Lecture 8 Supplementary Notes: Method of Multiple Scales
Michael Cross, 2005

These supplementary notes describe the details of the multiple scales perturbation method. This method
is useful in a variety of situations for extracting the slow time dependence of patterns or other systems. The
slowness of the time variation may derive from the proximity to a bifurcation, or because of symmetry for
example in the situation of gradual spatial distortions of a pattern.

There are two key tricks of the method that may be unfamiliar. The first is the idea of introducing scaled
space and time coordinates to capture the slow modulation of the pattern, and treating these as separate
variables in addition to the original variables that must be retained to describe the pattern state itself. This is
the idea ofmultiple scales The second is the use of what are knowrsalsability conditionsn the formal
derivation.

I will formulate the method in terms of deriving the amplitude equation for a rotationally invariant system
with a stationary instability to a stripe state. The amplitude equation is an equation derived as an expansion
near threshold and in the small size of the magnitude of the spatially periodic deviation from the uniform
state. The idea of expanding the nonlinearity in the small amplitude, based on the smallness of the deviation
e = (p — p.)/ p. of the control parameter from the threshold valug. will not be unexpected. However
there are technical differences from more familiar type of perturbation theory often encountered in physics,
such as perturbation theory in quantum mechanics on adding a small potential to a Schrédinger equation that
can be exactly solved. The difference arises because in the present case the expansion is about a solution
to the linear approximatiowhich has arbitrary sizésince the equation is linear) but the perturbation (the
nonlinearity) then fixes the magnitude. Thus we are expanding about an solution with free parameters (the
magnitude of the linear solution) which must somehow be fixed within the perturbation scheme.

Multiple Scales

The general framework of the type of problem we are addressing is the set of nonlinear pdes
o:u, = Lu, + N[u,], Q)

for the vector of perturbation fieldsy (X, ) = u(X, t) — u,(x;) about the solutiom, (x;) which is uniform
in the extended directions . The extended directions are supposed infinite in extent. In1kg.is a linear
differential-matrix operator that depends on the control parametandN collects all the terms that are
nonlinear inu,. The linear instability of the uniform state is signalled by a zero eigenvalue of the oplerator
for a perturbation at the critical wave vecty. We choose our coordinate system witlalongqg.and then
the onset of instability is defined by

Lo[e'**To(x))] =0 2)

with Lo equal toL evaluated at the critical value = p. and we choose some convenient normalization
convention forip(x).

Near threshold we expect that the solution might saturate at small magnitude, and we look for the behavior
of such solutions. Furthermore we expect the solution to “look like” the linear solution, i.e.
to largely have the same spatial structure. Thus we look for solutions

u, =¢eup+eur +-- -, 3)



with p; some increasing set of powers amga slow space and time modulation of the critical solution
Up = Ao(X, Y, T)eiq"xl_,lo(x”) + C.C.. (4)

Itis here that we introduce the multiple scales. The physicsAhdescribes slow modulations of the pattern

is introduced at the outset through slow space and time variables, which are traditionally written as upper
case letter(, Y, T. The variablesX, Y, T are scaled versions af y, 7 so that anO(1) change ofX, Y, T
corresponds to a small change in the physical variables

X =g Px, Y =¢ Py, T =¢ My, (5)

with the powers,, p,, p; to be chosen appropriately. We use the symhin Eq. (¢4) because the higher
order terms in Eqg.3) contain terms analogous to Ed) put with amplitudesd;, determined by their own
amplitude equations. These amplitudes give additional terms in the amplitude that are higher gider in

The powers ot introduced in Eqs.35) can be found in one of two ways. The first is to leave them
as unknown powers, proceed with the expansion, and find what values are needed to get the various terms
(nonlinearity, spatial derivatives) to balance in the equation, that is to appear in the resulting equation with
coefficients that scale with the same powet oThe second is to use phenomenological arguments to fix the
powers at the outset, with of course the consistency of the formal procedure that follows as a check. | will
follow the second approach, since it leads to a more transparent development.

