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Today’s Lecture

Onsager Theory and the Fluctuation-Dissipation Theorem

• Motivation from lecture 1

• Derivation and discussion

• Application to nanomechanics and biodetectors
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Motivation

• So far we have only talked about thermodynamic and equilibrium

consequences of conservation laws and broken symmetries.

• In macroscopic systemsdissipationis important

• Dissipation is associated with the increase of entropy, and is outside of

the scope of thermodynamics where entropy (or the appropriate

thermodynamic potential) is maximized or minimized.

• Onsager, and later Callan, Greene, Kubo and others showed how to

systematically treat systemsnearequilibrium
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Equilibrium under Energy Transfer

Energy E1 Energy E2

JE

Isolated system divided into two weakly coupled halves or subsystems.

Initially the whole system is in thermodynamic equilibrium.

Take the system away from equilibrium by transferring an energy1E from one half to

the other.

For weak coupling the time scale for the relaxation will be correspondingly long.
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Dissipative Currents

JE

Temperature  T1 Temperature  T2

• Equilibrium is given by the equality of the temperaturesT1 = T2.

• Different temperatures gives a nonequilibrium state, and an energy current moving

the system towards equilibrium.

• For small temperature differencesδT = T2 − T1

JE = −K δT

K is akinetic coefficientor dissipation coefficient
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Slow Relaxation

• The temperatures of the subsystems will change at a rate proportional to the rate of
change of energy

Ṫ1 = Ė1/C1 = −JE/C1

Ṫ2 = Ė2/C2 = JE/C2

whereCi is the thermal capacity of subsystemi .
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Slow Relaxation

• The temperatures of the subsystems will change at a rate proportional to the rate of
change of energy

Ṫ1 = Ė1/C1 = −JE/C1

Ṫ2 = Ė2/C2 = JE/C2

whereCi is the thermal capacity of subsystemi .

• Since the relaxationbetweenthe systems is slow, each system may be taken as
internally in equilibrium, so thatCi is theequilibriumvalue of the specific heat.
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Slow Relaxation

• The temperatures of the subsystems will change at a rate proportional to the rate of
change of energy

Ṫ1 = Ė1/C1 = −JE/C1

Ṫ2 = Ė2/C2 = JE/C2

whereCi is the thermal capacity of subsystemi .

• Since the relaxationbetweenthe systems is slow, each system may be taken as
internally in equilibrium, so thatCi is theequilibriumvalue of the specific heat.

• Using JE = −K δT gives

δṪ = −(K/C) δT

with

C−1 = C−1
1 +C−1

2
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Slow Relaxation

• The temperatures of the subsystems will change at a rate proportional to the rate of
change of energy

Ṫ1 = Ė1/C1 = −JE/C1

Ṫ2 = Ė2/C2 = JE/C2

whereCi is the thermal capacity of subsystemi .

• Since the relaxationbetweenthe systems is slow, each system may be taken as
internally in equilibrium, so thatCi is theequilibriumvalue of the specific heat.

• Using JE = −K δT gives

δṪ = −(K/C) δT

with

C−1 = C−1
1 +C−1

2

• This equation yieldsexponentialrelaxation with a time constant

τ = C/K

given by macroscopic quantities.
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Entropy Production

• Since the energy current is the process of the approach to equilibrium,

the entropy must increase in this relaxation.
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Entropy Production

• Since the energy current is the process of the approach to equilibrium,

the entropy must increase in this relaxation.

• Rate of change of entropy:

Ṡ= Ṡ1(E1)+ Ṡ2(E2) = 1

T1
Ė1+ 1

T2
Ė2

' −JE δT/T2 = K (δT/T)2
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Entropy Production

• Since the energy current is the process of the approach to equilibrium,

the entropy must increase in this relaxation.

• Rate of change of entropy:

Ṡ= Ṡ1(E1)+ Ṡ2(E2) = 1

T1
Ė1+ 1

T2
Ė2

' −JE δT/T2 = K (δT/T)2

• Second law requires the kinetic coefficientK > 0
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Continuum System: Nonuniform Temperature
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Continuum System: Nonuniform Temperature

• Macroscopic system is in equilibrium when the temperature is

uniform in space.
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Continuum System: Nonuniform Temperature

• Macroscopic system is in equilibrium when the temperature is

uniform in space.

• Spatially varying temperature will lead to energy flows.
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Continuum System: Nonuniform Temperature

• Macroscopic system is in equilibrium when the temperature is

uniform in space.

