hamiltonian is

H( EI , Eθ) =
∑
j

ωj Ij . (27.17)
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The Ij are constants of the motion and theθj increase at a constant
rate

θj (t) = ωj t + θ(0)j (27.18)

and in this special case the frequencies are independent ofEI . Substi-
tuting into (27.16) gives the usual limit cycle dynamics.

Periodic boundary condit ions

Figure 27.1: An Integrable System

A physical situation leading to (27.15) is a set ofN equal masses
connected by harmonic springs (forceF proportional to extensionx)
and with periodic boundary conditions (theN th mass connected back
to the first one). The “normal modes”j are then just Fourier modes.
This is a simple model of a lattice of atoms. Since the system is in-
tegrable, the dynamics is non-ergodic, and there is no equilibration—
energy put into one mode will stay there and will not be distributed
according to equipartition. In 1955 Fermi, Ulam and Pasta investigated
numerically the question of equilibration with anharmonic springs e.g.
F(x) = ax + bxp with p = 2 or 3, expecting equilibration on a short
time scale determined byb. The system is now nonintegrable, but
they found that energy injected in one linear mode, although appar-
ently becoming distributed over many modes, actually recoheres back
into the original mode to a surprising degree, so that the equilibration
process is much slower than expected. It is interesting to note that
a particular form of nonlinear force lawF(x) = a (1− exp(−bx))
yields an integrable system—known as the Toda lattice—where theN

constants of the motion are complicated functions of the position and
momentum coordinates: not all integrable systems are trivial!

The question of integrability in continuous systems represented by partial dif-
ferential equations is particularly interesting: for equations in one space variable
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numerous integrable systems are known leading to the fascinating and important
phenomenon of solitons, and the highly non-trivial mathematics of the “inverse
scattering” formalism.

27.3 Nonintegrable systems

What happens if we perturb an integrable HamiltonianH0

H = H0+ εH1? (27.19)

In generalH will not be integrable for any nonzeroε. The dynamics ofH0 consists
of motion onN -tori determined by the values of theN constants of the motion.
What is the fate of these tori for the non-integrable HamiltonianH asε is increased?
This leads to a fascinatingly rich set of phenomena and mathematics, which will
be illustrated numerically here, and discussed more generally, albeit qualitatively,
in thenext chapter.

The fate of the tori depends on the frequency vectorEω, and in particular on
the ratios of the values of the components. For anN = 2 time independent
Hamiltonian (a 4 dimensional phase space leading to a 2-dimensional map) this
is given by a single winding numberW , the ratio of the frequencies about the
two axes. For a periodically drivenN = 1 Hamiltonian, again leading to a two
dimensional map, the single winding number is the frequency of the map on the
Poincaré section.

The standard map is integrable forK = 0 with y a constant of the motion and
the “tori” (here a limit cycle) given by

xn = xn+1+ y. (27.20)

ForK 6= 0 the map is nonintegrable, and the map can be used to illustrate the
following behavior:

1. The tori corresponding to rational winding numbers break down leading to
frequency locking and chaos.

2. A mathematical theory known as KAM (Kolmogorov-Arnold-Mosur) theory
shows that most (i.e. the complement of a set of measure zero in the winding
number) irrational tori survive for small perturbationsε→ 0.
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3. The “very irrational” tori survive longest, and the break down of the last
irrational torus (given by a winding number equal to the Golden MeanW =
1
2

(√
5− 1

)
) has a scaling structure.

4. For two dimensional maps the tori provide barriers against the dynamics
exploring the whole phase space. The break down of the last of the original
tori provides an avenue for this exploration to occur, which is then described
by “Arnold diffusion”. (In the case of a two dimensional map describing a
periodically drivenN = 1 Hamiltonian system this may correspond to the
diffusion of the system to large energies.)

5. The elliptic fixed points of the map may undergo an infinite sequence of
period doubling bifurcations to chaos with a new set of universal constants
δ andα.

(seedemonstrations 3-7).
March 5, 2000
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