Chapter 22

Mathematical Chaos

The sets generated as the long time attractors of “physical” dynamical systems
described by ordinary differential equations or discrete evolution equations in the
case of maps such as theltbn map appear to be very complicated, often with
unpleasant properties such as the lack of robustness (the parameters leading to
chaotic and nonchaotic solution may be intertwined on an arbitrarily small scale).
Few proofs are available for the conjectured properties of these sets. To make
mathematical progress it is necessary to make restrictions on the type of dynamical
systems considered, that go far beyond standard smoothness assumptions. Often
the assumptions needed to construct proofs are so strict thadtribignthat all
common “physical” attractors violate the assumptions. (However, numerical tests
of the results proven for the restricted systems often show that they apply, at least
as an excellent approximation, to the physical systems.) In this chapter the goal
is to present some of the flavor of this mathematical approach, since many of our
ideas on chaotic systems have arisen in this context.

A key assumption in much of the mathematical development is the notion of
“hyperbolicity”. To define this concept it we first introduce the general idea of
stable and unstable manifolds. Useful references are: Eckmann and Rielle [
sectiondllE, F; Ott [2], sections 4.3 and 9.5; Aligood et al3][ section 2.6 and
chapter 10; and Guckenheimer and Holmgssgction 5.2.

22.1 Stable and Unstable Manifolds

22.1.1 Saddle Fixed Point
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The idea of stable and unstable manifolds is most easily introduced in the context
of a saddle fixed point of a two dimensional map. They are the natural extensions of
the linear eigenvectors of the stability analysis of the fixed point into the nonlinear
regime.

Consider a fixed point s of a differentiable two dimensional map with
a differentiable inverse map. M; has one unstable eigenvalsiavith |s| > 1
and corresponding eigenvectbf, and one stable eigenvaluewith |u| < 1 and
corresponding eigenvectar, itis called a saddle fixed point. The stable manifold
of xr denotedW? (x ) is the set of pointy such that| F'(y) — F"(xf)\ — O as
n — oo, the unstable manifold of ; denotedW*(xs) is the set of points such
that| F~"(y) — F"(xy)| — 0 asn — co. Both are one dimensional manifolds
containingx s. A manifold is basically a nice set (e.g. without fractal properties):
a one dimensional manifold is defined as a set that is locally a curve and can be
produced locally by bending a line. The letters D (in a sans serif font!) and O
are 1-manifolds, the letters A and X are not, since there are points where no small
neighborhood looks like a line (Aligood et aB]}. Also W*¥(xy) is tangent taE*
andW? (xy) is tangent taE” atx .

The extension to periodic saddles is given by noting that these are fixed points of
F1 for someg, and there is a straightforward generalization to higher dimensional
maps. The idea of stable and unstable manifolds can be defined locally at an
arbitrary pointx in the phase space: the stable manifétiof x is the set of points
y such that F"(y) — F"(x)| — 0 asn — oo, and the unstable manifol@* of
x is the set of pointy such that}F—” (y)— F" (x)| — 0 asn — oo. Useful
results can be proven for stable and unstable manifolds. For exampls ih
an attracting sek then W*(x) is contained inx. Also the number of positive
Lyapunov exponents of the set is a lower bound for the capacity dimensibn of

22.2 Hyperbolic Invariant Sets

A hyperbolic invariant set in a sense is the generalization of a saddle fixed point
and can be defined in terms of the properties of the linearized map about the point
x onthe set, i.e. the tangent spdgeat the pointc. Note that the definition applies
to both attracting and nonattracting sets.

An invariant sefz under the maF is said to be hyperbolic if there is a direct
sum decomposition df; into stable and unstable spadgs= E; @ E¥ for all x
in X such that:

(i) the splitting intoE<, E¥ varies continuously with;
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(i) the splitting is invariantin the sense that (x) ES* = E;’Z‘X), i.e. the evolving
the stable and unstable spaces with the tangent space map gives the same

result as the stable and unstable spaces at the evolvedpaiyt

(iii) there are number& > 0 and O< p < 1 such that for alk > 0

IDF"(x)v| < Kp"|v] forvin E; (22.1)
IDF~"(x)v| < Kp"|v| forvin EY. (22.2)

(In these expressiond F(x) is the Jacobean matrix df atx.) The latter
condition says that the exponential decay rate of vectors in the stable subspace and
the exponential growth rate in the unstable subspace are bounded away from zero.

Again the linear spaceB!, E¥ may be extended into the nonlinear regime far
from x to give stable and unstable manifold&’(x), W (x) at each pointc on
the attractor that are tangent &y, E¥ atx (e.g. Guckenheimer and Holme4,[
Theorem 5.2.8). Two points on the stable (unstable) manifold approach (separate
from) each other exponentially.

Most of the mathematical understanding of chaotic attractors is restricted to
hyperbolic attractors. Furtherrestrictions are often needed on smoothness and other
properties. For example &xiom Aattractor is an attractor of a differentiable map
that is hyperbolic and mixing. The property of mixing is that for any two $gts
ands; in the phase space

Tim i [Sa N F"(Sp)] = 1(S)1(Sh) (22.3)

whereu is the natural measure of the attractor. The property of mixing is that
initial conditions get spread over the attractor according to the measure. Axiom
A attractors are particularly nice, and many results have been proven for these
attractors, for example the existence of a natural invariant measure that is smooth
along the expanding directions. Axiom A attractors are also structurally stable,
which means that even the delicate chaotic structure survives a small perturbation
of the map.

