
Lecture 8 Supplementary Notes: Amplitude Equations

Michael Cross, June 1, 2006

These are more detailed notes on the derivation and properties of the one-dimensional amplitude equation.

Introduction

It is easy enough to discuss the evolution of infinitesimal perturbations of a uniform state into saturated,
stationary, spatially periodic solutions. By restricting attention to these simple solutions, it is straightforward
to formulate the effects of the nonlinearities, using analytical methods near threshold (bifurcation theory)
and fairly simple numerical methods further from threshold. However, most realistic geometries do not
permit spatially periodic solutions since these are usually not compatible with the boundary conditions at the
lateral walls. Even if periodic solutions are consistent with some finite domain, they do not exhaust all the
possibilities. More typically, only over small regions do patterns have the ideal form (stripes, hexagons, etc.),
and these ideal forms are distorted over long length scales, and disrupted in localized regions by defects. In
addition the distortions and defects are often time-dependent. Theamplitude equation formalism provides
a method to study spatial distortions of ideal patterns and their time dependence.

Amplitude equations capture three basic ingredients of pattern formation: the growth of the perturbation
about the spatially uniform state, the saturation of the growth by nonlinearity. and what we will loosely
call dispersion, namely the effect of spatial distortions. The interplay of these three effects lies at the heart
of pattern formation, and amplitude equations have yielded many useful quantitative insights. In addition,
amplitude equations provide a natural extension of the classification of pattern forming systems based on
the type of linear instability into the weakly nonlinear regime. Such behavior, common to a class of diverse
systems, is often calleduniversal1. The remarkably similar pattern formation that is observed in diverse
systems can often be understood as a consequence of the universal forms of the amplitude equations.

The increased generality of the types of states that can be investigated within the amplitude equation
comes with the penalty that amplitude equations have a restricted range of validity. The amplitude equation
formalism is derived as an expansion about threshold, and so the quantitative applicability is restricted to
small values of the expansion parameter

ε = p − pc

pc
, (1)

wherep is the control parameter such as the Rayleigh numberR andpc is its critical value above which the
uniform state becomes unstable in the ideal infinite system. In addition, the distortions that can be studied
are only those modulations of ideal patterns (stripes, squares, hexagons, etc.) that vary slowly in space and
time compared to the basic length and time scales of the dynamical equations. In addition, a slow variation of
the pattern that leads to large reorientations over large distances such as may occur in a rotationally invariant
system is not contained within the amplitude equations that have been derived at the time of writing.

The complex amplitude that describes modulations of a stripe state near threshold is introduced in §??.
The equation of motion satisfied by this amplitude is derived using symmetry arguments, with the parameters
fixed by referring to a number of simpler calculations. (A systematic but more technical derivation using the
method of multiple-scale perturbation theory is given in separate notes) The amplitude equation is a pde, and
its solution requires the knowledge of boundary conditions, which are derived from the boundary conditions

1The worduniversal is not meant to imply that the behavior applies to every system, but rather to a whole class of systems
characterized by broad similarities, such as symmetries and instability type. The behavior for systems in different “universality
classes” may be totally different.
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on the physical fields. In the common case of boundaries that tend to suppress the pattern, we show that the
boundary conditions take on a simple form that is also universal. A more complex analysis addresses the
appropriate boundary conditions where the boundaries strongly drive the pattern.

We then discuss important general properties of the amplitude equation. We first display the universality
of the amplitude equation and discuss some physical implications of universality. The simplest way of
showing the universality is to note that by choosing new length, time, and magnitude scales, the equation can
be reduced to a parameter independent form. After this, we show that in many situations the dynamics of the
one dimensional amplitude equation has the special property of being “potential” (also called “relaxational”).
This means that we can find a functional (called the potential and sometimes the Lyapunov functional) that
decreases monotonically over time for any initial condition of the amplitude. The existence of this potential
is a mixed blessing. On the one hand, the potential often allows a more intuitive understanding of the
dynamics and can greatly simplify various calculations. On the other hand, since this feature is reminiscent
of the systematic increase or decrease of thermodynamic potentials approaching thermodynamic equilibrium,
and because the existence of the potential turns out to be an artifact caused by retaining only the lowest-
order nonzero terms in the perturbative expansion that yields the amplitude equation, we may worry that the
potential nature of the dynamics indicates the failure of the amplitude equation to encompass the full richness
of possible behaviors.