• Spatially varying temperature will lead to energy flows.

• For small, slow spatial variations the energy current will be

proportional to the gradient of the temperaturej E = −K∇T with K

the thermal conductivity.
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Continuum System: Nonuniform Temperature

• Macroscopic system is in equilibrium when the temperature is

uniform in space.

• Spatially varying temperature will lead to energy flows.

• For small, slow spatial variations the energy current will be

proportional to the gradient of the temperaturej E = −K∇T with K

the thermal conductivity.

• Conservation of energy is given by

∂tε = −∇ · j E
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Continuum System: Nonuniform Temperature

• Macroscopic system is in equilibrium when the temperature is

uniform in space.

• Spatially varying temperature will lead to energy flows.

• For small, slow spatial variations the energy current will be

proportional to the gradient of the temperaturej E = −K∇T with K

the thermal conductivity.

• Conservation of energy is given by

∂tε = −∇ · j E

• Law of increase of entropy constrains the coefficientK to be positive.
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Relaxation Mode
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Relaxation Mode

• Takeδε = CδT with C the specific heat per unit volume.
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Relaxation Mode

• Takeδε = CδT with C the specific heat per unit volume.

• For small temperature perturbationsC andK may be taken as

constants.
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Relaxation Mode

• Takeδε = CδT with C the specific heat per unit volume.

• For small temperature perturbationsC andK may be taken as

constants.

• The two equations can be combined into the singlediffusionequation

∂t T = κ∇2T

with diffusion constantκ = K/C.
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Relaxation Mode

• Takeδε = CδT with C the specific heat per unit volume.

• For small temperature perturbationsC andK may be taken as

constants.

• The two equations can be combined into the singlediffusionequation

∂t T = κ∇2T

with diffusion constantκ = K/C.

• The results may be extended to the general case of coupled equations

for more than one conserved quantity. Sometimes the coupling gives a

wave equation rather than diffusion.
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Relaxation Mode

• Takeδε = CδT with C the specific heat per unit volume.

• For small temperature perturbationsC andK may be taken as

constants.

• The two equations can be combined into the singlediffusionequation

∂t T = κ∇2T

with diffusion constantκ = K/C.

• The results may be extended to the general case of coupled equations

for more than one conserved quantity. Sometimes the coupling gives a

wave equation rather than diffusion.

• Dynamical equations are linear, and the time evolution will be the sum

of exponentially oscillating/decaying modes.
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Summary
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Summary

• A state near equilibrium decays exponentially towards equilibrium,

perhaps with transient oscillations.
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Summary

• A state near equilibrium decays exponentially towards equilibrium,

perhaps with transient oscillations.

• The dynamics is given by equations of motion that are on the one hand

the usual phenomenological equations (in our simple example the heat

current proportional to temperature difference) and on the other hand

consistent with the fundamental laws of thermodynamics.
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Summary

• A state near equilibrium decays exponentially towards equilibrium,

perhaps with transient oscillations.

• The dynamics is given by equations of motion that are on the one hand

the usual phenomenological equations (in our simple example the heat

current proportional to temperature difference) and on the other hand

consistent with the fundamental laws of thermodynamics.

• Law of the increase of entropy places constraints on thecoefficientsof

the dynamical equations.
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Summary

• A state near equilibrium decays exponentially towards equilibrium,

perhaps with transient oscillations.

• The dynamics is given by equations of motion that are on the one hand

the usual phenomenological equations (in our simple example the heat

current proportional to temperature difference) and on the other hand

consistent with the fundamental laws of thermodynamics.

• Law of the increase of entropy places constraints on thecoefficientsof

the dynamical equations.

• We are left with the task of calculating kinetic coefficients such asK .
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Onsager’s Idea (Regression)

• Decay to equilibrium from a prepared initial condition is related to

dynamics of fluctuations in the equilibrium state

equilibrium ⇐⇒ near equilibrium

fluctuations ⇐⇒ dissipation

correlation function ⇐⇒ kinetic coefficient
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Onsager’s Idea (Regression)

• Decay to equilibrium from a prepared initial condition is related to

dynamics of fluctuations in the equilibrium state

equilibrium ⇐⇒ near equilibrium

fluctuations ⇐⇒ dissipation

correlation function ⇐⇒ kinetic coefficient

• Relationship may be useful in either direction
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Onsager’s Idea (Regression)

• Decay to equilibrium from a prepared initial condition is related to

dynamics of fluctuations in the equilibrium state

equilibrium ⇐⇒ near equilibrium

fluctuations ⇐⇒ dissipation

correlation function ⇐⇒ kinetic coefficient

• Relationship may be useful in either direction

• Framework of derivation:linear response theory
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Linear Response Theory
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Linear Response Theory

• Calculate the change in a measurement〈B(t)〉 due to the application of a small
“field” F(t) giving a perturbation to the Hamiltonian1H = −F(t)A.
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Linear Response Theory

• Calculate the change in a measurement〈B(t)〉 due to the application of a small
“field” F(t) giving a perturbation to the Hamiltonian1H = −F(t)A.

