
Chapter 14

Bifurcations in the Quadratic Map

We will approach the study of the universal period doubling route to chaos by
first investigating the details of the quadratic map. This investigation suggests
a pattern of behavior. Other maps with a “similar” shape, e.g. the sine map
(f (x) = 1

4a sin(πx)), show aquantitativelysimilar behavior. We are led to a very
general formulation that explains this common or “universal” behavior. From this
general formulation we argue that the universality goes far beyond the iteration
of maps of the unit interval, and may apply to higher dimensional maps, flows
(dynamical systems described by ordinary differential equations), and physical
systems. Thusquantitativepredictions about experimental systems may be made.
The detailed understanding allows the consideration of other interesting questions,
such as the effect of extrinsic noise on the phenomenon of chaos.

A good reference for this material is the pedagogical article by Feigenbaum
[1], who is responsible for many of the ideas.

14.1 Patterns in the quadratic map

For the quadratic mapf (x) = ax (1− x) the “bifurcation diagram” and plot of
Lyapunov exponentλ as a function of the map parametera shows that an infinite
sequence of transitions or bifurcations occurs asa is increased between 3.0 and
about 3.57, and there are patterns to be seen in the structure of the transitions
(seechapter 3). The bifurcations are of successive period doubling, i.e. the orbit
(after transients have died out) for smalla is a single point; but asa is increased
the orbit consists of 2 points, then 4,8 . . .2n, . . . points. At each bifurcation the
period doubles, and the power spectrum shows successive subharmonic peaks (at
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frequencies12,
1
4, . . . relative to the iteration frequency).

We would like to look at thequantitativestructure of this sequence of bifurca-
tions. We could look at the pattern in the bifurcation points themselves, i.e. the
an for the bifurcation from the 2n cycle to the 2n+1 cycle. However the dynamics
becomes slow near a bifurcation point (the Lyapunov exponent goes to zero), and
so transients take longer to die out. Instead we will look at a particular valuea

(s)
n

within each 2n cycle. A convenient choice of the particular value is the value ofa

giving the “superstable” 2n cycle. This is the value for which one point of the orbit
is exactly at the maximum of the map. At this value the Lyapunov exponent is
(negative) infinity—hence the name. These values ofa are easily identified from
theλ(a) plot, and also from the bifurcation plot where the line of an orbital point
crossesx = 1

2, and transients decay rapidly here.

In addition to the valuesa(s)n , we can ask for the separation of points in the
orbit. At each bifurcation, every point in the orbit splits into two points: we are
interested in how this small splitting develops asn increases. The closest point to
any given one is the point half way around the orbit (which was coincident prior
to the bifurcation). For the superstable cycles the smallest separation between any
two points in the orbit is the separation between the point at the maximum and
the point half way around the cycle from this point. Again this is easily identified
from the bifurcation map or extracted numerically (start atx = 1

2 and iterate 2n−1

times fora = a(s)n .)(demonstration 1)
The following results are readily extracted for the quadratic map:

n Period a
(s)
n δn dn αn

0 1 2 0
1 2 3.236065 1.61804 0.309016
2 4 3.498562 4.70887 −0.116402 −2.65474
3 8 3.554641 4.68083 0.045975 −2.53184
4 16 3.566667 4.66294 −0.018326 −2.50872
5 32 3.569244 4.66840 0.007318 −2.50411
6 64 3.569795 4.66895 −0.002924 −2.50316
7 128 3.569913 4.66917 0.001168 −2.50296
8 256 3.569939 4.66919 −0.000467 −2.50292
9 512 3.569944 4.66920 0.000186 −2.50291

The separation between thea(s)n decreases rapidly, and in fact geometrically, as is
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shown by calculating the ratio between successive separations, or its inverse

δn =
a
(s)
n−1− a(s)n−2

a
(s)
n − a(s)n−1

. (14.1)

The values ofδn are tabulated in the third column. (Note these are calculated
from the values ofa(s)n in double precision before truncation to fit in the table!) It
is apparent thatδn tends to a constant for largen, in fact

lim
n→∞ δn→ δ = 4.6692016. . . (14.2)

Similarly the smallest separationdn between points in the 2n orbit decreases
geometrically, as shown by the tabulation of

αn = dn−1

dn
. (14.3)

Again this ratio approaches a constant, in fact given by

lim
n→∞αn→ α = −2.502907875. . . (14.4)

We can write the relationship (14.2) as

a(s)n → a∞ − A(s)δ−n (14.5)

where for the quadratic mapa∞ = 3.569946. . . andA(s) ' 1.5561. The bifurca-
tion points follow a similar expression

a(b)n → a∞ − A(b)δ−n (14.6)

with A(b) ' 0.570.

