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Today’s Lecture

Superfluids and superconductors

What are superfluidity and superconductivity?

Review of phase dynamics

Description in terms of a macroscopic phase

Supercurrents that flow for ever

Josephson effect

Four sounds
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The Amazing World of Superfluidity and Superconductivity

 Electric currents in loops that flow
for ever (measured for decade)

» Beakers of fluid that empty them-
selves

 Fluids that flow without resistance
through tiny holes

* Flow in surface films less than an
atomic layer thick

* Flow driven by temperature differ-
ences (fountain effect)
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Back

History of Superfluidity and Superconductivity

1908 Liquefaction of*He by Kamerlingh Onnes

1911 Discovery of superconductivity by Onnes (resistance drops to zero)

1933 Meissner effect: superconductors expel magnetic field

1937 Discovery of superfluidity irfHe by Allen and Misener

1938 Connection of superfluidity with Bose-Einstein condensation by London
1955 Feynman'’s theory of quantized vortices

1956 Onsager and Penrose identify the broken symmetry in superfluidity ODLRO
1957 BCS theory of superconductivity

1962 Josephson effect

1973 Discovery of superfluidity ifHe at 2mK by Osheroff, Lee, and Richardson
1986 Discovery of high-T superconductors by Bednorz and Mduller

1995- Study of superfluidity in ultracold trapped dilute gases
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Review of Phase Dynamics with a Conserved Quantity

Rotational symmetry in the XY plane (angh)

SZA The XY and Z components of the spin have different prop-
erties:
-------------------- Sp
,« /'@ S =01 Y (s;) isaconserved quantity
\. T / i in Q
e S, =1 > (s1) Iisthe XY order parameter
I in Q
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Review of Phase Dynamics with a Conserved Quantity

Rotational symmetry in the XY plane (angh)

SZA The XY and Z components of the spin have different prop-
erties:
-------------------- SEI
/VO S=Q1! Y (s;,) isaconserved quantity
. i in ©
T S, =Q71 Y (s.) isthe XYorder parameter
I in Q

S, and® are canonically conjugate variables, so that with the free energy

2
F = /ddx [%K(V®)2+ =2 — Szbz}

2x
we get
: §F - : . L
Szz—% giving S =-V.js, with jg=—-KVB
O = % giving O = x NS — xby)

Back Forward



Collective Effects in Equilibrium and Nonequilibrium Physicd:ecture 4, April 7, 2006 6

Spin Current
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Spin Current
S=-V-is

This is aconservation lawvith a currenf s, of the conserved quantity,
given by a phase gradient

js, = —KVO
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Spin Current
S=-V-is

This is aconservation lawvith a currenf s, of the conserved quantity,
given by a phase gradient

js, = —KVO

For example

W/ osee~x H

A
—
\4
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Phase Dynamics

O = xS — xby)
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Phase Dynamics

O = xS — xby)

* No dynamics in full thermodynamic equilibriung, = xbg;
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Phase Dynamics

0= xS — xby)
* No dynamics in full thermodynamic equilibriung, = xbg;
« Add an additional external fielh, = y By
O = —b1z; = —yByz

the usual precession of a magnetic moment in an applied field (Larmor
precession).
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Phase Dynamics

O =x"NS — xby
* No dynamics in full thermodynamic equilibriung, = xbg;

« Add an additional external fielh, = y By
@ = —bi; = -V Bi1

the usual precession of a magnetic moment in an applied field (Larmor
precession).

* Note that this is arquilibriumstate:S, # x (bgz + b1z) butis a
conserved quantity
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Phase Dynamics

O =x"NS — xby
* No dynamics in full thermodynamic equilibriung, = xbg;

« Add an additional external fielh, = y By
@ = —bi; = -V Bi1

the usual precession of a magnetic moment in an applied field (Larmor
precession).

* Note that this is arquilibriumstate:S, # x (bgz + b1z) butis a
conserved quantity— no approximations
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Phase Dynamics

O =x"NS — xby
* No dynamics in full thermodynamic equilibriung, = xbg;

« Add an additional external fielh, = y By
@ = —by; = -V Bi1
the usual precession of a magnetic moment in an applied field (Larmor
precession).