• Both A andB are determined by the phase space coordinatesr N(t), pN(t). For
example, an electric fieldE = −(1/c)dA/dt gives the perturbation

1H = (e/mc)A(t) ·
∑

N

pN(t).
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Linear Response Theory

• Calculate the change in a measurement〈B(t)〉 due to the application of a small
“field” F(t) giving a perturbation to the Hamiltonian1H = −F(t)A.

• Both A andB are determined by the phase space coordinatesr N(t), pN(t). For
example, an electric fieldE = −(1/c)dA/dt gives the perturbation

1H = (e/mc)A(t) ·
∑

N

pN(t).

• Time dependence is given by the evolution ofr N(t), pN(t) according to Hamilton’s
equations.
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Linear Response Theory

• Calculate the change in a measurement〈B(t)〉 due to the application of a small
“field” F(t) giving a perturbation to the Hamiltonian1H = −F(t)A.

• Both A andB are determined by the phase space coordinatesr N(t), pN(t). For
example, an electric fieldE = −(1/c)dA/dt gives the perturbation

1H = (e/mc)A(t) ·
∑

N

pN(t).

• Time dependence is given by the evolution ofr N(t), pN(t) according to Hamilton’s
equations.

• We can calculate averages in terms of an ensemble of systems given by a known
distributionρ(r N, pN) at t = 0. The expectation value at a later time is then

〈B(t)〉 =
∫

dr NdpNρ(r N, pN)B[r N(t)← r N, pN(t)← pN ]
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Linear Response Theory

• Calculate the change in a measurement〈B(t)〉 due to the application of a small
“field” F(t) giving a perturbation to the Hamiltonian1H = −F(t)A.

• Both A andB are determined by the phase space coordinatesr N(t), pN(t). For
example, an electric fieldE = −(1/c)dA/dt gives the perturbation

1H = (e/mc)A(t) ·
∑

N

pN(t).

• Time dependence is given by the evolution ofr N(t), pN(t) according to Hamilton’s
equations.

• We can calculate averages in terms of an ensemble of systems given by a known
distributionρ(r N, pN) at t = 0. The expectation value at a later time is then

〈B(t)〉 =
∫

dr NdpNρ(r N, pN)B[r N(t)← r N, pN(t)← pN ]

• Could alternatively follow the time evolution ofρ through Liouville’s equation

〈B(t)〉 =
∫

dr NdpNρ(r N, pN , t)B(r N, pN)
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Proof of Onsager Regression: Idea

F(t)

t

H = H 0+∆H H = H 0

equi l ibr ium
under  H0+∆H
ρ=ρH(r N,p N)

• We will consider the special case of a forceF(t) switched on to the valueF0 in the

distant past, and then switched off att = 0.

• At t = 0 the distribution is theequilibriumone for theperturbedHamiltonian

• We are interested in measurements in the system fort > 0 as it relaxes to equilibrium

• The dynamics occurs under theunperturbedHamiltonian



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 5, April 14, 2006 14

Onsager Regression: Details
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Onsager Regression: Details

• For t ≤ 0 the distribution is the equilibrium one for the Hamiltonian

H(r N, pN) = H0+1H

ρ(r N, pN) = e−β(H0+1H)

Tre−β(H0+1H)
with Tr ≡

∫
dr NdpN
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Onsager Regression: Details

• For t ≤ 0 the distribution is the equilibrium one for the Hamiltonian

H(r N, pN) = H0+1H

ρ(r N, pN) = e−β(H0+1H)

Tre−β(H0+1H)
with Tr ≡

∫
dr NdpN

• Average ofB at t = 0 is

〈B(0)〉 = Tre−β(H0+1H)B(r N, pN)

Tre−β(H0+1H)
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Onsager Regression: Details

