Chapter 10

Singular Measures andf («)

10.1 Definition

Another approach to characterizing the complexity of chaotic attractors is through
the singularities of the measurédemonstration lillustrates the occurrence of
singularities in the measure of the quadratic map. In factafoe 4 we can
calculate the measure analytically

1
pl) = w/x (1 —x)

and we see that the measure shaw¥/? singularities at the endpoints. For other
values ofa, or other chaotic attractors, the distribution of singularities is more
complicated. The measure can in fact be characterized in terms of intertwined
fractals with different measure singularities.

Consider a covering of the attractor withtbox sizel. Different regions of the
attractor may lead to different singularities in the measure so for samechave
the measure associated with the box

pi ~ 1% (10.2)

(10.1)

wherew; is the exponent given the singularity. In terms of the ideas of the
previous chapteg; is the pointwise dimension at the point on the attractor on
which the boxes are centered. Points with the scaljngay occur on a fractal set,
i.e. on a set of nonintegral dimension which we will cAllx;) so that the number

of boxes with the measui& will vary as

N (o) ~ 17/ @D, (10.3)
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The functionf («) is used to characterize the attractgito) is the dimension of
the set of points with pointwise dimensian

For the quadratic map with = 4 we have the two endpoints (dimension 0)
where the measure associated with a bex ) x~Y/2dx ~ 11/2 and the interval
0 < x < 1 (dimension 1) where the measure associated with d x 1. In
this case we have

o

r) = (10.4)

Y

|
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10.2 Relationship toD,

In the box counting definition of the generalized dimension (seechapter )
the boxes are weighted with the factpf with p the measure associated with
the box. The scaling of the measure with decreasing box size at each point is
given by the pointwise dimension. Thus largesitiveg tends to weight those
points with large pointwise dimension (often visited, sometimes known as the “hot
spots” of the attractor), and largegativeg weights the points with low pointwise
dimension (rarely visited, or “cold spots”). Sing€x) is the dimension of points
with pointwise dimensiowr, for attractors with smoot, and f («) an approach
called the “thermodynamic formalism” allows us to relate these two functions: the
two functions contain the same information about the attractor.

We will assume, more typically than the special case of the quadratic map at
a = 4, that there is a continuous range of exponentgth a weightw («) so that
for a box sizd we can estimate

d_pi~ f dorw(a) I~/@ 9% = / dow(a)e'®9Mlae= /@], (10.5)
i

where in the first integrdl gives the scaling of the measure with the box size at
some point on the attractdr,/ ) gives the dimension of the set of points scaling
in this way andw(«) is a smooth weight function. Now we use the method of
steepest descents to evaluate the integral:-as0, logl — —oo, and for smooth
w(w) the integral will be dominated by the value @imaximizing the exponent,
ie.

q = f'(a) (10.6)
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(together withf”(«) < 0). This tells us that each value gffor the generalized
dimension picks out a particular measure singularityiven by this relationship.
Using this maximum value now gives the estimate

3 i~ eloullaa=r@), (10.7)

1

where we use the value gfgiven by equatiori0.6 so that the dimension is given
by

1
Dy = ——[qa(q) — f(a(g))] (10.8)
qg—1

wherea(q) is the solution to 10.6).
These relationships can be inverted to gf“@) knowing D,: differentiating
we find

d
o = 4 [(¢ —1) D] (10.9)

and then
fl@)=—=(@q —1) Dy +qa. (10.10)
A typical f(«) curve has the following properties:

e Convex: f” < 0;
e A maximum given byf’(«) = 0 corresponding tg = 0 and f (&) = Do;

e Thevalugg = 1 givesf(x) = o and f' (@) = 1, corresponding to the result
that the set of points on the attractor that make up most of the measure have
dimensionD1 and the pointwise dimension at these points is &gp

e |g| — oo picks out the regions where the measure is most concentrated
(g > 0) or least concentrated (< 0). Here|f/(a)\ — 00, D; = o and
usually f(«) — 0 corresponding to a single point, i.e. the intersections of
the f(«) curve with thef = 0 axis givesD .