* Note that this is arquilibriumstate:S, # x (bgz + b1z) butis a
conserved quantity— no approximations

 For formal proof see Halperin and Saslow,
Phys. Rev. B 16, 2154 (197, /Appendix: “the Larmor precession
theorem”
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Hydrodynamic Approach

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved
guantities and broken symmetry variables in a thermodynamic approach
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Hydrodynamic Approach

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved
guantities and broken symmetry variables in a thermodynamic approach

Starting points
» generalized rigidity: extra contribution to the energy density from gradients of the

broken symmetry variable

» thermodynamic identity

 equilibrium phase dynamics (Larmor precession theorem)
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Hydrodynamic Approach

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved
guantities and broken symmetry variables in a thermodynamic approach

Starting points

» generalized rigidity: extra contribution to the energy density from gradients of the
broken symmetry variable
1
e =7 K(VO)?

» thermodynamic identity

de =Tds+ uds, + @ - d(VO) with

 equilibrium phase dynamics (Larmor precession theorem)

é):Mz
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Hydrodynamic Approach

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved
guantities and broken symmetry variables in a thermodynamic approach

Starting points
» generalized rigidity: extra contribution to the energy density from gradients of the
broken symmetry variable
1
— ZK(VO)?
€= 3 (VO)
» thermodynamic identity

de = Tds+ uds, + @ - d(VO) with
 equilibrium phase dynamics (Larmor precession theorem)
O = Mz

Derive
» dynamical equations for conserved quantities and broken symmetry variables for
slowly varying disturbances
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Rigidity and the Thermodynamic Identity

In terms of the energy density

de = Tds+ uds, + @ -d(VO)

e conjugate fieldsire

e e
Uz = | — and b =
0S; SVO Ve Ss,
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Rigidity and the Thermodynamic Identity

In terms of the energy density

de =Tds+ uds, + ¢ - d(VO)

e conjugate fieldare

e e
Uz = | — and b =
0S; SVO Ve Ss,

Or with the free energy density = ¢ — Ts

df = —sdT+ wuds, + @ - d(VO)

e conjugate fieldsare

(af) ( of )
Uz =\ — and d=—
S/ 1 ve RAYAC) T.s,
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Rigidity and the Thermodynamic Identity

In terms of the energy density

de = Tds+ uds, + @ - d(VO)

e conjugate fieldare

e e
Uz = | — and b =
0S; SVO Ve Ss,

Or with the free energy density = ¢ — Ts

df = —sdT+ usds, + @ - d(VO)

e conjugate fieldsare
(af) ( of )
Mz =\ — and d=—-
S/ 1 ve CAYCYEN

nz=x S, —xb,) and & =KVO

These give
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Entropy Production

Tds=de — uds;, — @ - d(VO)
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Entropy Production
Tds=de — uds;, — ¢ - d(VO)

* Form time derivative of entropy density

ds  1de p,ds @ d(vVe)
dt Tdt T dt T dt
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Entropy Production
Tds=de — uds;, — ¢ - d(VO)

* Form time derivative of entropy density

ds  1de p,ds @ d(ve)
dt Tdt Tdt T dt

» Conservation laws and dynamics of broken symmetry variabl¢* unknown)
ds 1_ .

Uz g P
_— —_— ;; . 8 —I— — ;; . —_— — ;;
dt T J T ) T Hz
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Entropy Production
Tds=de — uds;, — ¢ - d(VO)

* Form time derivative of entropy density

ds  1de p,ds @ d(ve)
dt Tdt Tdt T dt

e Conservation laws and dynamics of broken symmetry varigbl¢ unknown)
ds B 1 . Mz .
dt T T T

* Entropy production equation

d
d—f:—v-jSJrR with R>0

Back Forward
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Entropy Production

Tds=de — uds;, — ¢ - d(VO)

Form time derivative of entropy density

ds  1de p,ds @ d(ve)
dt Tdt Tdt T dt

Conservation laws and dynamics of broken symmetry varigbl¢3 unknown)

dS_ 1 . Mz .
dt T T T

Entropy production equation

d
d—f:—v-jSJrR with R>0

|dentify the entropy current and production

iS=T71° — ugi™)
RT = —T 1 — uzj%) - VT — (j% 4 ®)-Vyu,

Back

10

Forward



Collective Effects in Equilibrium and Nonequilibrium Physicd:ecture 4, April 7, 2006 11

Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)
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Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.
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Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)
In the absence of dissipation the rate of entropy production must be zero.

e Spin current
j = o
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Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)
In the absence of dissipation the rate of entropy production must be zero.

e Spin current
j7=—-®=—-KVO
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Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)
In the absence of dissipation the rate of entropy production must be zero.
e Spin current

%= —®=—-KV®

e Energy current
] = g
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Equilibrium Dynamics
Entropy Production
RT=-T7(° — ug®) - VT = (% + @) - Vi

(strategy:R should be a function of gradients of the conjugate variables)
In the absence of dissipation the rate of entropy production must be zero.
e Spin current

%= —®=—-KV®

e Energy current
j© = szsz = —uzKVO
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Equilibrium Dynamics
Entropy Production
RT = —T71(° = 1zj®) - VT = (% + ®) - Vpuz
(strategy:R should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.

e Spin current
j7=—-®=—-KVO

e Energy current
j© = szsz = —uzKVO

e Entropy current
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Equilibrium Dynamics
Entropy Production
RT = —T71(° = 1zj®) - VT = (% + ®) - Vpuz
(strategy:R should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.

e Spin current
j7=—-®=—-KVO

e Energy current
j© = szsz = —uzKVO

e Entropy current
j*=0

We will consider adding dissipation later.
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Superfluidity
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Superfluidity

 superfluidity occurs due to Bose condensation
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Back

Superfluidity

 superfluidity occurs due to Bose condensation

 the order parameter is “the expectation value of the quantum field
operator for destroying a particlel = ()
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Back

Superfluidity

 superfluidity occurs due to Bose condensation

 the order parameter is “the expectation value of the quantum field
operator for destroying a particlal = ()

« W is a complex variabley = |w|e®
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Back

Superfluidity

 superfluidity occurs due to Bose condensation

 the order parameter is “the expectation value of the quantum field
operator for destroying a particlal = ()

U js a complex variable¥ = |W|e®

o |W|? gives the‘condensate densityig: the fraction of particles in
the zero momentum stateng/n

¢ O Is thephase of the condensate wave function
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Superfluidity

 superfluidity occurs due to Bose condensation

 the order parameter is “the expectation value of the quantum field
operator for destroying a particlal = ()

U js a complex variable¥ = |W|e®

o |W|? gives the “condensate densityg: the fraction of particles in
the zero momentum stateng/n

o O Is the phase of the condensate wave function

¢ There are a macroscopic number of particles in a single wave
function and s@ is a macroscopic thermodynamic varigl@aad is
the broken symmetry variable.
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Broken Phase (Gauge) Symmetry
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Broken Phase (Gauge) Symmetry

* Any phase gives an equivalent state; the ordered state is characterized
by a particular phase
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Broken Phase (Gauge) Symmetry

* Any phase gives an equivalent state; the ordered state is characterized
by a particular phase

e There is an energy cost for gradients of the phase
1 h?
E = -ns— /(V@)dex
2 °m

o Stiffness constark is written asns(h?/m) andns is called the
superfluid density

¢ Stiffness constamniot the same as the condensate density: ng
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Broken Phase (Gauge) Symmetry

* Any phase gives an equivalent state; the ordered state is characterized
by a particular phase

e There is an energy cost for gradients of the phase
1 h?
E = -ns— /(V@)dex
2 °m

o Stiffness constark is written asns(h?/m) andns is called the
superfluid density

¢ Stiffness constamniot the same as the condensate density: ng

» Conjugate variable to the pha®eis the number of particlekl
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Broken Phase (Gauge) Symmetry

* Any phase gives an equivalent state; the ordered state is characterized
by a particular phase

e There is an energy cost for gradients of the phase
1 h?
E = -ns— /(V@)dex
2 °m

o Stiffness constark is written asns(h?/m) andns is called the
superfluid density

¢ Stiffness constamniot the same as the condensate density: ng
» Conjugate variable to the pha®eis the number of particlekl

« Currents and dynamics of the phase are coupled to the density, i.e.,
mass or electric currents
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Broken Phase (Gauge) Symmetry

