Chapter 13

Bifurcation Theory

The change in the qualitative character of a solution as a control parameter is
varied is known as #ifurcation This occurs where &anear stability analysis
yields an instability (characterized by a growth rateof a perturbation of the
base solution with Re = 0). The connection is through the “implicit function
theorem”—the solution can be continued smoothly except where the Jacobean is
singular. Typically a new solution develops at this point. For parameter values
near the bifurcation values the properties of the solutions are given by the method
of normal forms These are the ideas introduced in the present chapter.

13.1 Bifurcation from a steady solution

13.1.1 Linear analysis

Consider a set of ordinary differential equations (flow) for a vettaf variables
U= fU;r) (13.1)

with r a control parameter that we will vary. Suppdse= Uj is a steady state
solution

f(Uo;r)=0. (13.2)
Look for a linear instability asg changes i.e. study the dynamics of a small
perturbationSU linearizing about/y, U = Ug + U with
af®)

5U(i) = K,’j5U(j) and Kij = —— .
BUU)U:%

(13.3)



CHAPTER 13. BIFURCATION THEORY 2

Sincely is a time independent statk;; is a constant matrix, and its eigenvalues
oy (ordered so that Re; > Reo»...) give the growth rates of perturbations:

SU o< Y Age™ u'®, (13.4)
o

with A, a set of initial amplitudes. The® are the eigenvectors, and tell us the
character of the exponentially growing or decaying solutions.

Stability requiresall Reo < 0. Asr changes the onset of instability occurs
when Rerp = 0 atr = r. say. There are two possible classes of behavior that will
typically occur as the single control parametés changed, based on the fact that
the differential equations are real:

1. Asingle real eigenvalue passes through zero—this is the case of a “stationary
bifurcation”

2. A complex conjugate pair of eigenvalues passes through the imaginary axis
in the complexo plane—a Hopf bifurcation. In this case bngives an
oscillating component to the time dependence.

(Itis assumed that various special cases do not occur, e.g. that the eigenvalues
do not move up to the axis and then reverse without crossing—the assumption
of “transversality”. Such special cases might be engineered by carefully tuning
the equations, but will not in general be robust to small changes of the equations.
Similarly by varying two parameters, it may be possible to tune two unconnected
eigenvalues to cross the imaginary axis together. Or physical symmetries in the
problem may lead to degenerate eigenvalues. Such a degenerate bifurcation may
have interesting properties (for example in some cases it is possible to predict
nearby chaos), but will not be considered here. For a review see Crawjgrd [

Example: the Van der Pol oscillator. The equation for the Van der
Pol oscillator may be written

¥F—(r—xY)%+x=0, (13.5)
or in phase space coordinates

= v
v o= (r—xz)v—x

: (13.6)
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where a slightly different scaling of thevariable has been used than
in chapter 3(x — y~12x) andy is then rewritten ag. Clearly
x = 0, v = 0is a solution. Linearizing about this solution gives

§x = dv

S5v = rév—dx (13.7)
so that the Jacobean matrix is
0O 1
=0 1] aae)

and the eigenvalues (growth rates) érér +iv4— r2>. As r in-

creases, a complex pair of eigenvalues passes through the imaginary
axis—a Hopf bifurcation—when = r. = 0 with an imaginary part to

o (the oscillation frequency) equal to 1. The eigenvectorghrei),

so that forr near O the solutions is

( i ) = |:A1< 3' )e” —|—A2( ];i )e_”] /2 (13.9)

with A, = A7 for areal solution and thea, is a constant set by initial
conditions.

13.1.2 Nonlinear analysis

Forr > r. there is at least one exponentially growing solution to the linearized
equation {3.3. The long time solution of the full equations will clearly be affected
by nonlinearity. These may either saturate the growth, so that a new solution grows
continuously away from the bifurcation point, or may further enhance the growth,
taking the state far away from the initial one even/falose tor..

