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Today’s Lecture: Instability in Systems far from Equilibrium

Outline

• Closed and open systems

• Bénard’s experiment and Rayleigh’s theory

• Taylor-Couette instability

• Turing’s paper on morphogenesis

• General remarks on pattern forming instabilities



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 3

Heat Death of the Universe (from Wikepedia)

Heat death is a possible final state of the universe, in which it has “run

down” to a state of no free energy to sustain motion or life. In physical

terms, it has reached maximum entropy.

Origins of the idea

The idea of heat death stems from the second law of thermodynamics,

which claims that entropy tends to increase in an isolated system.

If the universe lasts for a sufficient time, it will asymptotically approach a

state where all energy is evenly distributed. Hermann von Helmholtz is

thought to be the first to propose the idea of heat death in 1854, 11 years

before Clausius’s definitive formulation of the Second law of

thermodynamics in terms of entropy (1865).
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An Open System
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Pattern Formation

The spontaneous formation of spatial structure in

open systems driven far from equilibrium
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Equilibrium - Far From Equilibrium
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Origins

1900 Bénard’s experiments on convection in a dish of fluid heated from

below and with a free surface

1916 Rayleigh’s theory explaining the formation of convection rolls and

cells in a layer of fluid with rigid top and bottom plates and heated

from below

1923 Taylor’s experiment and theory on the instability of a fluid between

an inner rotating cylinder and a fixed outer one

1952 Turing’s suggestion that instabilities in chemical reaction and

diffusion equations might explain morphogenesis

1950s-60sBelousov and Zhabotinskii work on chemical reactions

showing oscillations and waves
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Bénard’s Experiments

(Reproduced byCarsten Jäger)

Movie

http://www.physiology.rwth-aachen.de/user/jaeger/index_e.html
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Rayleigh’s Description of Bénard’s Experiments
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Rayleigh’s Description of Bénard’s Experiments

• The layer rapidly resolves itself into a number ofcells, the motion

being an ascension in the middle of the cell and a descension at the

common boundary between a cell and its neighbours.
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Rayleigh’s Description of Bénard’s Experiments

• The layer rapidly resolves itself into a number ofcells, the motion

being an ascension in the middle of the cell and a descension at the

common boundary between a cell and its neighbours.

• Two phases are distinguished, of unequal duration, the first being

relatively short. The limit of the first phase is described as the

“semi-regular cellular regime”; in this state all the cells have already

acquired surfacesnearly identical, their forms being nearly regular

convex polygons of, in general, 4 to 7 sides. The boundaries are

vertical….
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Rayleigh’s Description of Bénard’s Experiments

• The layer rapidly resolves itself into a number ofcells, the motion

being an ascension in the middle of the cell and a descension at the

common boundary between a cell and its neighbours.

• Two phases are distinguished, of unequal duration, the first being

relatively short. The limit of the first phase is described as the

“semi-regular cellular regime”; in this state all the cells have already

acquired surfacesnearly identical, their forms being nearly regular

convex polygons of, in general, 4 to 7 sides. The boundaries are

vertical….

• The second phase has for its limit a permanent regime of regular

hexagons.… It is extremely protracted, if the limit is regarded as the

complete attainment of regular hexagons. The tendency, however,

seems sufficiently established.
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Ideal Hexagonal Pattern

From the website ofMichael Schatz

http://www.physics.gatech.edu/schatz/control/benard.html


Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 11

Rayleigh’s Simplifications

• The calculations which follow are based upon equations given by

Boussinesq, who has applied them to one or two particular problems.

The special limitation which characterizes them is theneglect of

variations of density, except in so far as they modify the actions of

gravity.
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Rayleigh’s Simplifications

• The calculations which follow are based upon equations given by

Boussinesq, who has applied them to one or two particular problems.

The special limitation which characterizes them is the neglect of

variations of density,except in so far as they modify the actions of

gravity.