This leads to the expectation for typicAler) shown in figurelO. 1
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f(a)

D,

g=—c0

Figure 10.1: A typicalf («)

There are formal analogies between the transformalign- f(«) and the
Legendre transformation between thermodynamic potentialsS€r). — F(T),
hence the description “thermodynamic formalism”. For example we have

1 1 q .
D — —Iim o (_MMMO’ /d Fle)log(1/1)
1 1-0q — 1log(1/1) gXi: ¢ Xi:% xe

(10.11)
c.f. for the free energy as a function of inverse temperature in statistical physics
; 11 —E\B S(E)
Fﬂ:—NlinoogﬁlogXi:(e ) , Zi:—>/dEe (10.12)

displaying the analogy through the translatiéng) <> D,, E/N <> «,S(E) /N <
f(a), B < q,N < log(q/]).
10.3 A simple multifractal

A simple example of a multifractal is given by the “two scale factor Cantor set”,
a generalization of the construction of the one-third Cantor§etAt first sight
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this seems an artificial construction. However sets generated by chaotic dynam-
ics appear to show similar features, and looking at this set, although involving
rather tedious algebra, provides useful insights into the significance of generalized
dimensions and («). In addition the attractor for the bakers’ map, which incor-
porates in a very simple way the “stretching and folding” that underlies chaotic
dynamics, has exactly this structure. Thus studying the simple construction gives
us many insights into what types of structure might occur in chaotic attractors.

Consider again successive divisions of the unit line, but now into unequal
fractions/; andl,. Also suppose a dynamics in which each segment is visited with
the probability weightg, and p2 (figure 10.2).

P, P,
2 2
o, 1, E
—2 — — >
pl p1p2 lp 2 pZ
3 2 2 2 2 3
|-l _/lllz\_ Iiz |1|_2 _/|1|2\_ i
3% 2 A 2 2 ™ 2 3
1 p1p2 plpz plpz p1p2 p2

Figure 10.2: Construction of a multifractal

At the nth division level there ar€), = S — copies of thenth size
m!(n —m)!

1715~ weighted with probabilityp?’ p5~".

One feature of this set is that a chosen property is often completely dominated
by a particular region of the set, identified by some fixed value of asn — oo,
and this is exploited in the analysis below. For example the measure associated
with a particular length elemeny,, = [7';7" is

Win = Cy, p1'p5 ™. (10.13)
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Now take logs and use Stirling’s formula for factorials Mg~ x logx — x giving

logC;, ~ —n [(1 — %) log (1 — %) + % log %] (10.14)
so that
log Wy, >~ n [— (1— %) Iog(l— %) — %Iog% +%Iogp1+ (1— %) |ng2].
(10.15)

Expanding about the maximum at/n = p1 keeping terms to quadratic order
gives

2
nm/n = py) } . (10.16)

Wonn =~ exp[— 2p1p2

ThusW,,,, becomes a sharply peaked Gaussian functien/afcentered aroung;

with a width that goes to zero as— oo, i.e. the measure is completely dominated
by a narrow region of the set. (To get the correct normalization prefactor to the
Gaussian we would need to take Stirling’s formula to higher order.)

Calculation of f ()

At the nth level an interval of sizé = [{'15™" is weighted by a probability =
pTp, ™. The quantity is defined by the singular dependence of the probability
on interval sizep ~ [*, so that taking logs

_logp1+ (5, — Dlog p2

10.17
log/1 + (;; — D) loglz (10.17)

The parametes gives us the singularity in the measurelas- 0. There is
a spectrum of such singularities. The quantftygives the dimension of the set
experiencing the singularity. Then the number of intervals with the singularity
grows ad—/:

cr o~ (! (10.18)

to yield

o 2 —1)log(Z —1) — (£)log(%)
- logly + (% — 1) loglz

(10.19)
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Equations {0.17 and (L0.19 give an implicit relationshipf («) (eliminate?").
Notice again that a particular value@fitcharacterizing the singularity of the mea-
sure picks out a region of the set labelled/byn, and this region has a fractal
dimensionf given by (L0.19.

Calculation of D,

The calculation oD, is a little more complicated, since we must use the partition
function formalism. Form the “partition function” at theth level

r™ —r(q,z,I0") = Z pi _Z{ C pa pU = m)r}
intervals i
(10.20)

wherel is the larger of; and/, so that/” is the largest interval at theth level.
Notice thatfrom the binomial expansidi® is just{ ¥]" so that the condition that
I'(¢, T, ") neither diverge nor goto zeros— 0issimplyI'® =T'(¢, 7,1) = 1.

For largen we expect the largest term in the sum #0(20 to dominate the
sum. This can be calculated througltog{}/dm = 0 where{} is one of the terms
in the sum, and again using Stirling’s formula to evalu@fg to give an implicit
equation fomn /n for each(z, ¢), which we write as

log(Z — 1) + g log(&
o 9(; — D +qlog() (10.21)
log()

We then evaluaté ™ as its largest term, and = t(q) is given by requiring
r™ = (r®)" =1,ie. log} = 0. This gives an expression that can be simplified
to

log(£) log(%) — log(% — 1) logly
log p1loglz — log p2logiy

Equations {0.2]) and (L0.229 give an implicit equation fot (¢) (again by elimi-
nating,-) and hencé, = t(¢q)/(g — 1). This calculation ofD, shows again how
a particular value ofz/n is singled out by the choice qf.