The behavior for ~ r.andU =~ Uy (i.e. “near the bifurcation point”) falls into
one of a few possibilities, determined by the symmetries of the equations and the
signs of a few coefficients. These possibilities are displayed bgdah®aal forms
essentially dynamical equations for the amplitudes of the unstable eigenvectors,
after suitable transformations, perhaps nonlinear, to put the equations into standard
forms. (Since the growth rates of the unstable eigenvectors are small near the
bifurcation pointthe dynamics of the amplitudessimvhere: these modes control
the evolution and other degrees of freedom follow adiabatically.) These normal
forms allow an important connection to be made betweeaxistencef solutions
and theirstability.
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Stationary bifurcation

There is a single growing eigenvector, with real amplitudg). In the linear
regimeX (r) o ¢°’: we want to extend the knowledge of the dynamics into the
nonlinear regime. The normal forms are (defining r —r. and then the equations
are valid for smalk):

1. Transcritical: The nonlinearity appears at the first possible ordei fe.

X =¢X — X° (13.10)

Note that this equation may be constructed on the principle of “what else
could it be?”. If we imagine being able to develop a formal expansion in
smalle and X for the effect of the nonlinearity on the growth &f for a
specific example, there is in general no reason to expect tfiedit® be a
term in X 2. For a particular unlucky choice of the equations, the coefficient
might happen to be zero, but this is not likely to be robust against a tiny
change of the parameters of the equation, and so will not typically occur.
If the coefficient is nonzero, by appropriately rescalXigwhich, as the
amplitude of a linear mode, we are free to do) we can set the coefficient to
unity. Certainly there will be higher order terms (e X2, £X?), but these

do not affect the behavior near enough to the bifurcation point.

Itis now easy to find the stationary solutions to this equation, and to evaluate
the stability of these solutions. The soluti&n= 0 is stable for < 0, and
becomes unstable fer> 0—this is the linear instability that we started with.

A second solutiorX = ¢ intersects this solution at = 0 and “exchanges
stability” i.e. is unstable for < 0 and stable foe > O (figure13.1, panel

a). (Note that time has been rescaled to make the coefficierX afity,

and the amplitudé& has been rescaled to make the coefficient ®inity.)

2. Pitchfork: If there is a symmetry in the equatiotis> —X the X2 nonlin-
earity must be absent. Typically the next order term is will be present

X =eX + X3 (13.11)

Again the coefficient of thé&'® term may be scaled to unity, but the physical
behavior depends on the sign.

(a) Supercritical (negative sign): the nonlinearity is saturating.cFer0
the solutionX = 0 is stable, and no other (real) solutions exist. For
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Figure 13.1: Normal forms for stationary bifurcations. Full lines are stable solu-
tions, dashed lines unstable solutions. The arrows show the evolutig( pat
fixed e. (@) transcritical; (b) supercritical pitch fork; (c) subcritical pitch fork; (d)
subcritical pitch fork with phenomenological quintic stabilizing terms. In (d) the
saddle-node bifurcations are denotedsby
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¢ > 0 theX = 0 solution becomes unstable. Two new solutions
developX = +¢1/2. A linear stability analysis abouhesesolutions
(X = /2 + 5X etc.) shows them to be stable, (panel b).

(b) Subcritical (positive sign): the nonlinear term is destabilizing. s~ar
0 theX = O solution is stable, but there are also two unstable solutions
X = (—¢)Y2, Fore > 0theX = 0 solution is unstable, and there
are no other solutions to the equatid3(11). A small perturbation to
X = 0 will grow to large values, where presumably further nonlinear
terms come in to saturate the growth in a way that is not controlled in
the perturbation expansion abeut 0, X = 0, (panel ¢). Crudely we
might anticipate the behavior to be qualitatively given by

X=eX+X3-gXx° (13.12)

as shown in panel d. However since the stable solution occufs-at

0 (1), there is no reason to expect a truncated power series expansion
to be adequate, unless other parameters ge.4) are small for some
reason.

3. Saddle node: The behavior in figure.1d displays a further type of station-
ary bifurcation where two new solutions form from no solution acreases.
This is expressed by the normal form

Y=58 —Y?

