Chapter 24

Controlling Chaos

Chaotic attractors contain unstable periodic orbits of any desired period (this is
shown inchapter 2Zor Axiom A attractors). Furthermore, for an ergodic attrac-
tor we know that any trajectory will eventually come arbitrarily close to any of
these orbits. This offers the opportunity foontrolling chaos when the chaotic
orbit approaches the unstable periodic orbit of interest it can be attracted to and
maintained on the orbit by applying small perturbations to the system. There are
two aspects to the problem. The first, depending on the properties of the whole
attractor, is the idea that waiting long enough guarantees that the orbit will come
arbitrarily close to any chosen point on the attractor. Alternatively knowledge of
the chaotic attractor can be used to speed this process by directing the orbit to the
desired region—this idea is studied further in thext chapter The second part
is to use delicate perturbations of the system to keep the orbit on or very close to
the unstable orbit. This part can be analyzed in terms of small perturbations from
the orbit, i.e. by dinear analysis. There is an enormous literature in “Control
Theory” in engineering that can be taken over for this second part. An intriguing
aspect of control in the context of chaotic systems is difé¢rentperiods can be
selected simply by changing the nature of the delicate perturbations of the system.
The idea of “controlling chaos” was suggested in a famous paper by Ott, Gre-
bogi and Yorke ], and we will first study the idea in the context they used of
chaos in a two dimensional map (which might be the Pomesaction of a three
dimensional flow). Two reviews ar@][and [3].

24.1 The OGY Method
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Figure 24.1. The OGY approach to control. (a) The unstable fixed point, stable
and unstable eigenvectors, ande,, and their adjoints,f; and f,. The dotted

line is the path of the fixed point as the control parameter is varied. (b) Shifting
the fixed point to the new (solid) position allowg, 1 to be directed to the stable
manifold of the unshifted (dashed) fixed point.

Suppose we wish to control the chaotic dynamics of a two dimensionalfmap
onto an unstable fixed points. (Controlling to an unstable period-orbit can

be achieved by considering the corresponding fixed point of the Fhap F”,
although this might not be the most efficient way in practice). We suppose the fixed
point has one stable directi@p with eigenvaluer; and one unstable directia)

with eigenvalue.,, as would be typical for an attractor of dimension less than 2.
The goal is to achieve control through small changes to a parameffahe map.

The OGY scheme for control is easily understood pictorially. Figi#iel depicts

the unstable fixed point; with its stable and unstable eigenvectors, and also the
path of the fixed point for small changesprgiven by

g=—L. (24.1)

If an iteration pointx, comes close t@, i.e. X, = Xy + 8x, with §x, small, the
parameterp is changedp = po + 8p, So that after the next iteratiaf), ;1 lies
along the stable direction afs. We can calculat&, 1 by linearizing about the
moved position of the fixed point

((S}n—l—l — pn g) = (Augu]?u + ksévfiv) : (S}n — 8pn g) (24-2)
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where £, and £, are the unit adjoint eigenvectors
fu-és=f-é, =0 (24.3)

so that the resolving a vectéralongé, andé, gives components - £, ands - f,
respectively. The condition for,1 to lie along the stable direction af; is then
8Xn41 - fu = 0 which gives

A, 8%, -
5m=k”1f"ﬁ- (24.4)
u g'fu

Figure 24.2: Two trajectories near the unstable fixed point. The valua® used
to determine the position of the fixed point and the Jacobean

This is trivial to implement if we have analytic knowledge of the map function
F. Usually we are interested empirical controlwhere the parameters have to be
extracted from observations of the dynamics. This is done in three stages:

1. Identify the unstable periodic orbit(s) or orderwe need to find a® such
that F" (x) is sufficiently close ta:. Thus we form a vecto¥;, x;11... X1
and test whethet; ., is equal tax; within some chosen tolerance, but not
equalto any intermediaig ; (within the tolerance) since this would indicate
a lower period orbit. If the test fails incremen&nd try again.
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2. Characterize the unstable fixed poinifoi= F": every timex,, comes close
to X ; (within some tolerance) successive returns are fit to the linear form

K-y = A(G - 3) (24.5)

until x; moves too far away froni,, with A the 2x 2 matrix

A= [ a1 diz ] (24.6)
azi1 daz

wherex ; and the coefficients;; are determined by a least squares fit (figure
24.2). The matrixA is then diagonalized to give the eigenvalugs A,

the eigenvectord,, ¢,, and the adjoint eigenvectoys, f.. The vectors is
found by slightly incrementing the parameteand extracting the newy

by a similar least squares fit.