Phenomenological arguments suggest the scaling

X =¥y, (6a)
Y = g4y, (6b)
T = st. (6¢)

The scaling of the space variables is motivated byalie'/?) width of the wave number band near threshold.
As we will see when we talk about symmetry, the different scaling inxttaend y direction is motivated
by the different dependence of the growth rate on wave vector perturbationsxratiy directions: for

q = q.% + (O, Q,) the change in growth rate is quadraticdn (hence the2 scaling ofX) but fourth
orderinQ, (hence the'/* scaling ofY). Furthermore, the amplitude of saturation is expected t0 @€/?),
and so we writal, as an expansion in powers of 2

u, =¢&"up+etug 4 -+, ()

with ug as in EqQ. 4) introducing the amplitudd .

The scheme is now to substitute E@) {nto 1, and collect terms at each orderdH?. To do this we
must learn how to evaluate the derivatived.iacting onu, expressed in terms of the multiple scales. This
follows from the general rule of differentiation: if we have a dependent variahlg and a functionf (x, y)
with dependence omn andy, then the derivative of with respect toc is

af _of dyof

= ) 8
dx 0x dxdy ®

This is the situation we have, with the dependent variatle) = ¢~2x. It follows that a spatial derivative

acting onu, can be written
(aup> (aup> 81/2<8up> ’ ©)
ax /, X Jx, 0X /)y

1we use the symbolg here, because the higher order terms in E8) ¢ontain terms analogous to EG? but with amplitudes
A;, determined by their own amplitude equations. These amplitudes give additional terms in the ampltidue that are higher order in
1/2
&




or in short
3y — 0y + &Y%y (10)

where on the right hand side tlde will operate on thee*4-* dependence and trég will act on the X
dependence of th4;. Extending this scheme we have

3y, — 9, + &¥*y. (11)
Higher order derivatives are readily evaluated, e.g.
V2 =02+ 02+ 092 > 924 02 + £Y/%(20,0x + 37) + £05%. (12)

The component at ordet/? of Eq. (12), which gives 2¢.3x + 32 when acting on a term iei%*, will become
familiar as the representation at a particular order @f the rotationally invariant Laplacian. Similarly the
time derivative becomes

8, —> 88]‘, (13)

since there is no fast time dependence in the basedtate

Solvability Conditions

The equations of motion are now formally expanded in the small parameded the terms at each order
collected and equated to zero. We first rewrite the general equations of motion as

Lu, = d;u,—N[u,], (14)

The linear part of the evolution equation is then expandedusing Eqs.$-13) and the proximity of the
control parameter to onspt= p.(1+ ¢) to give

L=Lo+eY2Li+---. (15)

In particularL g is the linearization of the equations of motion about the uniform solutienug evaluated at
p = pe, asin Eq. B). Note that the.; fori > 0 will typically contain both fast and slow derivatives (edg.
anday).

Equations 8, 4, 9, and13) are substituted into Eql{), and terms at each order émare collected. At
orders "+1/2 this will generate an equation for the unknown

Lou, =rhs (16)

The symbol rhs denotes terms evaluated from lower order calculations depending and therefore
depending on the amplitudds,, for m < n. Note that since there are only slow time derivati®es> o,
the time derivative only appears in rhs as slow time derivatives of the lower order amplitudes.

As well as leading to the solution for,, equation {6) actually generatesonstraintson the rhs that are
thesolvability conditionghat lead to the important equation for the as yet unspecified amplitpides well
as to equations for its higher order companidnsvhen the expansion is continued further. The solvability
conditions arise becausg has a null space, with at least one eigenvector with zero eigenvalue. We know
this to be true because the unstable mode has zero growth rate precisely at onset, and this growth rate is the
eigenvalue oL ; this is the content of Eq2J. The constraints on the rhs arise because Eg.dnly has
finite solutions foru,, if the expression rhs has no components in this null space. Technically, this can be

2|f we were to construct the amplitude equation for an oscillatiry instability this would not be true. In that case, we need to
include the fast dependendertzan the linear operatof. since this is an essential part of constructing the linear solution.
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expressed by the condition that “rhs is orthogonal to the zero-eigenvalue eigenvector of the adjoint operator
Lg This conditions is certainly a mouthful, and you may need to remind yourself from a linear algebra text
about the mathematics of resolving a vector along basis vectors, the formal definition of the adjoint operator,
and why this statement tells us that rhs then has no components along the zero eigenvegtoEwén
after understanding the formal content of the expression, sipcein general a matrix differential operator,
finding the adjoint and its zero modes is often a difficult calculation in practice. The explicitimplementation
of the solvability condition in the examples below should help clarify the concepts.