14.2 Patterns in the sine map
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The sine mapf (x) = 1
4a sin(πx) shows a similar looking sequence of bifurcation

demonstration 2. We can make a similar table:

n Period a
(s)
n δn dn αn

0 1 2 0
1 2 3.110931 1.80031 0.2777733
2 4 3.385529 4.04565 −0.107204 −2.59069
3 8 3.445801 4.55592 0.042518 −2.52139
4 16 3.458777 4.64516 −0.016962 −2.50668
5 32 3.461559 4.66407 0.006775 −2.50370
6 64 3.462155 4.66813 −0.002707 −2.50308
7 128 3.462282 4.66895 0.001081 −2.50294
8 256 3.462310 4.66915 −0.000432 −2.50291
9 512 3.462315 4.66920 0.000173 −2.50291

The specific numbersa(s)n anddn aredifferent,however we notice the remarkable
result that the parametersδn andαn appear to tend towards thesamevalues as
n→∞! Again we can write (14.5) and (14.6) with the same value ofδ but with
a∞ = 3.46231. . . , A(s) ' 1.6821, andA(b) ' 0.614.

This result can be extended to various other one dimensional maps with the
common feature of a quadratic maximum. Thus there are factors that set the overall
scale of the variation witha and the orbit size, but the ratios of separations tend to
universal values for largen 2n cycles. This is the remarkable universality discov-
ered by Feigenbaum. It covers a large class of maps with a quadratic maximum
(there is also a requirement of “positive Schwarzian derivative”). However it can
be readily seen(demonstration 3) that maps that vary with a different power law
near the “maximum” (which is now actually a cusp) showqualitativelysimilar ge-
ometric convergences at largen that however are characterized bydifferentvalues
of δ andα.

14.3 Period Doubling Bifurcations

Before developing further understanding of the geometric sequence of period dou-
bling bifurcations it is useful to introduce a few basic properties of bifurcations
in the quadratic map. We will discuss properties of a mapf (x), which may be
the quadratic map, or the maps given by “functional composition” that give higher
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order iterates of the point. For example

f 2(x) ≡ f (f (x)) (14.7)

gives the second iterate of the map functionf

x1 = f (x0)

x2 = f (x1) = f (f (x0))
. (14.8)

Note again thatf 2 denotes the (second order) functional composition, not the
square of the functionf . Similarly

f n(x) = f (f n−1(x)) = f (f (f . . . f (x))) (14.9)

gives thenth iterate ofx.

14.3.1 Useful properties

1. A fixed point ofxf is given by

xf = f (xf ). (14.10)

2. The stability of the fixed point is determined by perturbing aboutxf , i.e.
write xn = xf + δxn with δxn small, then

δxn+1 = f (xf + δxn)− xf = f ′(xf )δxn. (14.11)

Thus we have stability (δxn decays) for
∣∣f ′(xf )∣∣ < 1, whereas we have

instability (δxn grows) for
∣∣f ′(xf )∣∣ > 1. The period doubling bifurcation

corresponds to the borderline withf ′(xf ) = −1.

3. The chain rule of differentiation gives

d

dx
f n(x)

∣∣∣∣
x=x0

= f ′(xn−1)f
′(xn−2) . . . f

′(x1)f (x0) (14.12)

wherexi are the iterates ofx0. This is shown by the result

d

dx
f n(x) = d

dx
f (f n−1(x)) = f ′(f n−1(x))

d

dx
f n−1(x). (14.13)
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4. A fixed point off is a fixed point off n, since

f 2(xf ) = f (f (xf )) = f (xf ) = xf (14.14)

etc.

5. If a fixed point off becomes unstable then it is unstable inf n, since from
(14.12) ∣∣f n(xf )∣∣ = ∣∣f (xf )∣∣n (14.15)

since all thexi in (14.12) are equal toxf .

Figure 14.1: Plot off (x) andf 2 (x) near the fixed pointxf (intersection with
y = x). Solid circles denote stable fixed points; empty circles unstable fixes
points.
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6. The structure of a subharmonic (period doubling) bifurcation is shown by
figure14.1. As a increases past the instability point ofxf the fixed point of
f , the pointxf becomes unstable. The slope off is near−1, and the slope
of f 2 is then near 1. The pointxf is also a fixed point off 2 and becomes
unstable at the same value ofa (panel b). Above the instability point the
slope off 2 at xf is greater than unity. To maintain the continuity of the
curvef 2 we must have two new fixed pointsx1, x2 that grow out ofxf , and
at these two points the slope off 2 is less than unity, i.e. they arestable
fixed points off 2. These two points arenot fixed points off , but since
f 2(x1) = f (f (x1)) we see that

x2 = f (x1)

x1 = f (x2)
(14.16)

i.e. x1 andx2 are the points of a period 2 orbit off .

7. On increasinga the two fixed points off 2 become unstable together, since[
f 2(x1)

]′ = f ′(x1)f
′(x2) =

[
f 2(x2)

]′
. (14.17)

8. If f has a maximum atx = 1
2, then forf (1

2) >
1
2 the functionf 2 has 3

stationary points, atx = 1
2, and at the two preimages ofx = 1

2 (i.e. the two
xp such thatf (xp) = 1

2. This follows from (14.12).
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