3. Control is now implemented with these estimated parameters using. (
Since the control is estimated using linearization, it is only implemented
whenx, comes sufficiently close toy.

A slight wrinkle to this method is added if the observed chaotic dynamics is
reconstructed from the measurements of a single dynamical varigbledr the
case of a two dimensional map the relationship between the reconstructed map and
the phase space map depends on the map parameter at the previous iteration

Xni1 = F (Xu; Pns Pn-1) (24.7)
so that now
(24.8)

with § = 9% ;/dp, andh = 3% /dp,_1. This leads to

u

S

Spn—1. (24.9)

Ao SXn- fu R
8pn -
g .

=13 f,

~

u

The new vectoh can be “learned” by applying small chandes to p that are on
for n even and off fon odd.
The OGY control scheme is illustrated in themonstration


Demos.html
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24.2 General Linear Control Theory

The OGY control method is very appealing intuitively. However it is only one of
a large class of possible algorithms. In addition, it is very easy to guess incorrect
generalizations from this (perfectly correct) special case. For example it might be
guessed that a new control parameter is needed for each new unstable direction at
the fixed pointin higher dimensional situations. This@sthe case: typically only
asinglecontrol parameter is sufficient even when multiple directions are unstable.
Since the issue inear control near the fixed point or periodic orbit, the fact that
we are dealing with @haotic system is of secondary importance in the control
algorithm, and standard results from linear control thebly§] can be taken over
directly.

We will consider the framework of more general control methods for unstable
fixed points in systems of arbitrary dimensidh using a vector ofM control
parameterg. Linearizing near the fixed point we have

Xn+1 = Axp, + Buy, (24.10)

where we are measuring the dynamical variabfeom the fixed point, ana, =
pn — p i.e. the perturbations of the map parameters. The matAcasd B are
given by derivatives at the fixed point

_ dF; d B — 0F;
= 5D an ik = 3}77

(24.11)

Notice that the matrisB is fixed by the choice of control parameters. (The dimen-
sion of the parameter vector need not of course be equal to the dimension of the
phase space vect®er soB, anN x M matrix, need not be square.) In general we
could takeu,, to depend on a number of prior valueswofi.e. x,;, x,—1. .. Xp—m).
However we will restrict ourselves to “proportional control”

up, = —Kxy,, (24.12)
with K andM x N matrix. Thus we have, within the linear approximation
Xp+1 = (A — BK) x, (24.13)

and the properties of this linear system tells us about the possibility of control.
A system is said to bstabilizableif with the choice of control parametegsa
“feedback gain matrix’k can be found such that all the eigenvaluesict BK



CHAPTER 24. CONTROLLING CHAOS 6

lie within the unit circle i.e. |A;| < 1. Clearly then, with the control on, the
perturbationt from the fixed point dies away exponentially.

A more strict notion is that of controllability. A system is said to be linearly
controllableif for any initial conditionxg close to the fixed point at = 0, there
exists a sequence of perturbatians. ..u,_1 for anyr > N such thaty, = 0.
Within the proportional scheme this is equivalent to the requirement that each
eigenvalue of the matrid — BK can be chosen at will, and in particular can be
made zero.

Using linear algebra, the condition for controllability can be easily constructed.
The explicit expression for, fort = N is

N-1
xy = ANxo+ Y AN By, (24.14)
j=0

Denote theth column in the matrixB asb;:
B=[b1:by:b3:...:by]. (24.15)
Regarding the terms
fl=AY"Ip, j=1N; i=1LM (24.16)

asN x M basis vectors anzdﬁ.k_)l (k =1, M andj = 1, N) as coordinates, we see
that the conditioncy = 0 can only be satisfied for generalif this set of vectors

is complete, i.e. there a® linearly independent vectors. This is equivalent to
requiring

rank(C) = N (24.17)
whereC is the “controllability matrix”
C=[B:AB:A’B: --- :AN71B] (24.18)

i.e. C is the matrix with columns#y : bo : b3...by . (Ab1) : (Ab2) :
(Ab3)...(Aby)...]. For the case of proportional control this is in fact the same
condition that a matriX can be found such that the matdx- B K has any desired
eigenvalues. For the single control parameter &isea column vectob,, and for

a matrixA with nondegenerate eigenvalues the controllability condition is simply
thatb1 has components along all the eigenvectora off this is satisfied, the sys-
tem is controllable by theingleparameter, no matter how many of the eigenvectors
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correspond to unstable directions. In this one parameter case, if the controllability
condition is satisfied, the matriX can be obtained from Ackermann’s formula

K =[0,0,0,...1]C ¢ (A) (24.19)
with
$(A) = (A —pal) (A—p2l)...(A—p,l) (24.20)

wherep; are the desired eigenvalues. The more complicated multiparameter case
is discussed byq].