* Any phase gives an equivalent state; the ordered state is characterized
by a particular phase

e There is an energy cost for gradients of the phase
1 h?
E = -ns— /(V@)dex
2 °m

o Stiffness constark is written asns(h?/m) andns is called the
superfluid density

¢ Stiffness constamniot the same as the condensate density: ng
» Conjugate variable to the pha®eis the number of particlekl

« Currents and dynamics of the phase are coupled to the density, i.e.,
mass or electric currents

o Currents are preseit equilibrium, and so aresupercurrents
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Supercurrents by Analogy

* One-to-one correspondence at the quantum operator level
hN=S and  Ophase= —Ospin

(e.g.,1= particle,| = no particle)
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Supercurrents by Analogy

* One-to-one correspondence at the quantum operator level
hN=S and  Ophase= —Ospin

(e.g.,1= particle,| = no particle)
« Gradient of the phase gives a flow of particles

an_

Frie —V -] with ] =ns(h/mVe
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Supercurrents by Analogy

* One-to-one correspondence at the quantum operator level
hN=S and  Ophase= —Ospin

(e.g.,1= particle,| = no particle)
« Gradient of the phase gives a flow of particles

an_

Frie —V -] with ] =ns(h/mVe

« Often associate a flow with a velocity: introduce superfluid velocity

Vs = (h/m)Ve
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Supercurrents by Analogy

* One-to-one correspondence at the quantum operator level
hN=S and  Ophase= —Ospin

(e.g.,1= particle,| = no particle)
« Gradient of the phase gives a flow of particles

an_

Frie —V -] with ] =ns(h/mVe

« Often associate a flow with a velocity: introduce superfluid velocity

Vs = (h/m)VO and then = ngvs
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Supercurrents by Analogy

* One-to-one correspondence at the quantum operator level
hN=S and  Ophase= —Ospin

(e.g.,1= particle,| = no particle)
« Gradient of the phase gives a flow of particles

an . . .
Frie —V -] with ] =ns(h/mVe

« Often associate a flow with a velocity: introduce superfluid velocity
Vs = (h/Mm)VO and thern = ngvs
* Or write in terms of flow of mass

p

= -V -g with g = psVs, ps = Mns
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Hydrodynamic Derivation

* Free energy expression: generalized rigidity and energy in external po¥ntial

f =

*ns (VO)? + Ln2 +Vn
2m 2

(K is bulk modulus)

Back
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Hydrodynamic Derivation

* Free energy expression: generalized rigidity and energy in external po¥ntial

f =

"*Ns ven? 1 tkn2 4 v
2m 2
(K is bulk modulus)

» Equilibrium phase dynamics (Larmor precession theorem) from dynamics with
added constant potentiaV :

W(V, 1) = (0, t)e NNVt
gives

: _ : of
h® = —§V oringeneral h® = — <—> = —U
on /¢
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Hydrodynamic Derivation
* Free energy expression: generalized rigidity and energy in external po¥ntial

h?ne

f =
2m

1
(V®)2—|—§Kn2—|—Vn

(K is bulk modulus)

» Equilibrium phase dynamics (Larmor precession theorem) from dynamics with
added constant potentiaV :

W(V, 1) = (0, t)e NNVt
gives
: _ : of
h® = —§V oringeneral h® = — (—) = —U
an J
* Entropy production argument from the thermodynamic identity
de = Tds+ udn+ @ -d(VO)  with & = (h’ng/mVO

gives the current of particles

N=-V_-]j with j =ns(h/mVe
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Currents that Flow Forever

79

()

///4—\\\1

A
—
\4

g = ps(h/m)(m/L) g = ps(h/m)(2r /L)

fvs-dl =1
guantum of circulation
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Josephson Effect

L

* Energy depends on phase difference. For weak coupling

1 2

E=-J.co90r2 — 01)

e Change in number of particles: currdnt d No/dt

dE

| = —
dO»

d.c. Josephson effect | = J:.SIin(®2 — B1)
» Time dependence of phase is given by the potential
h®; = —ui

a.c. Josephson effect h(®; — ©1) = —Au
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Breakdown of Superfluidity

“——— iy = -SAT + AP ———>

Y

sy

hA® = —Apu, vs = (h/MNsA® /L

» pressure or temperature difference accelerates superflow

» constant superflow does not require pressure drop
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Breakdown of Superfluidity