With the solvability condition satisfied, we can formally invert Ebg)(to give

U, = Lot(rhg) +[A,(X, Y, T)e'**Tg(x)) + C.C], (17)

where the second term is the complementary function for the opérafoe. the solution to the homogeneous
equation given by setting rhs to zero) and introduces an unknown higher-order amplitude furctitime
solvability conditions at a higher orders eventually lead to the equation for this new amplitude.

This is actually a familiar scheme to those who know secular perturbation theory. We recognize that we
are perturbing about the base solutignwhich however contains a free complex amplitude, corresponding
to the arbitrary magnitude of the solution to the linear problem, and the arbitrary position of the stripes. A
naive perturbation expansion will lead to corrections to this base solution that grow without bound as time
increases. Secular perturbation theory eliminates these problem terms by placing constraints on the zeroth
order solution via the solvability condition: we need to choose the “right” zeroth order solytiarEqg. (7)
so that the “correction terms” expressed by the higher order terms are indeed small.

The actual implementation of the scheme for realistic systems is quite involved, even when the base
solution is known analytically. | will demonstrate different aspects of the procedure in two examples.
First | present an elementary introduction using the Lorenz equations. These are three coupled nonlinear
odes that played an important role in the development of chaos theory. This first example illustrates the
approach in a simple context, the technique of introducing the slow time #cadad also promotes an
understanding of solvability conditions in the context of matrix equations. However since these equations
are ordinary differential equations, they do not illustrate the introduction of the slow spatial dependence. The
second example, on the Swift-Hohenberg equation, illustrates the spatial aspects. A more complete example,
involving most of the major issues encountered in a typical calculation, is the derivation of the amplitude
equation for the full equations of porous convection provided in separate notes.

Amplitude Equations
Lorenz Model

As a simple illustration of the derivation of amplitude equations by the method of multiple scales, we
implementthe approach for the Lorenz equations for Rayleigh-Bénard convection. These ordinary differential
equations are thstarting pointfor the subsequent analysis—you do not need to understand their derivation
to benefit from the following discussion.

The Lorenz equations are three coupled equations for the components of theiecto X (), Y (¢), Z(t))

X=—-0(X-Y), (18a)
Y=rX-Y-XZ, (18b)
Z =b(XY - 2). (18c)

where the dot denotes a time derivative. Briefly, the physical content of the equations is the following. In a
simple truncated-mode approximation for convecti®mepresents the circulation velocity in the convection,
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Y the spatially periodic temperature perturbation, Zrttie heat transport due to the convection. The control
parameter is the reduced Rayleigh number= R/R., o is the Prandtl number, andis a numerical
constantp = 8/3.

A linear stability analysis of Eq.18) shows that the simple solutiai = Y = Z = 0 (the uniform,
no-convection state) undergoes a bifurcation at the critical valeel to a state with nonzers, Y, Z (the
convecting state). We wish to derive an amplitude equation that describes the time evolution to the nonlinear
state that develops ferslightly larger tham.. To develop the perturbation expansion we write the bifurcation
parameter = r.(1+ &) = 1 + ¢, and there is the small parameter.