• In the present problem the case is much more complicated, unless we

arbitrarily limit it to two dimensions. The cells of Bénard are then

reduced to infinitely long strips, and when there is instability we may

ask for what wavelength (width of strip) the instability is greatest.
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Rayleigh’s Simplifications

• The calculations which follow are based upon equations given by

Boussinesq, who has applied them to one or two particular problems.

The special limitation which characterizes them is the neglect of

variations of density,except in so far as they modify the actions of

gravity.

• In the present problem the case is much more complicated, unless we

arbitrarily limit it to two dimensions. The cells of Bénard are then

reduced to infinitely long strips, and when there is instability we may

ask for what wavelength (width of strip) the instability is greatest.

• …and we have to consider boundary conditions. Those have been

chosen which aresimplest from the mathematical point of view, and

they deviate from those obtaining in Bénard’s experiment, where,

indeed, the conditions are different at the two boundaries.
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Rayleigh’s Simplifications

• The calculations which follow are based upon equations given by

Boussinesq, who has applied them to one or two particular problems.

The special limitation which characterizes them is the neglect of

variations of density,except in so far as they modify the actions of

gravity.

• In the present problem the case is much more complicated, unless we

arbitrarily limit it to two dimensions. The cells of Bénard are then

reduced to infinitely long strips, and when there is instability we may

ask for what wavelength (width of strip) the instability is greatest.

• …and we have to consider boundary conditions. Those have been

chosen which are simplest from the mathematical point of view, and

they deviate from those obtaining in Bénard’s experiment, where,

indeed, the conditions are different at the two boundaries.
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Rayleigh and his Solution
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Schematic of Instability

Fluid

Rigid plate

Rigid plate
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Schematic of Instability

Fluid

Rigid plate

Rigid plate
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Schematic of Instability

HOT

COLD
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Schematic of Instability
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Schematic of Instability

HOT

COLD
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Equations for Fluid and Heat Flow

Mass conservation (LL1.2)

∂ρ

∂t
+ ∇ · g = 0 with g = ρv

Momentum conservation (LL15.1)

∂(ρv)

∂t
+ ∇ · 5 + ρgẑ = 0 or

∂(ρvi )

∂t
+ ∇ j 5i j − ρgδi z = 0

with (LL15.3)

5i j = pδi j + ρvi v j − η

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)
− ζ δi j

∂vi

∂xi

Entropy production (LL49.5-6)

∂(ρs)

∂t
+ ∇ · (ρsv− K

T
∇T) = K (∇T)2

T2
+ η

2T

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)2

+ ζ

T

(
∂vi

∂xi

)2
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Buoyancy Force

• Assume density is just a function of the temperature, and expand

about reference temperatureT0

ρ = ρ0[1 − α(T − T0)]
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Buoyancy Force

• Assume density is just a function of the temperature, and expand

about reference temperatureT0

ρ = ρ0[1 − α(T − T0)]

• Momentum equation becomes

∂(ρv)

∂t
+ ∇ · 5̄ − ρ0αg(T − T0)ẑ = 0

with 5̄ as before except for a redefined pressurep̄ = p + ρ0gz
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Buoyancy Force

• Assume density is just a function of the temperature, and expand

about reference temperatureT0

ρ = ρ0[1 − α(T − T0)]

• Momentum equation becomes

∂(ρv)

∂t
+ ∇ · 5̄ − ρ0αg(T − T0)ẑ = 0

with 5̄ as before except for a redefined pressurep̄ = p + ρ0gz

• After finding the buoyancy force we assume the fluid is

incompressible.
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Buoyancy Force

• Assume density is just a function of the temperature, and expand

about reference temperatureT0

ρ = ρ0[1 − α(T − T0)]

• Momentum equation becomes

∂(ρv)

∂t
+ ∇ · 5̄ − ρ0αg(T − T0)ẑ = 0

with 5̄ as before except for a redefined pressurep̄ = p + ρ0gz

• After finding the buoyancy force we assume the fluid is

incompressible.

