
Chapter 13

Bifurcation Theory

The change in the qualitative character of a solution as a control parameter is
varied is known as abifurcation. This occurs where alinear stability analysis
yields an instability (characterized by a growth rateσ of a perturbation of the
base solution with Reσ = 0). The connection is through the “implicit function
theorem”—the solution can be continued smoothly except where the Jacobean is
singular. Typically a new solution develops at this point. For parameter values
near the bifurcation values the properties of the solutions are given by the method
of normal forms. These are the ideas introduced in the present chapter.

13.1 Bifurcation from a steady solution

13.1.1 Linear analysis

Consider a set of ordinary differential equations (flow) for a vectorU of variables

U̇ = f (U ; r) (13.1)

with r a control parameter that we will vary. SupposeU = U0 is a steady state
solution

f (U0; r) = 0. (13.2)

Look for a linear instability asr changes i.e. study the dynamics of a small
perturbationδU linearizing aboutU0, U = U0+ δU with

δU̇ (i) = KijδU(j) and Kij = ∂f (i)

∂U(j)

∣∣∣∣
U=U0

. (13.3)
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SinceU0 is a time independent state,Kij is a constant matrix, and its eigenvalues
σα (ordered so that Reσ1 ≥ Reσ2 . . . ) give the growth rates of perturbations:

δU ∝
∑
α

Aαe
σαtu(α), (13.4)

with Aα a set of initial amplitudes. Theu(α) are the eigenvectors, and tell us the
character of the exponentially growing or decaying solutions.

Stability requiresall Reσ < 0. As r changes the onset of instability occurs
when Reσ1 = 0 atr = rc say. There are two possible classes of behavior that will
typically occur as the single control parameterr is changed, based on the fact that
the differential equations are real:

1. A single real eigenvalue passes through zero—this is the case of a “stationary
bifurcation”

2. A complex conjugate pair of eigenvalues passes through the imaginary axis
in the complexσ plane—a Hopf bifurcation. In this case Imσ gives an
oscillating component to the time dependence.

(It is assumed that various special cases do not occur, e.g. that the eigenvalues
do not move up to the axis and then reverse without crossing—the assumption
of “transversality”. Such special cases might be engineered by carefully tuning
the equations, but will not in general be robust to small changes of the equations.
Similarly by varying two parameters, it may be possible to tune two unconnected
eigenvalues to cross the imaginary axis together. Or physical symmetries in the
problem may lead to degenerate eigenvalues. Such a degenerate bifurcation may
have interesting properties (for example in some cases it is possible to predict
nearby chaos), but will not be considered here. For a review see Crawford [1].)

Example: the Van der Pol oscillator. The equation for the Van der
Pol oscillator may be written

ẍ − (r − x2) ẋ + x = 0, (13.5)

or in phase space coordinates

ẋ = v

v̇ = (
r − x2

)
v − x , (13.6)
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where a slightly different scaling of thex variable has been used than
in chapter 3(x → γ−1/2x) and γ is then rewritten asr. Clearly
x = 0, v = 0 is a solution. Linearizing about this solution gives

δẋ = δv

δv̇ = rδv − δx (13.7)

so that the Jacobean matrix is

K =
[

0 1
−1 r

]
(13.8)

and the eigenvalues (growth rates) are1
2

(
r ± i√4− r2

)
. As r in-

creases, a complex pair of eigenvalues passes through the imaginary
axis—a Hopf bifurcation—whenr = rc = 0 with an imaginary part to
σ (the oscillation frequency) equal to 1. The eigenvectors are(1,±i),
so that forr near 0 the solutions is(

x

v

)
=
[
A1

(
1
i

)
eit + A2

(
1
−i

)
e−it

]
ert/2 (13.9)

withA2 = A∗1 for a real solution and thenA1 is a constant set by initial
conditions.

13.1.2 Nonlinear analysis

For r > rc there is at least one exponentially growing solution to the linearized
equation (13.3). The long time solution of the full equations will clearly be affected
by nonlinearity. These may either saturate the growth, so that a new solution grows
continuously away from the bifurcation point, or may further enhance the growth,
taking the state far away from the initial one even forr close torc.