“——— iy = -SAT + AP ———>

Y

s,

hA® = —Apu, vs = (h/MNsA® /L

» pressure or temperature difference accelerates superflow

» constant superflow does not require pressure drop

“————nAp=-SAT +AP ——>

O Vs
@

» pressure drop (dissipation) requires passage of vortex topological defects
(“quantized vortex lines”) across flow channel

» presence of dissipation depends on whether vortices can be produced by thermal
activation or other mechanism

18
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Back

Josephson Effect for a Superconductor
* © Is phase opair wave function

e expressions must l@AUQge invarianin presence of vector potential
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Josephson Effect for a Superconductor
* © Is phase opair wave function
e expressions must l@AUQge invarianin presence of vector potential

For bulk material
Supercurrent: | = n h V@(X)—l—zeA
P =N hc
Josephson equationh® = 2eV
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Josephson Effect for a Superconductor
* © Is phase opair wave function
e expressions must l@AUQge invarianin presence of vector potential

For bulk material

Supercurrent: | = n h V@(X)—l—zeA
P =N hc

Josephson equationh® = 2eV

For Josephson junction, currentlis= [ j(y, z) dy dzwith

. o 2e [?
J(Y,2) = JcSIn (@2 — 01+ — AXdX)
hc 1

and
V = (h/2e)(®2 — O1)
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Josephson Junction in a Magnetic Field

L

©@©®© © @0

L . 2e (2
Josephson current densityj (y, z) = jcSin| ®2 — O1 + H:/ AxdXx
1
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Josephson Junction in a Magnetic Field

L

©@©®© © @0

L . 2e (2
Josephson current densityj (y, z) = jcSin| ®2 — O1 + H:/ AxdXx
1
For field Bz in junction the vector potential & = —ByX, so that
| o / dy jcsin[®>; — ®1 — (2e/hc)Byd]

giving
siN( ¢ /¢o)
¢ /Po

where¢ = Bld is the flux through the junction anth = hc/2eis theflux quantum
(2.1 x 10~ "gauss crf)

| = 1c(B)Sin(®2 — ®1) with lc(B) =

Back
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Back

Experimental Discovery of the dc Josephson Effect

CURRENT IN MILLIAMPERES

k=]

0.24 X 0.24 MM2

- = B |

o ! 2 3 )
VOLTAGE IN MILLIVOLTS

FIG. 1. Current-voltage characteristic for a
Ph-I-Pb junction at 1.3°K. The arrow marks the

predicted maximum magnitude of the Josephson cur-

rent.

500

200+ 2]

100 —

50 |-

20

CURRENT IN MICROAMPERES
=
I

0.5+
Pl H
[ II
0.2 |- 'i
[
0.1 ! | L | I |
=5 0 5 10 15 20
FIELD GAUSS
FIG. 3. The field dependence of the Josephson cur-

rent in a Pb-I-Pb junction at 1.3°K.

Rowell, Phys. Rev. Lett11, 200 (1963)
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SQUID

SuperconductingQuantuminterferenceédevice

00
Bg

1

00

2
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SQUID

SuperconductingQuantuminterferenceédevice

00
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1

00

2

Integratg = ns% (V@(x)—l—ﬁ—iA) around whole loop using fact that currgns small

2
501 — 50y — h—ifA-dl _ 2n/do

with ¢ = B x area, the flux through the loop.
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SQUID

SuperconductingQuantuminterferenceédevice

00
Bg

1

50,

Integratg = ns% (V@(x)—l—ﬁ—f’:A) around whole loop using fact that currgns small

2
501 — 50y — h—ifA-dl _ 2n/do

with ¢ = B x area, the flux through the loop.
Total current
| = Jc[SIN§®1 + SINO2]
= 2J; Sin(m¢/¢o) SiN[5(8@1 + 5O2)]

Maximum current varies periodically with applied field — very sensitive magnetometer.
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Back

Four Sounds in a Superfluid

Equations of motion for conserved quantities

p=-Vg
g=—VP
S=0

and the dynamics of the broken symmetry variable
h® = —u
which can be written as
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Back

Four Sounds in a Superfluid

Equations of motion for conserved quantities

p=-V-g
§g=—VP
$=0

and the dynamics of the broken symmetry variable
h® = —u
which can be written as
oVs =SVT — VP