• Also approximate specific heat, viscosity, thermal conductivity as

constants(independent of temperature)
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Boussinesq Equations

Mass conservation
∂ρ

∂t
+ ∇ · g = 0 with g = ρv
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Boussinesq Equations

Mass conservation
∂ρ

∂t
+ ∇ · g = 0 with g = ρv

∇ · v = 0
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Boussinesq Equations
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∇ · v = 0
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with
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∂vi

∂xj
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∂xi
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3
δi j

∂vi

∂xi

)
− ζ δi j
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Boussinesq Equations

Mass conservation
∂ρ

∂t
+ ∇ · g = 0 with g = ρv

∇ · v = 0

Momentum conservation

∂(ρv)

∂t
+ ∇ · 5 − ρ0αg(T − T0)ẑ = 0 or

∂(ρvi )

∂t
+ ∇ j 5i j − ρ0αg(T − T0)δi z = 0

with

5i j = p̄δi j + ρvi v j − η

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)
− ζ δi j

∂vi

∂xi

∂v
∂t

+ v · ∇v = −∇( p̄/ρ0) + ρ0αg(T − T0)ẑ + ν∇2v with ν = η/ρ0
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Entropy production

∂(ρs)

∂t
+ ∇ · (ρsv− K

T
∇T) = K (∇T)2

T2
+ η

2T

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)2

+ ζ

T

(
∂vi

∂xi

)2
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Entropy production

∂(ρs)

∂t
+ ∇ · (ρsv− K

T
∇T) = K (∇T)2

T2
+ η

2T

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)2

+ ζ

T

(
∂vi

∂xi

)2

∂T

∂t
+ v · ∇T = κ∇2T with ds → CdT andκ = K/C
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Boussinesq Equations

Mass conservation (incompressibility)

∇ · v = 0

Momentum conservation

∂v
∂t

+ v · ∇v = −∇( p̄/ρ0) + αg(T − T0)ẑ + ν∇2v with ν = η/ρ0

Entropy production/heat flow

∂T

∂t
+ v · ∇T = κ∇2T with ds → CdT andκ = K/C
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Boussinesq Equations

Mass conservation (incompressibility)

∇ · v = 0

Momentum conservation

∂v
∂t

+ v · ∇v = −∇( p̄/ρ0) + αg(T − T0)ẑ + ν∇2v with ν = η/ρ0

Entropy production/heat flow

∂T

∂t
+ v · ∇T = κ∇2T with ds → CdT andκ = K/C

Conducting solution (v = 0)

Tcond = T0 − 1T z/d

p̄cond = p0 − αgρ01T z2/2d
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Lesson from Fluid Mechanics: Dedimensionalize

x′ = x/d

t ′ = t/(d2/κ)

v′ = v/(κ/d)

θ ′ = (T − Tcond)/(κν/αgd3)

p′ = ( p̄ − p̄cond)/(ρ0κν/d2)
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Lesson from Fluid Mechanics: Dedimensionalize

x′ = x/d

t ′ = t/(d2/κ)

v′ = v/(κ/d)

θ ′ = (T − Tcond)/(κν/αgd3)

p′ = ( p̄ − p̄cond)/(ρ0κν/d2)

Note that

v · ∇T ⇒ const× (
v′ · ∇′θ ′ − Rw′) with R = αgd31T

κν

(writing v = (u, v, w))
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Scaled Equations for Fluid and Heat Flow

Go to primed variables (and then drop the primes)
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Scaled Equations for Fluid and Heat Flow

Go to primed variables (and then drop the primes)

Mass conservation (incompressibility)

∇ · v = 0

Momentum conservation

P−1
(

∂v
∂t

+ v · ∇v
)

= −∇p + θ ẑ + ∇2v

Entropy production/heat flow

∂θ

∂t
+ v · ∇θ = Rw + ∇2θ

Dimensionless ratios: Prandtl numberP = ν/κ; Rayleigh numberR = αgd31T/κν

Boundary conditions at top and bottom platesz = ±1
2

Fixed temperature θ = 0

Zero velocity (no slip) v = 0
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Rayleigh’s Calculation