We conclude with a discussion of three simple but important applications: the effect of boundaries on
the nonlinear pattern; the stability balloon near threshold; and the slow dynamics of special distortions
corresponding to slowly varying compression or dilation of the pattern which is captured by studying the
phase dynamics, i.e. how the phase of the complex amplitude itself evolves in time.

Origin and Meaning of the Amplitude

We define a spatially dependent complex amplitudeA(x, t) in terms of perturbationsup = u(x, z, t)−ub(z)
from the uniform base stateub by the equation

up(x, z, t) =
[
A(x, t)uc(x‖)eiqcx + c.c.

]+ h.o.t., (2)

where, as before, “c.c.” denotes the complex conjugate of the prior expression and “h.o.t.” means “higher
order terms” that are smaller in magnitude than the displayed terms in the limit that the reduced bifurcation
parameter Eq. (1) becomes sufficiently small. The ansatz Eq. (2) is key to the further development and
warrants careful discussion.

We choose to base our expansion around the critical onset modeuc(x‖)eiqcx whereqc is the critical
wave number that minimizes the onset control parameterpc. The functionuc(x‖) is the shape of the critical
unstable mode and is known to us from the linear stability calculation. We assume first a situation where the
modulations of the critical onset mode only depend on the direction normal to the stripes.

The amplitudeA(x, t) introduces a slowmodulationof the critical solution in the extended direction
x. Since we are basing the expansion on the behavior of the sinusoidal mode atqc, we restrict the spatial
variation ofA to be on a much longer length scale than the basic length scaleq−1

c of the pattern formation.
With this constraint, only wave numbersq close to zero will appear in the Fourier representation ofA, and
correspondingly only wave numbers close toqc will appear in the representation of the perturbationup2.

2The ansatz Eq. (2) is basically a generalization of the phenomenon ofbeatingto include many modes that all vary with nearly
the same wavenumber. You have perhaps heard the result of playing two sinusoidal sound waves of slightly different frequencies,
which combine to produce what sounds like a single tone whose intensity varies slowly with time. Mathematically, the expression
sin(ω1t) + sin(ω2t) = [2 cos((ω2 − ω1)t)] sin((1/2)(ω1 + ω2)t). For two frequenciesω1 andω2 that are close in value. this
expression corresponds to aslowperiodic modulationA(t) sin(ωat) of a signal at their average frequencyωa = (ω1 + ω2)/2 ≈
ω1 ≈ ω2, where the amplitudeA = 2 cos(1ωt) varies slowly specifically because the range of frequencies1ω = ω2 − ω1 about
the average is small.
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Figure 1: An example of a modulated sinusoidal solution. The function plotted (heavy curve) isu =
A(x)eiqcx + c.c. with qc = 1 andA(x) = (0.5+ 0.1 cos(0.1x))ei cos(0.2x). The magnitude modulation is
shown by the two light curves± |A (x)|. The phase modulation gives a varying periodicity to the heavy
curve. (The numerical values appearing inA(x) are chosen arbitrarily, within the constraint that the variation
of A(x) should be slow compared to the unmodulated wave, for illustration purposes.)

RestrictingA to vary slowly over space necessarily implies thatA varies slowly over time. The reason is
that, at the linear level, an onset mode with wave vectorq has an exponential growth rateσq that goes to zero
as onset is approached (ε → 0+ andq → qc). The functionup then consists of a superposition of modes
whose growth rates are all close to zero.

A simple illustration of a one-dimensional modulated periodic stateu(x) = A(x)eiqcx + c.c. is shown in
Fig. (1). We use a base wave numberqc = 1, and an illustrative modulation function

A(x) = [0.5+ 0.1 cos(0.1x)]ei cos(0.2x), (3)

The expression|(1/A) dA/dx| is the effective local wave number in the Fourier expansion ofA and you can
verify graphically that its maximum is about 0.2. Since this is small compared toqc = 1, we can indeed
think ofA as a slow modulation of the periodic state cosx. An obvious feature of Fig.1 is the modulation of
the magnitude of the sinusoid but if you look carefully, you will also see that the local periodicity ofu (e.g.,
the distance between two adjacent zero crossings) is no longer constant, so that the wave number also has a
slow spatial modulation.

Our discussion so far of the “slow” spatial and temporal variations of the amplitudeA compared to
the “fast” dynamics of the physical fields has been informal and so somewhat vague. The mathematical
formalism of multiple scales makes the discussion of slow scales precise and allows the higher terms “h.o.t.”
in Eq. (2) to be calculated systematically.