Need to connect the momentum density to the superfluid velocity.
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Galilean Invariance
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Galilean Invarianc@&ransform to frame with a velocityvp:
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Galilean Invarianc@&ransform to frame with a velocityvp:

* Momentum density
g = psVs
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Galilean Invarianc@&ransform to frame with a velocityvp:

* Momentum density

g = psvs'”
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Galilean Invarianc@&ransform to frame with a velocityvp:

* Momentum density
g= psVs® + pvy
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Back

Galilean Invarianc@&ransform to frame with a velocityvp:
* Momentum density
g= psVs® + pvy

Define the “normal fluid densityp, = p — ps and write the transformed superfluid
velocityvg = véo) + Vn

g = psVs + PnVn
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Back

Galilean Invarianc@&ransform to frame with a velocityvp:
* Momentum density
g= psVs® + pvy

Define the “normal fluid densityp, = p — ps and write the transformed superfluid
velocityvg = véo) + Vn

g = psVs + PnVn

* Entropy current
j° = svp
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Galilean Invarianc@&ransform to frame with a velocityvp:

* Momentum density
g= psVs® + pvy

Define the “normal fluid densityp, = p — ps and write the transformed superfluid
velocityvg = véo) + Vn
d = psVs + PnVn

* Entropy current
j° = svp

* Momentum equation can be transformed to
osVs + pnVp = —VP
and using the equation feog in the form
(ps + pn)Vs = SVT — VP

gives
pn(Vs —Vp) = sSVT

Back Forward
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First Sound

Usual coupled density and momentum equations

p=-V-g
§g=-VP

and the pressure-density relationsiipié the bulk modulus)

5P =Kiép/p
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First Sound

Usual coupled density and momentum equations

p=-V-g
g=—VP

and the pressure-density relationsiipié the bulk modulus)
5P =Kiép/p

These givdirst soundwavescx € (@7=*Y propagating with the usual
sound speed = c;q with
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Second Sound

Coupled counterflow and entropy wave. Wdsex ¢; = density constangy =0
PsVs + pnVn = 0 = Vs — Vn = —(0/ps)Vn

(remembelps + pn = p).
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Second Sound

Coupled counterflow and entropy wave. Wdsex ¢; = density constangy =0
PsVs + pnVn = 0 = Vs — Vn = —(0/ps)Vn
(remembeps + pn = p).

Entropy equation: $= —sV - vy
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Second Sound

Coupled counterflow and entropy wave. Wdsex ¢; = density constangy =0
psVs + pnVn = 0 = Vs —Vn = —(p/ps)Vn
(remembelps + pn = p).
Entropy equation: §= —sV -vj
Entropy-temperature relationshig (s the specific heat)is = CsT/T
CT =sT(ps/p)V - (Vs — Vn)

Counterflow equation
pn(Vs —Vp) =sVT
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Second Sound

Coupled counterflow and entropy wave. Wdsex ¢; = density constangy =0
psVs + pnVn = 0 = Vs —Vn = —(p/ps)Vn
(remembelps + pn = p).
Entropy equation: §= —sV -vj
Entropy-temperature relationshig (s the specific heat)is = CsT/T
CT =sT(ps/p)V - (Vs — Vn)

Counterflow equation
pn(Vs —Vn) =SVT

These give propagatirgecond sounwaves with the speed

Ps SZT
Co=,———
\ on 0C
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Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean
iInvariance (nov,), temperature constant
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Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean
iInvariance (nov,), temperature constant

p=-V-g

g = psVs
pVs = —VP
P = —Kép/p
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Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean
iInvariance (nov,), temperature constant

p=-V-9
g = psVs

pVs = —VP

P = —Kép/p

These gives &urth soundvave propagating with the speed
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Third Sound

Wave propagating in thin films down to atomic layer thickness.
Like fourth sound, but involve changes of thickness rather than density,

and effective compressibility depends on strength of interaction with
surface.
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Sounds in Helium-4
4

Speed ¢

&econd
T

Temperature T c

K s2T K
P pn pC P P
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Next Lecture
Onsager theory and the fluctuation-dissipation theorem

e Derivation and discussion

« Application to nanomechanics and biodetectors
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