The behavior forr ' rc andU ' U0 (i.e. “near the bifurcation point”) falls into
one of a few possibilities, determined by the symmetries of the equations and the
signs of a few coefficients. These possibilities are displayed by thenormal forms,
essentially dynamical equations for the amplitudes of the unstable eigenvectors,
after suitable transformations, perhaps nonlinear, to put the equations into standard
forms. (Since the growth rates of the unstable eigenvectors are small near the
bifurcation point the dynamics of the amplitudes areslowhere: these modes control
the evolution and other degrees of freedom follow adiabatically.) These normal
forms allow an important connection to be made between theexistenceof solutions
and theirstability.
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Stationary bifurcation

There is a single growing eigenvector, with real amplitudeX(t). In the linear
regimeX(t) ∝ eσ t : we want to extend the knowledge of the dynamics into the
nonlinear regime. The normal forms are (definingε = r−rc and then the equations
are valid for smallε):

1. Transcritical: The nonlinearity appears at the first possible order, i.e.X2:

Ẋ = εX −X2. (13.10)

Note that this equation may be constructed on the principle of “what else
could it be?”. If we imagine being able to develop a formal expansion in
small ε andX for the effect of the nonlinearity on the growth ofX for a
specific example, there is in general no reason to expect therenot to be a
term inX2. For a particular unlucky choice of the equations, the coefficient
might happen to be zero, but this is not likely to be robust against a tiny
change of the parameters of the equation, and so will not typically occur.
If the coefficient is nonzero, by appropriately rescalingX (which, as the
amplitude of a linear mode, we are free to do) we can set the coefficient to
unity. Certainly there will be higher order terms (e.g.X3, εX2), but these
do not affect the behavior near enough to the bifurcation point.

It is now easy to find the stationary solutions to this equation, and to evaluate
the stability of these solutions. The solutionX = 0 is stable forε < 0, and
becomes unstable forε > 0—this is the linear instability that we started with.
A second solutionX = ε intersects this solution atε = 0 and “exchanges
stability” i.e. is unstable forε < 0 and stable forε > 0 (figure13.1, panel
a). (Note that time has been rescaled to make the coefficient ofεX unity,
and the amplitudeX has been rescaled to make the coefficient ofX2 unity.)

2. Pitchfork: If there is a symmetry in the equationsX→−X theX2 nonlin-
earity must be absent. Typically the next order term is will be present

Ẋ = εX ±X3. (13.11)

Again the coefficient of theX3 term may be scaled to unity, but the physical
behavior depends on the sign.

(a) Supercritical (negative sign): the nonlinearity is saturating. Forε < 0
the solutionX = 0 is stable, and no other (real) solutions exist. For
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Figure 13.1: Normal forms for stationary bifurcations. Full lines are stable solu-
tions, dashed lines unstable solutions. The arrows show the evolution ofX(t) at
fixed ε. (a) transcritical; (b) supercritical pitch fork; (c) subcritical pitch fork; (d)
subcritical pitch fork with phenomenological quintic stabilizing terms. In (d) the
saddle-node bifurcations are denoted bys.
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ε > 0 theX = 0 solution becomes unstable. Two new solutions
developX = ±ε1/2. A linear stability analysis aboutthesesolutions
(X = ε1/2+ δX etc.) shows them to be stable, (panel b).

(b) Subcritical (positive sign): the nonlinear term is destabilizing. Forε <

0 theX = 0 solution is stable, but there are also two unstable solutions
X = (−ε)1/2. For ε > 0 theX = 0 solution is unstable, and there
are no other solutions to the equation (13.11). A small perturbation to
X = 0 will grow to large values, where presumably further nonlinear
terms come in to saturate the growth in a way that is not controlled in
the perturbation expansion aboutε = 0, X = 0, (panel c). Crudely we
might anticipate the behavior to be qualitatively given by

Ẋ = εX +X3− gX5 (13.12)

as shown in panel d. However since the stable solution occurs atX =
O(1), there is no reason to expect a truncated power series expansion
to be adequate, unless other parameters (e.g.g−1) are small for some
reason.

3. Saddle node: The behavior in figure13.1d displays a further type of station-
ary bifurcation where two new solutions form from no solution asr increases.
This is expressed by the normal form

Ẏ = ε̄ − Y 2

(whereY = X − Xs andε̄ = r − rs , with rs, Xs the position of the “nose”
in figure13.1d). This bifurcation does not correspond to the instability of
a pre-existing (i.e. at̄ε < 0) solution, but shows how new solutions can
develop “far away”.