It is often useful to express the amplitudeA(x, t) in magnitude-phase form

A = aeiφ, (4)

wherea(x, t) is its real-valued magnitude andφ(x, t) is its real-valued phase. The magnitude and phase then
play different roles in the dynamics ofA. The magnitude gives the size of the perturbationup near onset
and typically evolves relatively quickly, often showing an exponential decay to a steady value. On the other
hand, the phase sets thepositionof the growing stripes, e.g., a constant phaseφ0 translates the fieldup rigidly
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by a distance−q−1
c φ0 in thex direction. Because of its link to translational and rotational symmetries of the

system, the phase generally evolves more slowly than the magnitude and its dynamics can often be isolated
and studied separately.

A slow variation in the amplitude’s phase corresponds to a stretching of the wave number of the critical
state (see Fig.1). We can see this by examining the effect of the lowest-order non-constant terms of a
Taylor-expansion of the phaseφ = Qxx + · · · in the vicinity of some point (which we can assume to be the
origin by translational invariance) and by assuming that|Qx | � qc so that the phase is slowly varying (large
changes inx lead to only small changes inφ). The linear variation withx

φ = Qxx (5)

corresponds to a change in the wave number of the pattern so that the wave vector of the perturbation Eq. (2)
is q with

q = qc +Qx. (6)

We conclude our discussion of the ansatz Eq. (2) with a few comments about where the higher-order-
terms “h.o.t.” come from. If the expansion inε of Eq. (1) is formally carried out, corrections indeed arise
that are proportional to higher and higher powers ofε. Some of the corrections come from spatial harmonics
that are generated by the nonlinearities, for example cubing the sinusoid cosqx creates a harmonic cos 3qx.
But there are also corrections that arise at the linear level since, for a spatially varying amplitude, the
structureuc(x‖) will not give the precise solution to the evolution equations. For example, a variation
corresponding to a shift of wave number will changeuc to uq in the exponentially growing solution. In
addition, the mode structure is perturbed if the control parameter is not exactly equal to its threshold value,
which also leads to higher-order-terms in Eq. (2).

Derivation of the Amplitude Equation

Phenomenological Derivation

The evolution equation for the amplitudeA known as theamplitude equationcan be derived by substituting
Eq. (2) into the evolution equations for the physical fieldu and then using the formal multiple scales expansion
technique. Instead, we will proceed more phenomenologically to deduce directly the form of the amplitude
equation. This involves writing down terms that are low order in the various small quantities and then
considering how various symmetries restrict the possible form. While this phenomenological approach
suffices for the simple case of the lowest-order one dimensional amplitude equation, ultimately a formal
expansion is needed to understand the regime of validity of the amplitude equation, to obtain higher-order
corrections that may important for understanding particular experiments, and to extend the method to more
complicated situations such as degenerate bifurcations.

We argue that the one dimensional amplitude equation for a modulated stripe state near the onset instability
takes the form

τ0∂tA(x, y, t) = εA+ ξ2
0∂

2
xA− g0|A|2A, (7)

whereε is the reduced bifurcation parameter Eq. (1). The quantitiesτ0, ξ0, andg0 are constants that depend
on details of the physical system and can be calculated from the known evolution equations. In contrast,
the mathematical form of Eq. (7) doesnot depend on details of the physical system undergoing a type
I-s transition. Its form is dictated completely by symmetry arguments, by a smoothness assumption that
constrains which derivatives can appear, and by the fact that we are expanding about a base solution that
minimizes the onset control parameter.
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The symmetry requirements that constrain the possible form of an amplitude equation arise from the need
for Eq. (7) to be consistent with the symmetries that leave invariant the evolution equations for the physical
field u, with the correspondence given by Eq. (2). Thus we require that Eq. (7) be invariant under:

1. the substitutionA → Aei1 with 1 a constant, which corresponds to a translation of the patternup
through a distance−1/qc in thex-direction;

2. the double substitutionA→ A∗ followed byx →−x, which corresponds to inversion of the horizontal
coordinates (parity symmetry);

As an example, under the substitutionA→ Aei1 for some constant1, the solutionup in Eq. (2) becomes

up(x⊥, z, t) =
[
Aei1uc(x‖)eiqcx + c.c.