• For t ≤ 0 the distribution is the equilibrium one for the Hamiltonian

H(r N, pN) = H0+1H

ρ(r N, pN) = e−β(H0+1H)

Tre−β(H0+1H)
with Tr ≡

∫
dr NdpN

• Average ofB at t = 0 is

〈B(0)〉 = Tre−β(H0+1H)B(r N, pN)

Tre−β(H0+1H)

• For t ≥ 0 the average is

〈B(t)〉 = Tre−β(H0+1H)B(r N(t)← r N, pN(t)← pN)

Tre−β(H0+1H)

The integral is overr N, pN , and1H = 1H(r N, pN). The time

evolution is given byH0.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 5, April 14, 2006 15

Onsager Regression: Details (cont.)
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Onsager Regression: Details (cont.)

• Expand the exponentialse−β(H0+1H) ' e−βH0(1− β1H) so

〈B(t)〉 = 〈B〉0− β[〈1H B(t)〉0− 〈B〉0〈1H〉0] + O(1H)2

� Here〈〉0 denotes the ensemble average for a system with no

perturbation, i.e., the distributionρ0 = e−βH0/Tre−βH0.

� In the unperturbed system the Hamiltonian isH0 for all time, and

averages such as〈B(t)〉0 are time independent⇒ 〈B〉0.
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Onsager Regression: Details (cont.)

• Expand the exponentialse−β(H0+1H) ' e−βH0(1− β1H) so

〈B(t)〉 = 〈B〉0− β[〈1H B(t)〉0− 〈B〉0〈1H〉0] + O(1H)2

� Here〈〉0 denotes the ensemble average for a system with no

perturbation, i.e., the distributionρ0 = e−βH0/Tre−βH0.

� In the unperturbed system the Hamiltonian isH0 for all time, and

averages such as〈B(t)〉0 are time independent⇒ 〈B〉0.

• Writing A(r N, pN) = A(0), δA(t) = A(t)− 〈A〉0 and use

1H = −F0A(0), gives for the change in the measured quantity

1〈B(t)〉 = βF0 〈δA(0)δB(t)〉0

• This result proves the Onsager regression hypothesis.
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Kubo Formula
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Kubo Formula

• For a generalF(t) we write the linear response as

1〈B(t)〉 =
∫ ∞
−∞

χAB(t, t ′)F(t ′)dt′

with χAB the susceptibility or response function with the properties

χAB(t, t ′) = χAB(t − t ′) stationarity of unperturbed system

χAB(t − t ′) = 0 for t < t ′ causality

χ̃AB(− f ) = χ̃∗AB( f ) χAB(t, t ′) real
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Kubo Formula

• For a generalF(t) we write the linear response as

1〈B(t)〉 =
∫ ∞
−∞

χAB(t, t ′)F(t ′)dt′

with χAB the susceptibility or response function with the properties

χAB(t, t ′) = χAB(t − t ′) stationarity of unperturbed system

χAB(t − t ′) = 0 for t < t ′ causality

χ̃AB(− f ) = χ̃∗AB( f ) χAB(t, t ′) real

• For the step function force turned off att = 0

1〈B(t)〉 = F0

∫ 0

−∞
χAB(t − t ′)dt′ = F0

∫ ∞
t

χAB(τ )dτ
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Kubo Formula

• For a generalF(t) we write the linear response as

1〈B(t)〉 =
∫ ∞
−∞

χAB(t, t ′)F(t ′)dt′

with χAB the susceptibility or response function with the properties

χAB(t, t ′) = χAB(t − t ′) stationarity of unperturbed system

χAB(t − t ′) = 0 for t < t ′ causality

χ̃AB(− f ) = χ̃∗AB( f ) χAB(t, t ′) real

• For the step function force turned off att = 0

1〈B(t)〉 = F0

∫ 0

−∞
χAB(t − t ′)dt′ = F0

∫ ∞
t

χAB(τ )dτ

• Differentiating1〈B(t)〉 = βF0 〈δA(0)δB(t)〉0 then gives the classical Kubo
expression

χAB(t) =


−β d

dt 〈δA(0)δB(t)〉0 t ≥ 0

0 t < 0
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Energy Absorption
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Energy Absorption

• Rate of doing work on the system is “force× velocity” W = F Ȧ

W = F(t)
d

dt

∫ ∞
−∞

χ(t, t ′)F(t ′)dt′

writing simplyχ for χAA.
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Energy Absorption

• Rate of doing work on the system is “force× velocity” W = F Ȧ

W = F(t)
d

dt

∫ ∞
−∞

χ(t, t ′)F(t ′)dt′

writing simplyχ for χAA.

