
Chapter 18

Driven Pendulum and the 2D Circle
Map

An important route to chaos is from a quasiperiodic state ofn incommensurate
frequencies. The phase space structure of such a state is topologically ann-torus,
and the onset of chaos corresponds to the break down of this torus to a more
complex structure. Landau envisioned the development of fluid turbulence as
occurring through transitions to higher and higher-n tori, leading to more and
more complicated dynamics in space and time. A very influential work was that of
Ruelle and Takens (refined with Newhouse), who showed that “generically” this
might not be expected to happen, but a chaotic state would instead develop from a
small-n torus. The interpretation of the idea of genericity involves some subtlety.
An alternative phenomena is that the oscillators in the quasiperiodic motion may
lock to give a simpler dynamics of fewer incommensurate frequencies or even
periodic motion. In this chapter we set up a simple two dimensional map—the 2D
circle map—that displays these phenomena, and in thenextchapter this is further
reduced to a one dimensional map. Inchapter 20theuniversalaspects of the onset
of chaos from quasiperiodic motion are breifly described, and inchapter 21the
Ruelle-Takens-Newhouse theorem and its understanding are discussed.
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Figure 18.1: Resistively shunted Josephson junction. The capacitanceC is the
capacitance of the junction.

18.1 Driven Pendulum

A simple physical example showing these phenomena is the driven running pen-
dulum, described by the equation

θ̈ + γ θ̇ + sinθ = d + g cosωDt (18.1)

where as well as the usual oscillating force a constant forced has been added which
will tend to produce running solutions with nonzero

〈
θ̇
〉
. Note that the motion can

be considered as the oscillatory driven and damped motion of a particle in the
“washboard potential”V (θ) = − cosθ − dθ . The frequency locking is between
the drive frequencyωD and the running frequency< θ̇ >.

Equation (18.1) also describes the dynamics of the resistively shunted Joseph-
son junction driven by a current sourceI = A+ B cosωDt (figure18.1).

The only feature of the Josephson junction that we need to know is the current-
voltage (I − V ) relationship given by the two equations

I = Ic sinθ
θ̇ = 2e

} V
(18.2)

whereθ is an internal variable (actually the difference in the phase of the super-
conducting order parameter across the junction),Ic is the maximum current the
Josephson junction can support in the superconducting state, ande and} are the
fundamental constants. Equating the current from the source to the sum of the
currents through the three components gives

A+ B cosωDt = }C
2e
θ̈ + }

2eR
θ̇ + Ic sinθ (18.3)
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which can be rescaled to the form of Eq.(18.1). The running solution
〈
θ̇
〉 6=

0 corresponds to a mean voltage〈V 〉 6= 0 and so dissipation in the junction.
The frequency locking yields a fixed voltage over some range of drivingV =
(}/2e) (p/q) ωD with the ratio of integersp/q giving the locking ratio: these
are known as Shapiro steps. The alternative of chaotic dynamics in the circuit
adds apparent noise to the circuit characteristics, increasing the effective “noise
temperature” to much higher values than the true temperature, which can be a
limitation in the application of such circuits.

Equation (18.1) can be reduced in the usual way to the flow in a three dimen-
sional phase space

θ̇ = ω

ω̇ = −γω − sinθ + d cosθD
θ̇D = ωD

. (18.4)

Alternatively the evolution can be reduced to a two dimensional map by strobing
at the drive frequencyωD (a Poincare section). Since the differential equation is
second order, the dynamics in each period of the drive is determined by the values
of θ andω = θ̇ at the beginning of the period, and by the force, which is the same
in each period, i.e. the dynamics reduces to the map(

θn+1

ωn+1

)
=
(
G1 (θn, ωn)

G2 (θn, ωn)

)
= G

(
θn
ωn

)
(18.5)

whereG is a two dimensional map that in principal is given by integrating from
nT to (n+ 1) T with T the period 2π/ωD. The exact form ofG is complicated,
but since volumes contract uniformly at the rateγ in the flow and there is no
contraction along the flow direction, it is clear that the Jacobean of the map is
given by

J =
∣∣∣∣∣ ∂G1
∂θn

∂G1
∂ωn

∂G2
∂θn

∂G2
∂ωn

∣∣∣∣∣ = e−2πγ/ωD = b say, (18.6)

i.e. there is uniform contraction of areas in the map (forγ 6= 0).
For large damping (smallb) we would expect the velocityω to relax rapidly to

the value determined by the instantaneousθ , and then

θn+1 = f (θn) , (18.7)

a one dimensional map.
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Figure 18.2: Periodically kicked rotor

18.2 The Periodically Kicked Rotor

Since a quantitative reduction of the pendulum to a 2d map is complicated, it is
convenient to study a simpler model, namely the damped motion of a ball on a ring
kickedperiodically in time with a strength that depends on theangle

θ̈ + γ θ̇ = (A− B sinθ)
∑
n

δ (t − n) . (18.8)

The motion can be easily integrated between kicks: ifθ̇n is the angular velocity
justbeforethenth kick, the velocity just after the kick iṡθn+A−B sinθn, which
then decays exponentially, because of the damping, up to the time of the next kick,
so that forn < t < n+ 1 we have

θ̇ = e−γ (t−n) (θ̇n + A− B sinθn
)
. (18.9)

In particular, just before the next kick

θ̇n+1 = e−γ
(
θ̇n + A− B sinθn

)
(18.10)

and integrating Eq.(18.9) gives

θn+1 = θn + 1− e−γ
γ

(
θ̇n + A− B sinθn

)
. (18.11)
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Now defining

� = A

2πγ
, rn = eγ − 1

γ
θ̇n − 2π�,

K

2π
= 1− e−γ

γ
B and b = e−γ (18.12)

reduces the equations to a standard form that is known as the “dissipative 2D circle
map”

θn+1 = θn + 2π�−K sinθn + brn
rn+1 = brn −K sinθn

. (18.13)

The determinant of the Jacobean of the map isb so that areas contract at a uniform
rate forb < 1, and the map isarea preservingfor b = 1.

An alternative motivation of the 2d circle map is through a na¨ıve discretization
of the pendulum equation (18.1) at timest = n2π/ωD (when the angle isθn):

(θn+1− 2θn + θn−1)+ (1− b) (θn − θn−1)+K sinθn = (1− b)� (18.14)

where

(1− b) = 2πγ

ωD
, K = 2π

ωD
, � = d + g

γ
, rn = θn − θn−1− 2π�. (18.15)

The dissipative circle map is often written in terms ofxn = θn/2π andyn =
rn/2π :

xn+1 = xn +�− K
2π sin 2πxn + byn

yn+1 = byn − K
2π sin 2πxn

. (18.16)

For b → 0 (large damping of the kicked rotor) we get the one dimensional
circle map

xn+1 = xn +�− K
2π sin 2πxn . (18.17)

The behavior of the dissipative circle map is studied in thedemonstrations.
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