]+ h.o.t. (8)

= [Auc(x‖)eiqc(x+1/qc) + c.c.
]+ h.o.t. , (9)

which indeed corresponds to a translation of the fieldup by the amount−(1/qc).
The required invariance of the amplitude equation under the symmetries of translation and parity restricts

the possible terms in the amplitude equation in the following ways. First, we observe that algebraic products
of A and of its complex conjugateA∗ that lead to odd powers such asA, |A|2A (= A∗A2), |A|4A, and so
on are invariant under all the symmetries and so can appear in the amplitude equation. Invariance under
the substitutionA→ Aei1 rules out even powers such asA2, (A∗)2, |A|2, and|A|2A2 as well as some odd
powers such asA3, (A∗)3, and|A|2A3. The termsA and |A|2A are the simplest ones that lead to growth
and saturation and so appear in Eq. (7). Although|A|2A is higher order than the linear term, the coefficient
of the linear term is small near onset, which corresponds precisely to the vanishing of this coefficient. (A
subcritical transition would require also the next allowed term|A|4A.) We will discuss in a moment why
we do not include nonlinear terms such as|A|2∂2

xA that are allowed by symmetry but that contain partial
derivatives.

Let us next consider what kinds of derivatives ofA can appear in the amplitude equation. There must
be some kind of time derivative since this is an evolution equation and the simplest guess would be that
a first-order derivative∂tA is sufficient. This is allowed by the above symmetries but is also the simplest
choice consistent with a symmetry not mentioned above but implicit in all driven-dissipative pattern-forming
systems, that the dynamics isnot invariant under the time-reversal symmetryt → −t so that there is a
preferred direction of the dynamics over time. The absence of time-reversal symmetry rules out the possibility
that the time derivative term is an even power such as∂2

t , which is otherwise allowed by the space-related
symmetries. Thus we have justified the occurrence of the first-order derivative on the left side of Eq. (7).

We next observe that a first-order spatial derivative of the formi∂xA is allowed by the above symmetries,
for example it is consistent with the parity symmetryA(x) → A∗(−x). However, such a term can be
eliminated by a redefinitionA → Āei1x for a suitable constant1 and so would play no essential role in
the dynamics. Such a change in fact corresponds to a change of the reference wave number: the choice of
the critical wave numberqc as the reference—the wave number that minimizes the onset control parameter
pc—already implies the absence of thei∂xA term. We therefore assume that no such term appears in the
amplitude equation.

A second order derivative term∂2
xA is consistent with all the symmetries, and will occur in the amplitude

equation. For an amplitudeA(x, t) describing slow modulations, higher order derivatives will be corre-
spondingly smaller (roughly by the ratio of the length scale of the modulation to the basic wavelength of the
pattern). We will therefore truncate the expansion at second order in the derivatives. For the same reason, we
ignore nonlinear terms with spatial derivatives such as|A|2∂xA since such a term is smaller than the existing
cubic term|A|2A3.

3Note that we are assuming that the amplitude equation is “smooth” so that we may expand in successive integral order derivatives
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Deduction of the Parameters

Once we have accepted the form of the amplitude equation Eq. (7), the unknown parametersτ0, ξ0, andg0

can be deduced from simpler calculations. Thus if we consider a small amplitude disturbance

A = δA(t)eikx. (10)

and linearize the amplitude equation about the zero solutionA = 0, we see that the time dependence is
exponential with a growth rateτ−1

0 (ε − ξ2
0k

2). But by the correspondence Eq. (2), this is the growth rate of
a small physical perturbationup at wave vectorq = qc + k and so must correspond to the growth rateσ(q)

of the linear stability analysis for the uniform base stateub. Thus we have

σ(q) = τ−1
0

[
ε − ξ2

0 (q − qc)2
]+ · · · , (11)

for smallε and smallq − qc. The parametersτ0 andξ0 can be read off from the growth rateσ(q) calculated
from the linear instability analysis of the full evolution equations. Alternatively, we can split the calculation
into two pieces: first compare the amplitude growth rate with the dependence onε of the growth rateσq at
the critical wave number

σ(qc) = τ−1
0 ε + · · · , (12)

and then compare with the dependence of the critical control parameter value on wave numbers nearqc

εc(q) = ξ2
0 (q − qc)2+ · · · . (13)

The coefficientg0 determines the saturation amplitude of the critical mode

|A| → (ε/g0)
1/2, (14)

and sog0 can be found from a calculation for the nonlinear saturation of the critical mode without the
complications of spatial modulations.

Although the constantsτ0, ξ0, andg0 are needed to compare predictions of the amplitude equation with
experiments, the qualitative dynamical behavior of the solutions to Eq. (7) does not depend on their values.
We can see this by rescaling the variables in Eq. (7) as follows

Ã = g1/2
0 A, x̃ = x/ξ0, t̃ = t/τ0, (15)

to obtain an equation in which only the parameterε remains

∂t̃ Ã = εÃ+ ∂2
x̃ Ã− |Ã|2Ã. (16)

Solutions of Eq. (16) can be compared with experiment by transforming back to the “physical” variables
using Eq. (15). From the scaling, we see thatτ0, ξ0, andg0 serve to set the time, length, and magnitude scales
for the problem.