We write Egs. {8) in the form of Eq. (4)

du
Lu, = —2 — N[u,], 19
p =L = Nu,] (19)
with u, the perturbation from the base state= 0, L the evolution operator acting an,, linearized about
X=Y=7Z=0,
-0 0o 0

L=| 1+ -1 O , (20)
0 0 —-b
andN the nonlinear term
0
Nul=| —XZ |. (21)
bXY

The linear operatok is expanded in powers &f/2

L=Lo+e&YLi4+¢eLlo+---, (22)
with
-0 o O 0 0O 0 0O
Lo = 1 -1 0 |, L=l 00 O0{, L,=|1 0 0. (23)
0 0 —-b 0 0O 0 0O

The eigenvalues of the matrlxy are 0,—(o + 1) and —b, and the corresponding eigenvectors eye=
1,1,0), & = (—0,1,0), ande, = (0,0, 1). The zero eigenvalue corresponds to the onset of the linear
instability. Also we expand, = (X, Y, Z) in powers ofe/?

u, = e¥2uo(T) + euy(T) + - - -, (24)

introducing the slow time variabl& = ¢t, since we are looking for solutions corresponding to the growth
of the weakly unstable mode to saturation. The teup/d first contributes av (¢%2)

du du du

p 820 28 (25)

dt dT dT
These expressions are to be substituted into E®, énd then we demand that the equation is true at each
order ins%2.

At O(¢%?) Eq. (19) reduces to
Loug = 0.

This shows us thaig is simply some amplitude of the zero-eigenvalue mode

1
Uo=Ao(T) | 1 |, (26)
0



which introduces the amplitude functiery. In the present cas#y is the amplitude of a real vector, and can
be taken as a real function.
At O(e) we get (sinceu — Lguy + Liug andLy is zero)

0
Lou; = 0 R (27)
bA3

where the term img is the O (¢) nonlinear term, namely XY evaluated with the solutiong. The solution
of the type of algebraic equatidtv may cause problems, because the mdtgis singular, i.e. it has an
eigenvalue that is zero, so that the invelrgé may not be formed. In the particular case of Exy)( we see
by inspection that the right hand side has no component along the zero-eigenvalue eigenveqthrl, 0)
of L. In this case Eqg.47) canbe solved. We find

0 1 Ay
U, = 0 + Aq 1 = Aq s (28)
—Aj 0 —Aj

where the second term introduces the next order corredtiofi) to the amplitude that will be determined
at a higher order of the expansion: you can check thatZE#f).i¢ satisfied by Eq.48) for any value ofA;.
At 0 (£%?) we find
BTAO
Lous = —cAg + Ag +0rAg |, (29)
bAoAq

where the right hand side gets contributions frefn,ug, —N, anddu,/dt. Now to solve foru, we must
explicitly demand that the right hand side of Eg9) has vanishing component along the zero-eigenvalue
eigenvectorl, 1, 0). This is equivalent to the statement that the right hand side must be orthogonal to the
zero-eigenvalue eigenvector of the adjoint opera@)rFor a real matrix, the adjoint is just the transpose, so
that

- 1 O
Li=| o -1 0 |. (30)
0 0 -b

You can check thaig doesindeed have a zero eigenvalue, for which the corresponding eigenvékitor 3).
The condition that the right hand side of Eg9) is orthogonal to this vector yields the amplitude equation

for Ag L
+o

drAog =eAg — A} (31)

Equation 81) describes the slow growth and nonlinear saturation of the amplitude of the unstable mode
near threshold. In this way, the solvability condition for the existence of the solutiahO (¢%?) imposes
constraints (in the form of a dynamical equation in the slow time dependence) for the ampljind®duced

in the solutionug. Similarly, extending the procedure ®@(s?) would yield a dynamical equation for the
next order correction to the amplitudg, as well as introducing a further correctidn, and so on.

This example of the derivation of an amplitude equation introduces many of the features of the full
calculation, although there are some simplifications that may not occur in general. For example in the
present casky is real. For a real matrix the adjoint is the transpose. In more general examples the operator
Lo will be a complex, matrix differential operator, and we must expand our notions of vector spaces, adjoint
operators, etc., in the usual way to function spaces.



One Dimensional Swift-Hohenberg Equation

The one dimensional Swift-Hohenberg equation
du(x,t) =ru — (0% + 1%u — u>. (32)

was introduced in the lectures as a simple mathematical model displaying the phenomenon of pattern forma-
tion. The model has a stationary instability from the uniform siate O at the critical value of the control
parameter = r. = 0. The critical wave vector ig. = 1, so that the onset moded$*. | now show how
to derive the lowest order amplitude equation for this model. The new feature that goes beyond the previous
example is the spatial dependence in the evolution equation, and in the resulting amplitude equation.