• For a sinusoidal forceF(t) = 1
2(Ff e2π i f t + c.c.) the integral gives the

Fourier transformχ̃ of χ so that the average rate of working is

W( f ) = 1
42π i f |Ff |2[χ̃( f )− χ̃ (− f )]

= π f |Ff |2(−χ̃ ′′( f ))

whereχ̃ ′′ is Im χ̃ and terms varying ase±4π i f t average to zero.
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Energy Absorption

• Rate of doing work on the system is “force× velocity” W = F Ȧ

W = F(t)
d

dt

∫ ∞
−∞

χ(t, t ′)F(t ′)dt′

writing simplyχ for χAA.

• For a sinusoidal forceF(t) = 1
2(Ff e2π i f t + c.c.) the integral gives the

Fourier transformχ̃ of χ so that the average rate of working is

W( f ) = 1
42π i f |Ff |2[χ̃( f )− χ̃ (− f )]

= π f |Ff |2(−χ̃ ′′( f ))

whereχ̃ ′′ is Im χ̃ and terms varying ase±4π i f t average to zero.

• The imaginary part of̃χ tells us about the energy absorption or

dissipation.
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Fluctuation-Dissipation

• Use the fluctuation expression forχ = χAA

χ̃ ′′( f ) =
∫ ∞
−∞

χ(t) sin(2π f t)dt (definition of Fourier transform)

= −β

∫ ∞
0

d

dt
〈δA(0)δA(t)〉0 sin(2π f t)dt (fluctuation expression)

= β(2π f )

∫ ∞
0
〈δA(0)δA(t)〉0 cos(2π f t)dt (integrate by parts)



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 5, April 14, 2006 18

Fluctuation-Dissipation

• Use the fluctuation expression forχ = χAA

χ̃ ′′( f ) =
∫ ∞
−∞

χ(t) sin(2π f t)dt (definition of Fourier transform)

= −β

∫ ∞
0

d

dt
〈δA(0)δA(t)〉0 sin(2π f t)dt (fluctuation expression)

= β(2π f )

∫ ∞
0
〈δA(0)δA(t)〉0 cos(2π f t)dt (integrate by parts)

• The integral is the spectral density ofA fluctuations, so that (including

necessary factors)

GA( f ) = 4kBT
(−χ̃ ′′( f ))

2π f

This relates the spectral density of fluctuations to the susceptibility

component giving energy absorption.
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Langevin Force
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Langevin Force

• Suppose the fluctuations inA derive from a fluctuating (Langevin) forceF ′

δA(t) =
∫ ∞
−∞

χ(t, t ′)F ′(t ′)dt′
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Langevin Force

• Suppose the fluctuations inA derive from a fluctuating (Langevin) forceF ′

δA(t) =
∫ ∞
−∞

χ(t, t ′)F ′(t ′)dt′

• Since the Fourier transform of a convolution is just the product of the Fourier
transforms the spectral density ofA is

GA( f ) = |χ̃ ( f )|2GF ( f )
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Langevin Force

• Suppose the fluctuations inA derive from a fluctuating (Langevin) forceF ′

δA(t) =
∫ ∞
−∞

χ(t, t ′)F ′(t ′)dt′

• Since the Fourier transform of a convolution is just the product of the Fourier
transforms the spectral density ofA is

GA( f ) = |χ̃ ( f )|2GF ( f )

• Using the expressionGA( f ) = 4kBT(−χ̃ ′′( f ))/2π f leads to

GF ( f ) = 4kBT
1

2π f
Im

[
1

χ̃ ( f )

]
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Langevin Force

• Suppose the fluctuations inA derive from a fluctuating (Langevin) forceF ′

δA(t) =
∫ ∞
−∞

χ(t, t ′)F ′(t ′)dt′

• Since the Fourier transform of a convolution is just the product of the Fourier
transforms the spectral density ofA is

GA( f ) = |χ̃ ( f )|2GF ( f )

• Using the expressionGA( f ) = 4kBT(−χ̃ ′′( f ))/2π f leads to

GF ( f ) = 4kBT
1

2π f
Im

[
1

χ̃ ( f )

]