∇ · v = 0

P−1∂v
∂t

= −∇p + θ ẑ + ∇2v

∂θ

∂t
= Rw + ∇2θ

Boundary conditions at top and bottom platesz = ±1
2

Fixed temperature θ = 0

Free slip forv = (u, v,w) w = ∂u/∂z = ∂v/∂z = 0

Two dimensional mode, exponential time dependence

w = w0eσ t cos(qx) cos(πz)

u = w0eσ t (π/q) sin(qx) sin(πz)

θ = θ0eσ t cos(qx) cos(πz)

gives
(π2 + q2)(P−1σ + π2 + q2)(σ + π2 + q2) − Rq2 = 0
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Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=Rc

R=0.5 Rc

R=1.5 Rc

 q = qc

Rc = 27π4

4 , qc = π√
2
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Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=Rc

R=0.5 Rc

R=1.5 Rc

 q = qc

q+
q−

Rc = 27π4

4 , qc = π√
2
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Comments

• Rayleigh seems to have been unaware that a hexagonal state is easily produced as a
sum of three stripe states with wave vectorsq(1, 0), q(−1/2,

√
3/2),

q(−1/2,−√
3/2). Since the calculation islinear theprinciple of superposition

applies, and the growth rate andRc, qc are the same for hexagons as for stripes.
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Comments

• Rayleigh seems to have been unaware that a hexagonal state is easily produced as a
sum of three stripe states with wave vectorsq(1, 0), q(−1/2,

√
3/2),

q(−1/2,−√
3/2). Since the calculation islinear theprinciple of superposition

applies, and the growth rate andRc, qc are the same for hexagons as for stripes.

• Rayleigh had the insight that the nonlinear terms would be important inpattern
selection:

The second phase of Bénard, where a tendency reveals itself for a slow
transformation into regular hexagons, is not touched. It would seem to demand
the inclusion of the squares of quantities here treated as small.
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Comments

• Rayleigh seems to have been unaware that a hexagonal state is easily produced as a
sum of three stripe states with wave vectorsq(1, 0), q(−1/2,

√
3/2),

q(−1/2,−√
3/2). Since the calculation islinear theprinciple of superposition

applies, and the growth rate andRc, qc are the same for hexagons as for stripes.

• Rayleigh had the insight that the nonlinear terms would be important inpattern
selection:

The second phase of Bénard, where a tendency reveals itself for a slow
transformation into regular hexagons, is not touched. It would seem to demand
the inclusion of the squares of quantities here treated as small.

• It is now understood that Bénard’s patterns were surface tension driven, and not
buoyancy driven. This is now called Bénard-Marangoni convection. The term
Rayleigh-Bénard convection is used for buoyancy driven convection between rigid
plates.
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Comments

• Rayleigh seems to have been unaware that a hexagonal state is easily produced as a
sum of three stripe states with wave vectorsq(1, 0), q(−1/2,

√
3/2),

q(−1/2,−√
3/2). Since the calculation islinear theprinciple of superposition

applies, and the growth rate andRc, qc are the same for hexagons as for stripes.

• Rayleigh had the insight that the nonlinear terms would be important inpattern
selection:

The second phase of Bénard, where a tendency reveals itself for a slow
transformation into regular hexagons, is not touched. It would seem to demand
the inclusion of the squares of quantities here treated as small.

• It is now understood that Bénard’s patterns were surface tension driven, and not
buoyancy driven. This is now called Bénard-Marangoni convection. The term
Rayleigh-Bénard convection is used for buoyancy driven convection between rigid
plates.