(whereY = X — X, ande = r — r,, with g, X the position of the “nose”

in figure 13.1d). This bifurcation does not correspond to the instability of
a pre-existing (i.e. af < 0) solution, but shows how new solutions can
develop “far away”.

Hopf bifurcation

The eigenvaluer = ¢ + iw (with ¢ = r — r. andw approximately constant
for r nearr,) is complex, and the conjugate’ is also an eigenvalue. Similarly
the eigenvector will be complex. Write the amplitude of the eigenvector with
eigenvaluer asZ = X +iY = |Z|¢'? (perhaps with nonlinear corrections).
There are two normal forms:
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(a) (b)

Figure 13.2: Normal forms for Hopf bifurcation: (a) supercritical; (b) subcritical.

1. Supercritical: the nonlinearity is saturating
Z=(+iw)Z—1+ib)|Z|?Z. (13.13)
Fore > 0theZ = 0 solution is unstable, and a new, stable solution develops

Z| = &'/?
b = w—be (13.14)
i.e. with amplitude that grows continuously &82 and with a frequency

that is the Hopf frequency with corrections linear ire. The motion in
these scaled coordinates is a circle, and the orbit is described as a limit cycle,
(figure13.2a). In fact it may be shown to all orders in perturbation theory
that the motion is conjugate to uniform rotation on a circle, i.e. after suitable
smooth transformations

2| = 121[orte) = X, ;) 121

. 13.15
b = wE+X;bieZIY (319

so that the qualitative nature of the new solution is not an artifact of the
truncation of the expansion.
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2. Subcritical: the nonlinearity is destabilizing
Z=(+iw)Z+A+ib)|Z]*Z. (13.16)

In this case an unstable limit cycle exists fok 0. Fore > 0 the solution
Z = Ois unstable to a growing limit cycle, but there is no saturated nonlinear
solution nearby, (panel b).

Example: continuing the example of the Van der Pol oscillator, we
have already derived the equation for the complex amplitude of the
unstable eigenvector (see equations 3.10 or 3.22 and equation 3.14).
For the scaling introduced iri 8.5 this reads (writingB = Ae'’ for
the full amplitude)

B= (£+i>B—}|B|ZB (13.17)
2 2

and is easily put into the standard form (with= r) by rescaling

the time variable. Note that in this case there is no correction to the

frequency at ordee (b = 0). Also in the general case it may be

necessary to perform a nonlinear transformation on the phase space

variables to define the “amplitudeZ so as to arrive at the canonical

form of the equation (e.g. motion on a circle rather than an ellipse)..

13.2 Bifurcation from a periodic solution

13.2.1 Linear analysis

This can be considered from two points of view: the bifurcation of a limit cycle
flow, or the bifurcation of a fixed point on the Poinea€ction map.
Considered as a flow, we have a base solution that is time-periodic

U = Uo(wot); Uo(¢ + 2m) = Up(¢) (13.18)

with period T = 27 /wo. The stability is given by &loquet analysiswhich
is analogous to (and predates) Bloch theory for the wave function in a periodic
potential in quantum mechanics: a solution is sought in the form

U = Ug(wot) + €' 8U (wot) (13.19)
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Figure 13.3: Instability of a periodic solution: (a) analysis of the flow showing
the behavior of the complex growth rateas the control parameter is varied; (b)
analysis of the map on the Poineaséction showing the dependence of complex
eigenvalue. as the control parameter is varied. Three possible types of instability
1 — 3 are shown.



CHAPTER 13. BIFURCATION THEORY 10

wheredU is periodic with thesameperiod as the base solutiéil/ (¢ + 27) =
3U(¢). The parametes is the stability parameter, with Regiving the growth

rate. Againw = Imo gives the oscillation frequency of the linear perturbation.
Now however, because the exponential multiplies a periodic function we can restrict
Im o to lie in the range

—% <Imo < % (13.20)

since a frequencw outside of this range can be folded into this range with a
redefinition ofs U

eia)t8U — ei(a)—na)o)t [eina)otaU] — ei(a)—na)o)tw (1321)

with §U another periodic function with periodi2wo.
There arghreepossible types of behavior (figule.3):

1. asingle real eigenvalue crosses the imaginary axis in the compane;
2. a complex pair of eigenvalues crosses the imaginary axis;

3. a single complex eigenvalue with bn= %a)o crosses the imaginary axis,
since nows ando * correspond to the same solution by the folding procedure.

