Lecture 9 Supplementary Notes: Derivation of the Phase Equation

Michael Cross: June 6, 2006

Derivation from Amplitude Equation

Near threshold the phase reduces to the phase of the complex amplitude, and the phase equation can be
derived by “adiabatically eliminating” the relatively fast dynamics of the magnitude. The basic assumption
is that we are looking at the dynamics driven by gradual spatial variations of the phase, i.e. that derivatives of
6 are small. For simplicity we will also assume that we are looking at small deviations from a straight stripe
pattern, so that the phase perturbations themselves may also be considered small. This lediteto the
phase diffusion equation first derived by Pomeau and Manneville (1979). We will consider the full nonlinear
phase equation in the more general context away from threshold.

Consider the (scaled) amplitude equation
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Expand in
» small phase perturbatiodsand amplitude perturbationa

» small derivatives o (up to second order)

Then using _ _
e KXe 9 A= dra+iadro,

the real part of the equation gives the dynamical equatioa,fand the imaginary part of the equation gives
the dynamical equation f@. The real part gives

dr8a = —2a%sa — 2Kay dx6 + 0%6a

For time variations on &-scale much longer than unity, the term on the left hand side is negligiblézand
is said to adiabatically follow the phase perturbations. The terégda will lead to phase derivatives that
are higher than second order, and so can be ignored. Hence

akda >~ —Koxh.

The imaginary part gives
ak 070 ~ 2K dxda + ax 956 + ax K 26.

Eliminatingsa and usinggZ = 1 — K2 gives

the phasdaiffusion equationn scaled units.
Returning to the unscaled units we get the phase diffusion equation
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with diffusion constants for the state with wave numbet qc + k (with k related toK by k = & Let/2K)
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A negative diffusion constant leads to exponentially growing solutions, i.e. the state with wave humber
gc + k is unstableto long wavelength phase perturbations for

l£ok| > £Y/2/4/3 Dy < 0: longitudinal (Eckhaus)
k<0 D, < 0: transverse (ZigZag)

General Method

Away from threshold the internal degrees of freedom as well as the overall magnitude again relax rapidly
compared to the phase variable for gradual spatial variations of the phase. The method of multiple scales can
again be used to derive the equation for the phase equation. This application of the method is a little different
from the derivation of the amplitude equation in that the slow scale is not determined by an independent
parameter such as but itselfdefineshe small parameter. The small parameter is essentially the reciprocal
of the length scale of the spatial variation (in units of the periodicity of the pattern).

The starting point for the derivation of the phase equation is the definition of the phase variable in terms
of the wave vector field

VO(Xi, 1) =q(X, T), 1)

or

0 =/q(X,T)-de. 2)
In these equations a slow space variableas been introduced. It is defined as
X = Xy, (3)

wheren is the small parameter such that the slow spatial variations of interest in the pattern occur over a
length scale of order unity in th¢ variable. Similarly a slow time scalk is introduced

T =nk, (4)

where the scaling witly? anticipates the diffusive nature of the dynamics. The wave vector defines the
orientation and local periodicity of the pattern: this variable therefore varies on the long length scale, and is
a function of the slow variabl¥, but not of the fast variabbe. In turn this slow spatial variation will induce
dynamics on the slow time scale. Note that B applies in regions of smooth variation of the pattern, away
from defects and disordered regions.

The expressions Eqgsl)( (2) are not easy to work with, because they mix the fast and slow coordinates
X1, X in an inconvenient way To develop the systematic perturbation expansion it is useful to introduce a
scaledphase variabl® (X, T), through

® = nb, (5)



so that the derivatives @ with respect toX areO(1) (the first derivative is just the wave vector). In terms
of the scaled phase we have

qX) = VxO(X), 6(X)= /OI(X) -dX. (6)

This clever trick allows the inclusion in the same formal expansion scheme of both the first derivative of
which is O(1) and gives the local wave vector, and higher derivative$, afhich areO(n), and give the
slow spatial variation.

With the definitions Eq.&), the derivation of the phase dynamics follows quite closely the multiple scales
derivation of the amplitude equation. In the present case, we expand the evolution equations for the fields
u(x, t) in powers ofy, corresponding to the slow spatial variationgof

The zeroth order solution far (i.e. no effect of the spatial variation gj is the fully nonlinear, spatially
periodic solutionuq (X, , z), which corresponds to the ideal stripe state with wave vegtofinceuy is
periodic inx, with period 2rq~! in the § direction, we redefine the spatially periodic function in terms of
the phase

Uq(X1,2) =0q(0,2), 6=0-X. (7)

The expansion in powers @fis then
U,z ) =u®@®,z X, T) +u® + -, ®)

where the dependencewf’ on the slow variableX, T arises through the implicit dependencegiX, T).
In particular we have for the zeroth order term

u®@®,z X, T) = Uqx.1 6, 2). (9)

Equation 8)is substituted into the evolution equations for the system, and terms at each ondanein
collected. To derive the lowest order phase equation, we need only go up to terms that are firstiprder in
These terms arise from slow spatial derivatives, slow time dependence, and also thefeimEq. @).