Most physical attractors are non-hyperbolic because there are points on the
attractor where the stable and unstable manifolds are tangent to one another (see
figure22.1for the HEnon map). Structural stability does not seem to be a property
of many physical attractors. The bakers’ map is hyperbolic, although the map is
not differentiable so it is not Axiom A. In the next chapter the horseshoe map, that
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Figure 22.1: Plot of the Bron attractor (red) and the stable manifold (blue) of the
fixed point that lies within the attractor. The stable comporghof the tangent
space (i.e. the contracting direction) lies along this curve at the pomwtsere it
intersects the attractor. Since the expanding directipties along the attractor,

we see thatE? and E¥ are parallel at points where the blue curve is tangent to
the attractor. At these points they do not span the tangent sfpaioglicating a
breakdown of hyperbolicity. The calculation of the stable manifold is discussed in
reference$], and the figure was constructed using the program supplied there.
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is both differentiable and hyperbolic, is introduced. This map shows a chaotic set,
but this set is not an attractor. The Ansov map or “cat map”

Xpn+1 =X, +y, mod 1 (22.4)
VYn4l = X, +2y, mod 1

is a differentiable, area preserving hyperbolic map (the eigenvalues of the Jacobean
(3+ +/5)/2 and the eigenvectors are independent of position). The orbit from a
typical initial condition fills the whole unit square with uniform measure. The map

is therefore Axiom A. The Sinai map

Xp+1l = Xp + Y, +8C092ry,) mod 1 (22.5)
Yn4l =X, + 2y, mod 1

can be considered a perturbation of this map, and so by structural stability for small
enoughs will also be hyperbolic and the attractor will be of capacity dimension
2. The measure of the Sinai map is however no longer uniform and in fact shows
interesting structure, and diagnostics involving the measure (e.g. the information
dimension) will vary withs. The properties of the Sinai map are illustrated in the
demonstration

22.3 lllustration

To illustrate the flavor of the use of hyperbolicity to prove properties of chaotic
attractors consider the following]|

For a mapF with an Axiom A (i.e. hyperbolicandmixing) attractor the natural
measure of the attractor contained in some closed et

u(s) = lim Y r* (22.6)
where the sum is over the unstable fixed pointg'dfvhich lie in S, andL; is the

product of the unstable eigenvalues of the linearizatiof'oht theith fixed point.
In particular if the sef is the entire attractor so that.S) = 1 we have

— i -1
l_nll_)mOOZLi . (22.7)
1
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Figure 22.2: Pointyg is mapped intax, under F*. Then ifab — a'b’ and

cd — ¢'d’ the parallelogranafgh — ¢’ f'¢’h’, and by continuity there must be a
single saddle fixed point df” in the intersection region. In all cases the horizontal
(vertical) lines in the figure are segments of the stable (unstable) manifolds. The
figure is drawn with orthogonal lines for simplicity, but this is not essential to the
argument.

22.3.1 Proof

We will illustrate the proof for two dimensional maps. Partition the phase space
into small cellsC; where each cell has as its boundaries the stable and unstable
manifolds. Small enough cells may be considered parallelograms. Consider the
iteration of a large number of initial conditions distributed over a particular cell
Cr according to the natural measure of the attractor. Iterate a large humber of
timesn then a fraction given by (Cy) will return to the cell (the mixing property).
Supposexg is an initial condition that returns te, in C. If ab is the stable
manifold segment passing throughanda’s’ its image after iterations, and’d’

is the unstable manifold segment passing throxghndcd its preimage under

n iterations, then the parallelogratyigh is mapped to the parallelograghf’g’h’

aftern iterates, where the boundariesegigh ande’ f'g’h’ are segments of stable
and unstable manifolds (see figw2.2). This means there must be a single saddle
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fixed point of F” in the intersection region, and conversely any saddle fixed point
of F" can be surrounded by similar parallelograms. If the unstable eigenvector of
the fixed pointisi, > 1, then the height offgh is a fractionx; 1 of the height of
Cr. The measure of an Axiom A attractor is smooth along the unstable directions,
and sinceCy, is small so that the distribution of the measure across the height can
be considered uniform, the fraction of the measuré€pin the stripefgh is then
justk;l. Thus the fraction of initial conditions that return@ underF,,, which
by the mixing property is«(Cy) for largen, is given by summing the ! over
the saddle fixed points af,, within Cy. Summing over the; in S then proves
the result22.6 since for a two dimensional map is just equal to the unstable
eigenvalue..

Further results may be derived relating the properties of chaotic attractors to the
unstable periodic orbits. A few of these results, proven for hyperbolic attractors,
are quoted here for a two dimensional map.

1. The Lyapunov exponents are

1 1 ,
S = @)
A2 = nl|_r>noo " E )\ff) In Ay’ (22.8)

i
with 2, A% the unstable and stable eigenvalues at theeriodn point.
2. The capacity dimensioD is given by

i ; Dc—1
lim Z (A§ >) —1 (22.9)

1

3. The eigenvalues of the Perron-Frobenius opetor f(x)) for the evo-
lution of the measure can be expanded in the unstable fixed pa@]nts [

Auerbach et al. ] have tested some of these results on the (nonhyperbolic)
Hénon map, which has 1, 3, 1, 7, 1, 15, 29, 63, 55, 103 order 1 to 10 cycles
respectively. For example the calculate valuesfpr based on42.9 and get
values of 1.26, 1.29, 1.30, 1.26, 1.27 using cycles of order 6 to 10. There is a large
literature in both math and physics on this area.

February 29, 2000
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