Hopf bifurcation

The eigenvalueσ = ε + iω (with ε = r − rc andω approximately constant
for r nearrc) is complex, and the conjugateσ ∗ is also an eigenvalue. Similarly
the eigenvector will be complex. Write the amplitude of the eigenvector with
eigenvalueσ asZ = X + iY = |Z| eiφ (perhaps with nonlinear corrections).
There are two normal forms:
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Figure 13.2: Normal forms for Hopf bifurcation: (a) supercritical; (b) subcritical.

1. Supercritical: the nonlinearity is saturating

Ż = (ε + iω)Z − (1+ ib) |Z|2Z. (13.13)

Forε > 0 theZ = 0 solution is unstable, and a new, stable solution develops

|Z| = ε1/2

φ̇ = ω − bε , (13.14)

i.e. with amplitude that grows continuously asε1/2 and with a frequency
that is the Hopf frequencyω with corrections linear inε. The motion in
these scaled coordinates is a circle, and the orbit is described as a limit cycle,
(figure13.2a). In fact it may be shown to all orders in perturbation theory
that the motion is conjugate to uniform rotation on a circle, i.e. after suitable
smooth transformations∣∣Ż∣∣ = |Z| [σR(ε)−∑j aj (ε) |Z|2j

]
φ̇ = ω(ε)+∑j bj (ε) |Z|2j

. (13.15)

so that the qualitative nature of the new solution is not an artifact of the
truncation of the expansion.
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2. Subcritical: the nonlinearity is destabilizing

Ż = (ε + iω)Z + (1+ ib) |Z|2Z. (13.16)

In this case an unstable limit cycle exists forε < 0. Forε > 0 the solution
Z = 0 is unstable to a growing limit cycle, but there is no saturated nonlinear
solution nearby, (panel b).

Example: continuing the example of the Van der Pol oscillator, we
have already derived the equation for the complex amplitude of the
unstable eigenvector (see equations 3.10 or 3.22 and equation 3.14).
For the scaling introduced in (13.5) this reads (writingB = Aeit for
the full amplitude)

Ḃ =
( r

2
+ i
)
B − 1

2
|B|2B (13.17)

and is easily put into the standard form (withε = r) by rescaling
the time variable. Note that in this case there is no correction to the
frequency at orderε (b = 0). Also in the general case it may be
necessary to perform a nonlinear transformation on the phase space
variables to define the “amplitude”Z so as to arrive at the canonical
form of the equation (e.g. motion on a circle rather than an ellipse)..

13.2 Bifurcation from a periodic solution

13.2.1 Linear analysis

This can be considered from two points of view: the bifurcation of a limit cycle
flow, or the bifurcation of a fixed point on the Poincar´e section map.

Considered as a flow, we have a base solution that is time-periodic

U = U0(ω0t); U0(φ + 2π) = U0(φ) (13.18)

with periodT = 2π/ω0. The stability is given by aFloquet analysis, which
is analogous to (and predates) Bloch theory for the wave function in a periodic
potential in quantum mechanics: a solution is sought in the form

U = U0(ω0t)+ eσ t δU(ω0t) (13.19)
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Figure 13.3: Instability of a periodic solution: (a) analysis of the flow showing
the behavior of the complex growth rateσ as the control parameter is varied; (b)
analysis of the map on the Poincar´e section showing the dependence of complex
eigenvalueλ as the control parameter is varied. Three possible types of instability
1− 3 are shown.
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whereδU is periodic with thesameperiod as the base solutionδU(φ + 2π) =
δU(φ). The parameterσ is the stability parameter, with Reσ giving the growth
rate. Againω = Im σ gives the oscillation frequency of the linear perturbation.
Now however, because the exponential multiplies a periodic function we can restrict
Im σ to lie in the range

−ω0

2
< Im σ ≤ ω0

2
(13.20)

since a frequencyω outside of this range can be folded into this range with a
redefinition ofδU

eiωtδU = ei(ω−nω0)t
[
einω0t δU

] = ei(ω−nω0)t δU (13.21)

with δU another periodic function with period 2π/ω0.
There arethreepossible types of behavior (figure13.3a):

1. a single real eigenvalue crosses the imaginary axis in the complexσ plane;

2. a complex pair of eigenvalues crosses the imaginary axis;

3. a single complex eigenvalue with Imσ = 1
2ω0 crosses the imaginary axis,

since nowσ andσ ∗ correspond to the same solution by the folding procedure.