For example, a spatial derivative actingwh gives

vu® = qau® + nvxu®. (10)

Higher order derivatives may also be needed, for example

VA — g232u® + nDau + 0(n?), (11)

with the operatoD defined by
D=2q-Vx+ (Vx-0q). (12)

Also, the time derivative gives
qu® @,z X, T) = 0?3710 9pu® + n?9ru® = nar® deu" + O (). (13)

At O(n) there are also termg_u‘®, with L the linear operator given by linearizing the equations of motion
aboutu©@. We know from physical arguments thiathas an eigenvector with zero eigenvalue, and so the
phase equation appears as the solvability condition that the equatiofffbas a finite solution. Here we
see the close similarity with the derivation of the amplitude equation. The zero mode in the present case
corresponds to a translation of the solution, and so takes theVinofh.

This procedure is illustrated for the simple example of the Swift-Hohenberg equation in the following
section.
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Figure 1: Plot oy B(q) in the phase equation for the Swift-Hohenberg model. A control parameter value of
r = 0.25 was used in constructing the plot. The solid line is wH&rend (q B)’ (with the prime denoting
theq derivative) are positive, the dashed line is wh@8)’ is negative, the dotted line wheBeis negative,

and the dashed-dotted line where b&land(qB)’ are negative. The range qffor the solid curve is the
wave number band for which stripes are linearly stable against long length scale perturbations.

Phase Equation for the Swift-Hohenberg Equation

The Swift-Hohenberg equation is the equation for a real scalardiettkre we will use the equation in two
space dimensions, when it can be written in the form

ux, t) =ru — (V24 1% — u3, (14)
with X = (X, y), andVv? = 32 + 85. As in Eq. @), we expandi as an expansion in powers pfto give
ux,t) =u?@®, z X, T) + nu® + h.ot., (15)
with X, T the slow space and time variables, as in Egg)(andu©® the zeroth order solution
u®@®,z X, T) = lgx.m ), (16)

wherelq (6 = qx) is the nonlinear, spatially periodic, time independent solution for straight stripes which
satisfies
rq(0) — (0°07 + 1)°0q(6) — U5(0) = 0. (17)
The h.o.t. in Eq.15) denotes terms that are second order and higher in
We now substitute Eql16) into the evolution equation, Eql4). We will need the rather complicated
operator involving up to fourth order derivatives

(V2 + 12 — [(9%92 +1) +1Dd][(@%9 — 1) + nDdy] + h.o.t. (18)
= (9% + 1” +n {20,(9°0; + DD +[2q - Vx(@))]9;} + hot.. (19)
The other terms in Eql@) are easy to evaluate up to first ordemin
du(x, t) — n(810)dy0q(0) + h.o.t., (20)
ru—u®— riq — 0 +n[r — 36 u® +hot. (21)



Now collecting terms a© () we find the equation
[r — @%0F + 1)? — 362 | u® = (3r©)lq(0) + {205 (0°07 + DD +[2q - Vx(@)]35} Ug(0).  (22)
It is straightforward to check thay U is a zero-eigenvalue eigenvector of the operator on the left hand side
[r — (997 — 1)* — 30Z] 95Uq = O, (23)

as is expected from the translational symmetry. The operator acting’dn Eq. (22) is self adjoint, and so
the solvability condition, that the right hand side have ho component along this eigenvector, reduces to the
orthogonality condition for the right hand side wif:

21 21
(071 ©) d6(3pUq)* + / d6 (3ptq) {235(%9; + 1D + [2q - Vx(g?)]3;} Ug = O. (24)
0 0

After integrating by parts with respect fosome terms in the second integral, and rearranging, this reduces
to

2 2
(9710) dé(3plq)? = Vx - {q/ do [9°(87Tq)* — (aguq)z]}. (25)
0 0
Eq. 25) is in the form introduced in the lecture (returning to unscaled variables)
(@0 =V - [qB(a)] (26)
with
1 [ o
=2 [ do@n?, (272)
T Jo
1 2 _ ~
B(q) = ;/ do [0(87Uq)? — (360q)?] - (27b)
0

(Since we can multiply andB by the same arbitrary constant without changing the equation, | have included
a normalization constant/x in these expressions for convenience.)

These integral expressions depend on knowing the full nonlinear, but spatially periodic stripe solutions to
some satisfactory level of approximation. A simple lowest order mode truncationigjvesa, cost, 6 =
gx, with

4
g =3[r—@-17. (28)
Then we find
7(q) = aj, (29a)
B(g) = (9° — Da. (29b)

The functionag is positive everywhere between the neutral stability curve of the uniform state, and goes to
zero on the neutral stability curve. The functiBiq) changes sign ai = 1. It is useful to plotg B(q),

since the slope of this curve is needed to calculate the parallel diffusion constant, and the fgasdof

(g B)’ with the prime denoting the derivative with respectjiare important in determining the stability of

the stripe state against long wavelength perturbations. The dependaenB@nfthe wave numbaeg for the
Swift-Hohenberg model at = 0.25 is shown in the figure.
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