• Instead of the susceptibility introduce theimpedanceZ = F/Ȧ so that

Z̃( f ) = 1

2π i f

1

χ̃( f )
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Langevin Force

• Suppose the fluctuations inA derive from a fluctuating (Langevin) forceF ′

δA(t) =
∫ ∞
−∞

χ(t, t ′)F ′(t ′)dt′

• Since the Fourier transform of a convolution is just the product of the Fourier
transforms the spectral density ofA is

GA( f ) = |χ̃ ( f )|2GF ( f )

• Using the expressionGA( f ) = 4kBT(−χ̃ ′′( f ))/2π f leads to

GF ( f ) = 4kBT
1

2π f
Im

[
1

χ̃ ( f )

]

• Instead of the susceptibility introduce theimpedanceZ = F/Ȧ so that

Z̃( f ) = 1

2π i f

1

χ̃( f )

• Defining the “resistance”̃R( f ) = ReZ̃( f ) gives

GF ( f ) = 4kBT R̃( f )
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Quantum Result

• The derivations have been classical

• In a quantum treatmentA andB, as well asH areoperatorsthat may

not commute

• The change to the fluctuation-dissipation is to make the replacement

kBT → h f
2 coth( h f

2kBT ) so that

GF( f ) = 2h f coth(h f/2kBT)R̃( f )

• Quantum approach was pioneered by Kubo, and the set of ideas is

often called the Kubo formalism.
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BioNEMS - Single BioMolecule Detector/Probe
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BioNEMS Prototype

(Arlett et. al, Nobel Symposium 131, August 2005)
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Example Design Parameters

L

w

h

b

L1

Wall

y

x

z

Localized
stress

Localized
stress

Dimensions: L = 3µ, w = 100nm,t = 30nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2

Results: Spring constantK = 8.7mN/m; vacuum frequencyν0 ∼ 6MHz
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Atomic Force Microscopy (AFM)
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Noise in Micro-Cantilevers

Thermal fluctuations (Brownian motion) important for:

• BioNEMS

� limit to sensitivity

� detection scheme

• AFM

� calibration

Goals (with Mark Paul):

• Correct formulation of fluctuations for analytic calculations

• Practical scheme for numerical calculations of realistic geometries
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Approach Using Fluctuation-Dissipation Theorem

Assume observable is tip displacementX(t)

• Apply small step force of strengthF0 to tip

• Calculate or simulate deterministic decay of1X(t) for t > 0. Then

CX X(t) = 〈δX(t)δX(0)〉e = kBT
1X(t)

F0

• Fourier transform ofCX X(t) gives power spectrum ofX fluctuations

GX(ω)
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F(t)

t

H=H0+∆H H=H0

∆<X(t)>

t

F0

〈δX(t)δX(0)〉e = kBT
1 〈X(t)〉

F0
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Advantages of Method

• Correct!

• Essentially no approximations in formulation

• Incorporates

� full elastic-fluid coupling

� non-white, spatially dependent noise

� no assumption on independence of mode fluctuations

� complex geometries

• Single numerical calculation over decay time gives complete power spectrum

• Can be modified for other measurement protocols by appropriate choice of

conjugate force

� AFM: deflection of light (angle near tip)

� BioNEMS: curvature near pivot (piezoresistivity)
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Single Cantilever

L

w

h

b

L1

Wall

y

x

z

Localized
stress

Localized
stress

Dimensions:L = 3µ, W = 100nm,L1 = 0.6µ, b = 33nm

Material: ρ = 2230Kg/m3, E = 1.25× 1011N/m2
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Device Schematic
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Adjacent Cantilevers

Correlation of Brownian fluctuations

〈δX2(t)δX1(0)〉e = kBT
1X2(t)

F1
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Device Schematic
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Results: Single Cantilever

3d Elastic-fluid code from CFD Research Corporation

1µs force sensitivity:K
√

GX(ν)× 1M Hz∼ 7pN
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Results: Adjacent Cantilevers

F1

t = 0 t

F
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1(
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x 2(
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〉
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2 )
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Crosscorrelation of the noise for Cantilever 2
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Autocorrelation of the noise for Cantilever 1
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AFM Experiments

0 4000 8000
0

0.4

0.8

1.2

x 10
−11

232.4µ× 20.11µ× 0.573µ Asylum Research AFM (Clarke et al., 2005)

Dashed line: calculations from fluctuation-dissipation approach

Dotted line: calculations from Sader (1998) approach
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Next Lecture

Hydrodynamics

• Hydrodynamics of conserved quantities

• Hydrodynamics of ordered systems (including dissipation)