Considered as a map on the Poimcagction of dimension — 1 for ann
dimensional phase space we have

Rus1 = F(Ry; 7). (13.22)

Stability of the fixed pointR; with Ry = F(Ry;r) is given by writingR =
Ry + 6R and then

. oF®
8Rn+l = K5Rn W|th Klj = m Rk (1323)
=Ry
The solution is
SR, = Z Ag u@ (L))" (13.24)
o

with 1@ the eigenvectors antl, the eigenvalues ok and A, amplitudes set

by initial conditions. Now the onset of instability corresponds to the larggst
passing through the unit circle. Again there are three possibilities for the way this
occurs (figurel3.J):
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1. areal. passes through the unit circle-at,;
2. a complex conjugate pair afpasses through the unit circle;
3. arealr passes through the unit circle-af.

The relationship between the two descriptions.is= ¢°” with T the base
period, and the correspondence of the three possible types of behavior should be
apparent.

13.2.2 Nonlinear analysis

In case (1) a single real eigenvalue is involved. A new periodic solution of the
same frequency develops at the bifurcation and there are the same possibilities for
the bifurcation behavior as for the stationary bifurcation of a fixed point.

In case (2), at the linear level oscillations at a new frequaency= Imo
develop. The nonlinear behavior however is complicated. It can be shown that an
invariant circle analogous to the growth of the limit cycle at a Hopf bifurcation,
develops continuously on the Poineaséction near the bifurcation point. An
invariant circle is one for which any point on the circle is mapped by the dynamics
to another point on the circle This corresponds to the formation of an invariant 2-
torus in the flow. However the behavior of the iterations on the circle, or flow on the
torus, is complicated because of the possibility of frequency locking between the
two frequenciesp andw;. This depends sensitively on whetlgr wg is a rational
or irrational, and, if irrational, how close the irrational ratio is to a rational one.
Also the order in the perturbation theory expansion at which locking is detected
depends on the order of the rationality, i.e. whether the rational is simple, such
as 12 (when the locking is easily captured in low order perturbation theory) or
complicated, such as 234. This phenomena was briefly studiedirapter 3and
will be investigated more deeply shapter 18

In case (3) the growing solution can be understood by strobing at the base
frequency (or equivalently looking at the Poinea€ction)

sU(nT) = eReonT (_qyn (13.25)

which is a growing perturbation that oscillates in sign. This means that we still have
a periodic orbit, but that the period has doubledpeaiod doublingbifurcation.
The normal form on the Poinaasection is (assuming a subcritical bifurcation)

Xpp1=—X, —eX, + X3 (13.26)
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so that
Xpio >~ X, + 28X, — 2X°. (13.27)

For e < O the only fixed point solution of the second iterati&p., = X, is
X = 0; fore > 0 a new (stable) fixed point of the second iteration develops with
X = %2 corresponding to the period doubled solution= (—1)"%/2.

13.3 Further Bifurcations

We could now imagine asking questions about the bifurcations of, say, a quasiperi-
odic solution formed from an irrationalp andw;. Being physicists, we might
imagine that the arguments can be repeated, so that successive bifurcations to states
with more and more irrational frequencies occur. (Bifurcations such as case 1 in
section13.2, may occur as well, but do not increase the complexity of the dy-
namics.) In early versions of Landau and Lifshitzlsiid Dynamicgext, this was
proposed as a schematic of the way in which the spatially and temporally disor-
dered flow of strongly driven fluids known as turbulence might develop. In fact
bifurcations of the invariant torus are much more subtle, and cannot be as simple
categorized. Many bifurcations of the quasiperiodic state are possible—for exam-
ple to chaos, to a frequency locked state, or to other quasiperiodic states. Various
aspects of this topic are taken up again in chapt8r49, 19, and20.
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