It is now straightforward to use/m as an implicit parameter to plgt(«) and
D,. This is done for the example @ = 3/5, p» = 2/5,11 = 1/4,1, = 2/5in
figure (L0.3. For interest the values of /n contributing to eacly and« is shown
in figure (10.4).

q= (10.22)
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A direct expression foD, is simply to use the result(q, ,/) = 1, i.e.
Pl PPy g OPe (10.23)

However this must be solved numerically.

10.3.1 Other dimensions

The casé; = [o = [ is particularly simple, since then at each level of construction

all the line elements have the same length, and simple box counting arguments are
easy to apply. This lets us easily study some of the other dimensions introduced in
chapter 9 In particular using the expressionh(d( 19 for the total measure associ-
ated with theC)! elements at level of the construction labelled by the indexand

each containing measupd’' p;~" we see that for large essentiallyall measure

is associated with values of /n veryclose top1. Then the following results are
easily proven:

1. The information density given by box-counting with boxes of $fzis

Dy= lim_ Zm: W IN(PT pa~™)/In1 (10.24)

and since the width o#,,, is so narrow about:/n = p; we can take
the second factor evaluated at this value out of the sum to give directly

D1 = In(py*py»)/1ogl = (p1In p1+ p2In p2)/Inl.
2. The pointwise dimension at an element characterized by the indexs

Dp(m/n) = lim Inpf'p5~"/Ini". (10.25)
n—oo

Again, because almost all the measure isiign = p; this givesDp = Dq
for almost all points in the set.

3. The number of boxes with index/n is CJ}, given by (L0.14. To make up a
measure fractiofi # 1 we need some small spreadwofn aboutp,, but the
spread goes to zero for largeand this leads to terms that do not contribute
to the capacity. Thus using .19

D £ 1) = n[(l—%)Iog(l—%>+%log%]/lnl"

m/n=p1

(10.26)
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which is again jusiD;. (Note that neaits maximumcC,, can be written in
Gaussian form analogous tbQ. 19 for W,,,,

2
cr o~ exp|:—2n (% _ %) } (10.27)

butfor (10.29 we need to evaluat€’}, in the tails far away from its maximum
where the Gaussian expression is not valid.)

10.4 The Bakers’Map

From the constructionchapter % it is apparent that the bakers’ map yields a set
that is the full interval in they direction and exactly given by the two scale factor
Cantor setin the direction, withp; = «, p2 = 1—«, 11 = A, andlo = A,. Since
the attractor is uniform in thedirection, the dimensions are given by = 1+ D,
with D, the dimensions of the intersection of the set with a horizontal line. Using
(10.23 gives the transcendental equation for the generalized dimensions

a3\ TPy g PP g (10.28)

This equation can be arrived at directly by considering the covering of the two
portions of the set¢ =0 < x < A, andb =1— ), < x < 1) separately and the
scaling given by iterating the map. Consider a covering of the intersection of the
set with thex axis by line elements at scate and the mapping of this coverage
after one iteration. The mapping will give a covering of portiowith scalex,e
with the measurepg; associated with each box multiplied byand portiorb with
scaler,e with measures multiplied bg. DefineS = ) p?. Then

S(e) = a98,(hqe) + BIS,(hpe). (10.29)
But S scales as
S(g) ~ g@=DDq (10.30)

and substituting this intalQ.29 then reproducesl.29.
The capacity of the sddg = 1+ Dg is given by

3o 43P0 — g, (10.31)
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and by expanding in smajl — 1 the information density is

aIn(1/a) + BIn(1/B)
aIn(l/x,) + BIN(1/Ap)

For generah, andi, (10.29 has to be solved numerically. Fa; = 1, the
dimension is simply

Dy =

(10.32)

1 log(a?+ BY)

D,=1
1 Jrq—l log Aa

(10.33)

The iteration of the bakers’ map is performeddemonstration 2

February 8, 2000
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Figure 10.3: Plot off (o) and D, for p1 = 3/5, p» = 2/5, 11 = 1/4, [ = 2/5.



CHAPTER 10. SINGULAR MEASURES AND F(a) 12

Figure 10.4: Value oz /n contributing for eacly or « for p; = 3/5, p2 = 2/5,
I1=1/4, 1, = 2/5.
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