• The linear instability with rigid plates with physical (no-slip) boundaries is harder
because the equations are not separable. A handout on the website works through
the calculation. The qualitative results are similar, but nowRc ' 1707 and
qc ' 3.114 (qc = π would give rolls with diameter equal the depth).
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Taylor-Couette Instability

From the website ofArel Weisberg

http://www.princeton.edu/~gasdyn/Research/T-C_Research_Folder/Intro_to_T-C_Flows.html
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Taylor’s 1923 Results: Onset

-250 -200 -150 -100 -50 0 50 100 150 200

200

150

100

50
Stable

Unstable

Observed Points
Calculated Points

Ω1/ν

Ω2 /ν

G. I. Taylor,Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,

Phil. Tran. Roy. Soc. A223,289 (1923)
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Taylor’s 1923 Results: Wavenumber

0.05

0.10

0.15

0.20

0.25

0 0.5 1.0-0.5-1.0-1.5

µ

d/θ

Observed Points

Calculated Points

The outer and inner radii werero = 4.04 cm, andr i = 3.80 cm.µ is the ratio of outer to
inner rotation rates�2/�1. The vertical labeld/θ is the average width of a vortex in
centimeters.
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Turing: The Chemical Basis of Morphogenesis

Wikipedia: Morphogenesis (from the Greek morphê shape and genesis

creation) is one of three fundamental aspects of developmental biology….

The study of morphogenesis involves an attempt to understand the

processes that control the organized spatial distribution of cells that arises

during the embryonic development of an organism and which give rise to

the characteristic forms of tissues, organs and overall body anatomy.

Turing (Phil. Tran. R. Soc. Lon.B237, 37 (1952)): It is suggested that a

system of chemical substances, called morphogens, reacting together and

diffusing through a tissue, is adequate to account for the main phenomena

of morphogenesis. Such a system, although it may originally be quite

homogeneous, may later develop a pattern or structure due to an

instability of the homogeneous equilibrium, which is triggered off by

random disturbances.
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Quotes from Turing’s Paper

This model will be a simplification

and an idealization, and consequently

a falsification. It is to be hoped that

the features retained for discussion are

those of greatest importance in the

present state of knowledge.

One would like to be able to follow this more general [nonlinear] process

mathematically also. The difficulties are, however, such that one cannot

hope to have any very embracingtheoryof such processes, beyond the

statement of the equations. It might be possible, however, to treat a few

particular cases in detail with the aid of a digital computer.
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Turing on Broken Symmetry

There appears superficially to be a difficulty confronting this theory of morphogenesis,

or, indeed, almost any other theory of it. An embryo in its spherical blastula stage has

spherical symmetry.... But a system which has spherical symmetry, and whose state is

changing because of chemical reactions and diffusion, will remain spherically

symmetrical for ever..... It certainly cannot result in an organism such as a horse, which

is not spherically symmetrical.

There is a fallacy in this argument. It was assumed that the deviations from spherical

symmetry in the blastula could be ignored because it makes no particular difference what

form of asymmetry there is. It is, however, important that there aresomedeviations, for

the system may reach a state of instability in which these irregularities, or certain

components of them, tend to grow..…In practice, however, the presence of irregularities,

including statistical fluctuations in the numbers of molecules undergoing the various

reaction, will, if the system has an appropriate kind of instability, result in this

homogeneity disappearing.
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Mathematical Content of Turing’s Paper

• Linear stability analysis of:

� Ring of discrete cells

� Ring of continuous medium

� Surface of sphere

• Discussion of types of instabilities:

� uniform instabilities (wave numberqc = 0)

� instabilities leading to spatial structure (qc 6= 0)

� oscillatory instabilities (2 chemicals) (qc = 0, Imσ 6= 0)

� wave instabilities (qc 6= 0, Imσ 6= 0) (3 or more chemicals)

• Evolution from random initial condition in 1 and 2 dimensions

• Manual computation of nonlinear state in small discrete rings
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Reaction-Diffusion

Two chemical species with concentrationsu1, u2 that react and diffuse

∂t u1 = f1 (u1, u2) + D1∂
2
xu1

∂t u2 = f2 (u1, u2) + D2∂
2
xu2
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Reaction-Diffusion

Two chemical species with concentrationsu1, u2 that react and diffuse

∂t u1 = f1 (u1, u2) + D1∂
2
xu1

∂t u2 = f2 (u1, u2) + D2∂
2
xu2

• Reaction:

a A + bB → cC + d D

gives the reaction rate (law of mass action)