The evolution equatior3) can be written in the general form, E44j, with the linear operatak given
by

L=(r—1—23-d% (33)

and the nonlinear operatdf by
Nlu,] = —ud. (34)

p

Following the general procedure outlined at the beginning of these notes, we introduce the small parameter
¢ as the distance of the control parametérom its critical value (here. = 0), r = ¢, and then expand the
field u(x, t) and the evolution equation in powersadf2. We expand:(x, ¢) as

u = eY%uy + euy + h.ot. (35)
with ug given as some slowly varying amplitude (X, T') of the critical mode
uo = Ao(X, T)e™* + c.c. (36)

HereX andT are the slow space and time scalksz ¢'/2x, T = ¢t. In the present case, unlike the previous
example, the onset mode is complex, and so the amplitude is a complex function. The phase of the complex
amplitude is important because it connects to the translational symmetry of the system

Inthe expansion of the linear operafoin powers ok, we introduce the multiple scales by the substitution
9, — 9, + £¥293x. This leads to the replacements

32 — 92+ 223, 9y + £33, (37a)
3% — 9%+ 4e%2939x 4+ 69202 + - - - . (37b)

Thus we find at successive orders:i?

Lo=—1-—23%-9% (38a)
L= —4(0% + 1)32, (38b)
Ly =1-20% — 60%9%. (38¢)

The nonlinear term, and the time derivatiye — ¢d7u, contribute a0 (¢¥2) and higher.
Now collect terms at each order 42 in the expansion of Eq3Q). At O (¢¥/?) we find

Louo = O, (39)
which is automatically satisfied by the expression B§).(At O (¢) we have

Loul = —Lluo = 0, (40)



since the operatdid? + 1) in L gives zero when acting ar¥'*. Thus we simply have
ur = A1(X, T)e'™* +c.c., (41)

which introduces the next order correctidn to the amplitude. A (¢%?), after some effort, we find the
equation _ A
Louz = [—(1+ 43%) Ao + 7 Ao + 3|AJ| Ao] €™ + AJe™™ +c.c.. (42)

The amplitude equation fotg arises as the solvability condition for this equation. The solvability condition
arises because the functiosi$* satisfy the homogeneous equation

Loe™™ =0, (43)

(i.e. they are zero-eigenvalue eigenvectorsifgy. Thus the coefficient of the*’* dependence on the right
hand side of Eq.42) must be set to zefo This yields the amplitude equation

dr Ao = 1+ 495 Ag — 3| A3| Ao. (44)
Returning to the unscaled variables, and writing at lowest afders'/2 A, yields
d Ao = Ao+ 497A0 — 3|Aj] Ao, (45)

which has the form of the general amplitude equation for a stationary instability to stripes, reduced to one
spatial dimension, with values of the parameters

0 = l, r’;:o = 2, g0 = 3. (46&)

We can easily verify that after the solvability constraint is satisfied, ££).¢an indeed be solved. The
terms remaining in Eq4Q) are

Louy = Age3ix + C.C., 47
which can be solved by inspection to give
1 . ,
Uy = —aAgesm + Ae"* +c.c., (48)

with A1 not determined at this order. EquatiatB) can be used to extend the expansion to higher order.

Other Applications of the Solvability Condition

The solvability condition also arises in other situations not arising from a multiple scales expansion. The key
ingredient that leads to solvability conditions is the need to invert a linear operator with a zero eigenvalue.
In a perturbation context, a zero eigenvalue often arises from a symmetry. For example in a translationally
invariant system, the spatial derivative of a stationary localized solu§oo to

o,u = Ou(x, 1) (49)

satisfies
LVue=0 (50)

where L is the linear operator given by expanding the oper&@aaboutug. An example of this is in
the calculation of the climb of dislocations, where we are seeking the dynamics through symmetry related
translations along the stripes.

3This is easily seen to be same as requiring orthogonality to the zero eigenvalue adjoint eigenvéctor
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