Considered as a map on the Poincar´e section of dimensionn − 1 for ann
dimensional phase space we have

Rn+1 = F(Rn; r). (13.22)

Stability of the fixed pointRf with Rf = F(Rf ; r) is given by writingR =
Rf + δR and then

δRn+1 = KδRn with Kij = ∂F (i)

∂R(j)

∣∣∣∣
R=Rf

. (13.23)

The solution is

δRn =
∑
α

Aα u
(α) (λα)

n (13.24)

with u(α) the eigenvectors andλα the eigenvalues ofK andAα amplitudes set
by initial conditions. Now the onset of instability corresponds to the largest|λα|
passing through the unit circle. Again there are three possibilities for the way this
occurs (figure13.3b):
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1. a realλ passes through the unit circle at+1;
2. a complex conjugate pair ofλ passes through the unit circle;

3. a realλ passes through the unit circle at−1.

The relationship between the two descriptions isλ = eσT with T the base
period, and the correspondence of the three possible types of behavior should be
apparent.

13.2.2 Nonlinear analysis

In case (1) a single real eigenvalue is involved. A new periodic solution of the
same frequency develops at the bifurcation and there are the same possibilities for
the bifurcation behavior as for the stationary bifurcation of a fixed point.

In case (2), at the linear level oscillations at a new frequencyω1 = Im σ

develop. The nonlinear behavior however is complicated. It can be shown that an
invariant circleanalogous to the growth of the limit cycle at a Hopf bifurcation,
develops continuously on the Poincar´e section near the bifurcation point. An
invariant circle is one for which any point on the circle is mapped by the dynamics
to another point on the circle This corresponds to the formation of an invariant 2-
torus in the flow. However the behavior of the iterations on the circle, or flow on the
torus, is complicated because of the possibility of frequency locking between the
two frequenciesω0 andω1. This depends sensitively on whetherω1/ω0 is a rational
or irrational, and, if irrational, how close the irrational ratio is to a rational one.
Also the order in the perturbation theory expansion at which locking is detected
depends on the order of the rationality, i.e. whether the rational is simple, such
as 1/2 (when the locking is easily captured in low order perturbation theory) or
complicated, such as 21/34. This phenomena was briefly studied inchapter 3, and
will be investigated more deeply inchapter 18.

In case (3) the growing solution can be understood by strobing at the base
frequency (or equivalently looking at the Poincar´e section)

δU(nT ) = e(Reσ)nT (−1)n (13.25)

which is a growing perturbation that oscillates in sign. This means that we still have
a periodic orbit, but that the period has doubled—aperiod doublingbifurcation.
The normal form on the Poincar´e section is (assuming a subcritical bifurcation)

Xn+1 = −Xn − εXn +X3
n (13.26)
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so that

Xn+2 ' Xn + 2εXn − 2X3
n. (13.27)

For ε < 0 the only fixed point solution of the second iterationXn+2 = Xn is
X = 0; for ε > 0 a new (stable) fixed point of the second iteration develops with
X = ε1/2 corresponding to the period doubled solutionXn = (−1)nε1/2.

13.3 Further Bifurcations

We could now imagine asking questions about the bifurcations of, say, a quasiperi-
odic solution formed from an irrationalω0 andω1. Being physicists, we might
imagine that the arguments can be repeated, so that successive bifurcations to states
with more and more irrational frequencies occur. (Bifurcations such as case 1 in
section13.2, may occur as well, but do not increase the complexity of the dy-
namics.) In early versions of Landau and Lifshitz’sFluid Dynamicstext, this was
proposed as a schematic of the way in which the spatially and temporally disor-
dered flow of strongly driven fluids known as turbulence might develop. In fact
bifurcations of the invariant torus are much more subtle, and cannot be as simple
categorized. Many bifurcations of the quasiperiodic state are possible—for exam-
ple to chaos, to a frequency locked state, or to other quasiperiodic states. Various
aspects of this topic are taken up again in chapters18, 19, 19, and20.
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