ν(t) = −1

a

d[A]
dt

= · · · = k[A]mA [B]mB

with mA = a . . . for elementary reactions



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 36

Reaction-Diffusion

Two chemical species with concentrationsu1, u2 that react and diffuse

∂t u1 = f1 (u1, u2) + D1∂
2
xu1

∂t u2 = f2 (u1, u2) + D2∂
2
xu2

• Reaction:

a A + bB → cC + d D

gives the reaction rate (law of mass action)

ν(t) = −1

a

d[A]
dt

= · · · = k[A]mA [B]mB

with mA = a . . . for elementary reactions

• Diffusion: conservation equation

∂t ui = −∇ · j i

with

j i = −Di ∇ui

(Skip to example )
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Turing Instability

• Stationary uniform base solutionub = (u1b, u2b)

f1(u1b, u2b) = 0

f2(u1b, u2b) = 0
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Turing Instability

• Stationary uniform base solutionub = (u1b, u2b)

f1(u1b, u2b) = 0

f2(u1b, u2b) = 0

• Linearize about the base stateu = ub + δu

∂tδu1 = a11δu1 + a12δu2 + D1∂
2
xδu1

∂tδu2 = a21δu1 + a22δu2 + D2∂
2
xδu2

with ai = ∂ fi /∂u j
∣∣
u=ub

.
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Turing Instability

• Stationary uniform base solutionub = (u1b, u2b)

f1(u1b, u2b) = 0

f2(u1b, u2b) = 0

• Linearize about the base stateu = ub + δu

∂tδu1 = a11δu1 + a12δu2 + D1∂
2
xδu1

∂tδu2 = a21δu1 + a22δu2 + D2∂
2
xδu2

with ai = ∂ fi /∂u j
∣∣
u=ub

.

• Seek a solutionδu(t, x) that is a Fourier mode with exponential time dependence:

δu = δuq eσqt eiqx =

 δu1q

δu2q


 eσqteiqx
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Stability Analysis

• Eigenvalue equation

Aq δuq = σq δuq

where

Aq =

 a11 − D1q2 a12

a21 a22 − D2q2



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Stability Analysis

• Eigenvalue equation

Aq δuq = σq δuq

where

Aq =

 a11 − D1q2 a12

a21 a22 − D2q2




• Eigenvalues are

σq = 1

2
trAq ± 1

2

√
(trAq)2 − 4 detAq
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Stability Regions

Re σÿþýü> 0
Im σÿþýü≠ 0

Im σ1,2 = 0
Re σ1 > 0 Re σ2 < 0

Im σ1,2 = 0
Re σ1,2 > 0

Re σÿþýü< 0
Im σÿþýü≠ 0

trAq

detAq

oscillatory

stationary

stable
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Conditions for Turing Instability

• Uniform state is stable to a spatially uniform instability

a11 + a22 < 0

a11a22 − a12a21 > 0
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Conditions for Turing Instability

• Uniform state is stable to a spatially uniform instability

a11 + a22 < 0

a11a22 − a12a21 > 0

(Takea22 < 0.)
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Conditions for Turing Instability

• Uniform state is stable to a spatially uniform instability

a11 + a22 < 0

a11a22 − a12a21 > 0

(Takea22 < 0.)

• Stationary instability at nonzero wave number (Imσqc = 0, qc 6= 0)

D1a22 + D2a11 > 2
√

D1D2(a11a22 − a12a21)

and at the wave number

q2
m = 1

2

(
a11

D1
+ a22

D2

)
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Conditions for Turing Instability

• Uniform state is stable to a spatially uniform instability

a11 + a22 < 0

a11a22 − a12a21 > 0

(Takea22 < 0.)