The stabilizability condition can be written in similar form: if there are
stable directions with eigenvectoes andn, unstable directions, the system is
stabilizable if

rank(S) = N (24.21)
with S the “stabilizability matrix”
S=[er:...e,, :B:AB:A’B: ... :A™71p] (24.22)

The OGY method for a single unstable direction corresponds to setting the
eigenvalue ofA — BK along the unstable direction dfto zero to give immediate
convergence to the stable manifold. The “direct targeting” method aims at arriving
at the fixed point afteN steps, which corresponds to setting all the eigenvalues of
A — BK to zero. Note, of course, that in this case- BK is a degenerate matrix,
and will not haveN independent eigenvectors (when we would get convergence
to the fixed point in a single step!).

24.3 Linear Quadratic Control

There is clearly considerable flexibility in choosing a control scheme—it is too
easy to control systems! Often the method (e.g. OGY) is chosen for conceptual
simplicity or by ingenuity. It would be useful to have some sort of quantitative
measure of the “goodness” of any control scheme. Various measures of the quality
could be imagined: the smallest number of steps; the validity over the widest
deviation from the fixed point (the linear approach will break down somewhere);
or the robustness of the control in the presence of noise. An attractive scheme is
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to minimize a cost function, for example the quadratic form in the deviatipns
and the control strengths,

o0
V(xg) = anT Ox, + u,{Run (24.23)
n=1

whereQ, R are positive symmetric matrices that are chosen to weight the different
directions, and the relative importance of restricting the deviatigrasxd control
strengths:,, to small values (e.g. for the two linearizatior#&=!(10 to be a useful
approximation). Equatior2@.23 can be minimized, subject to the constraint of
the dynamics44.10, using standard Lagrange multiplier or other methods. After
considerable effort it can be showr that the minimum is reached fdf given

by
K=(R+B"PB) "B"PA (24.24)

whereP is the symmetric matrix that is the solution to the “discrete time algebraic
Ricatti equation”

P=0Q+ATPA—ATPB(R+B"PB) "BTPA. (24.25)
(This equation can be solved iteratively
Pi1=Q+ATP,A— ATP,B(R+ B"P,B) "BTP,A (24.26)

which usually converges rapidly, — P from a typical choice of symmetrigy.)
To get some insight into the minimization consider the situation wAere K
has nondegenerate eigenvalagsWe can then write

& (Q+ KTRK), )

Vo) =) T (24.27)
i)

i

with the indices, j referring to components along the eigenvectord of BK .
If we supposeg is chosen at random, and average over all possible directions we
want to minimize the average

Q + KTRK)..
(V) = Z( T )”. (24.28)
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This does not solve the general problem, since the unknown niatagpears, as
well as the unknown eigenvalues and eigenvectors-efB K . For the special case
R = 0 andQ = I (minimize the mean square distancexpfrom the fixed point)
the sum reduces to

vy=Y (@-mP (24.29)

i

which suggests the minimization is given by settingiall= 0, i.e. the direct
targeting algorithm (although then the eigenvalues are degenerate so the procedure
may not be consistent).

Aninteresting resultis for controlling dynamics in the presence of small additive
uncorrelated noise, i.e. given by

Xp1 = F(x,) + 6, (2430)

with &, a random variable. It can be shown that minimizig) (24.23 in the
presence of noise leads to ts@meoptimization condition4.24,(24.29.

24.4 Applications

There has been an enormous number of papers written on applications of the control
of chaos. Not all papers with this phrase in the title describe schemes that fall into
the framework | have discussed, namely

e control by application of small feeback signals, that go to zero or to very small
values controlled by stochastic noise (not deterministic, chaotic “noise”)
once control has been achieved;

e control to a pre-existing unstable fixed point or periodic orbit within the
attractor;

e control making intelligent use of the the structure of the dynamics near the
unstable orbits.

Some schemes, using large applied signals, are more reminiscent of locking of
large amplitude oscillators. Of course, schemes not implemeting all these features
may still be useful! For example one early application was to controlling chaos in
heart muscled]. Here, if the spontaneous heart beat is delayed from the expected
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period, afinite electrical stimulus is provided to force a heart beat, so the analysis
in terms of a small change in the control parameter is not valid. Nevertheless, the
timing of the stimulated pulsis determined from an OGY type analysis of the
pulse time return map—simply stimulating at the expected periodatitead to

a periodic response.

February 27, 2000
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