• Stationary instability at nonzero wave number (Imσqc = 0, qc 6= 0)

D1a22 + D2a11 > 2
√

D1D2(a11a22 − a12a21)

and at the wave number

q2
m = 1

2

(
a11

D1
+ a22

D2

)

• (Now we seea11 > 0 anda12, a21 must have opposite signs)
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Turing Length Scale

Turing condition can be expressed as

q2
m = 1

2

(
1

l 2
1

− 1

l 2
2

)
>

√
a11a22 − a12a21

D1D2

with l i = √
Di /aii are diffusion lengths: “local activation with long range

inhibition”
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Example: the Brusselator

∂t u1 = a − (b + 1)u1 + u2
1u2 + D1∂

2
xu1

∂t u2 = bu1 − u2
1u2 + D2∂

2
xu2

Example parameter values:a = 1.5, D1 = 2.8, D2 = 22.4
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Example: the Brusselator

∂t u1 = a − (b + 1)u1 + u2
1u2 + D1∂

2
xu1

∂t u2 = bu1 − u2
1u2 + D2∂

2
xu2

Example parameter values:a = 1.5, D1 = 2.8, D2 = 22.4

• Uniform solutionu1b = a, u2b = b/a
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Example: the Brusselator

∂t u1 = a − (b + 1)u1 + u2
1u2 + D1∂

2
xu1

∂t u2 = bu1 − u2
1u2 + D2∂

2
xu2

Example parameter values:a = 1.5, D1 = 2.8, D2 = 22.4

• Uniform solutionu1b = a, u2b = b/a

• A = ∂f/∂u|u=ub
is given by:

A =

 a11 a12

a21 a22


 =


 b − 1 a2

−b −a2



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Example: the Brusselator

∂t u1 = a − (b + 1)u1 + u2
1u2 + D1∂

2
xu1

∂t u2 = bu1 − u2
1u2 + D2∂

2
xu2

Example parameter values:a = 1.5, D1 = 2.8, D2 = 22.4

• Uniform solutionu1b = a, u2b = b/a

• A = ∂f/∂u|u=ub
is given by:

A =

 a11 a12

a21 a22


 =


 b − 1 a2

−b −a2




• Seek a solutionδu(t, x) that is a Fourier mode with exponential time dependence:

δu = δuq eσqt eiqx = (
δu1q, δu2q

)
eσqteiqx
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Example: the Brusselator

∂t u1 = a − (b + 1)u1 + u2
1u2 + D1∂

2
xu1

∂t u2 = bu1 − u2
1u2 + D2∂

2
xu2

Example parameter values:a = 1.5, D1 = 2.8, D2 = 22.4

• Uniform solutionu1b = a, u2b = b/a

• A = ∂f/∂u|u=ub
is given by:

A =

 a11 a12

a21 a22


 =


 b − 1 a2

−b −a2




• Seek a solutionδu(t, x) that is a Fourier mode with exponential time dependence:

δu = δuq eσqt eiqx = (
δu1q, δu2q

)
eσqteiqx

• Instability forb ≥ bc at wave numberqc with

bc =
(

1 + a

√
D1

D2

)2

≈ 2.34, qc =
√

D1a22 + D2a11

2D1D2
≈ 0.435
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Brusselator: Results

q

Re σÿ

0.2 0.4 0.8 1

-4

-2

2

0

b < bc

b = bc

b > bc

b = bc

0.6

Im σÿ
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Brusselator: Results

q

Re σÿ

0.2 0.4 0.8 1

-4

-2

2

0
0.6

q− q+

b =1.4bc



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 45

Onset in Systems with Rotational Symmetry

Growth
Rate

0

-1

0

-1

1

1

0

-1

qy

qx
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Pattern Formation

qx

qy q+

q−

σ > 0 qc
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Pattern Formation

qx

qy q+

q−

σ > 0 qc

What states form from the nonlinear saturation of the unstable modes?
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Stripe state

qx
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Square state

qx
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Rectangular (orthorhombic) state

qx

qy
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Hexagonal state

qx

qy
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Supersquare state

ÿ�

ÿ� ÿ�
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Superhexagon state

ÿ�

ÿ�
ÿ�
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Quasicrystal state

ÿ�
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Next Lecture

Pattern Formation: Nonlinearity and Symmetry

• Amplitude equations

• Symmetry, the phase variable and rigidity

• Topological defects