∂nxA. Rather surprisingly, the “obvious” assumption of smoothness does not hold near onset for some pattern-forming systems.
An example is Rayleigh-Bénard convection between free-slip plates, although the difficulties only appear in the two-dimensional
amplitude equation. In this example something called a horizontal mean flow appears that depends nonlocally on the physical fields.
The lowest-order amplitude equation then turns out to involve two coupled fields whose dynamics can not be reduced to a single
amplitude equation with simple derivative terms.
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Method of Multiple Scales

The method of multiple scales formalizes the expansion procedure about threshold by tying together the
various small effects: the small distance from thresholdε, the slow time dependence, the weak nonlinearity
represented through saturation at a small magnitude|A|, and the slow spatial modulation. The derivation
is quite technical, and for the lowest order one dimensional amplitude equation only serves to justify the
phenomenological derivation just given. The approach is, however, widely used in the theory of pattern
formation, and provides an introduction to a widely used type of perturbation scheme that is not typically
encountered in a standard physics education (although students of other disciplines, such as Applied Math,
are likely to be familiar with the method). In more complicated situations it may not be possible to derive
the amplitude equation by symmetry arguments and matching to simpler calculations, and in these cases the
method of multiple scales becomes necessary.

The phenomenological approach is usually inadequate if we need to extend the calculation to higher
order in the expansion inε, because there are then too many terms to be pinned down by simple arguments.
The extension to higher order may be necessary not just for quantitative accuracy, but because the results
from the lowest order calculation may sometimes be qualitatively misleading. An example of this is nature
of the nonlinear states in a finite one dimensional system with realistic boundaries. Here the lowest order
amplitude equation suggests that a continuum of states exist, corresponding to an arbitrary translation of the
stripes relative to the ends, (see §6). It is only if the calculation is extended to the next order that the correct
result is recovered, namely a discrete set of states where the stripes have a preferred position relative to the
ends.

Boundary Conditions

To solve a pde such as the amplitude equation, Eq. (7) or Eq. (16), boundary conditions must be specified.
A simple case, often used in simple theoretical analyses, would be periodic boundary conditions over some
domain. To make contact with experiment we must use more realistic boundary conditions.

If the boundaries (taken to be at±l/2in our one dimensional system) tend to inhibit the onset of the
pattern the boundary conditions for Eq. (7) take the form4

A(x = ±l/2) = 0. (17a)

A stationary rigid wall often has this effect on fluid patterns, since the motion of the fluid is quenched by
viscous coupling to the wall. Note that these boundary conditions are again universal, independent of much
of the underlying physics leading to the pattern formation.

On the other hand the boundaries may serve to drive the pattern formation. An example is a heated
wire around the sidewall of a Rayleigh-Bénard convection system, which will drive convection currents at
all Rayleigh numbers, even below the threshold of the instability in the ideal infinite system. Below the
ideal threshold, the convection currents will be confined to a narrow region near the walls. As threshold is
approached, the convecting region will expand, and will fill the system above threshold. Since there is no
sharp onset of convection in such a system, the bifurcation is said to be imperfect. Similarly in the Taylor-
Couette system, a rigid end wall will tend to drive a circulating vortex at the ends (called the Ekman vortex)
even below the onset of rolls in the ideal system. It will usually be the case that the local driving by the ends
is not small compared with the expansion parameterε, since the behavior near the ends is quite different than
in the bulk, and the valuepc of the control parameter should not play any special role here. It can then be

4Remember that the magnitude of the amplitude is expected to scale asε1/2 near threshold. Equation (17a) should be interpreted
in terms of the amplitude going to zero on this scale. There may beO(ε) corrections to the zero on the right hand side.
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argued that the boundary conditions must take the form

A(x →±l/2) = C±
|x ∓ l/2| . (18)

Here the complex constantsC± will depend on the details of the boundary effects, and the values would
have to be calculated by matching to a more complete solution of the strongly driven region near the ends.
The divergence of|A| approaching the boundary corresponds to the physical statement that the disturbance
becomes large near the end. Of course the amplitude equation description breaks down very close to the
end (remember that the modulations given by the amplitude must be slowly varying), so there is no actual
divergence of physical quantities.

The arguments leading to these boundary conditions are rather delicate, and you might prefer to accept
them as resulting from matching to the full solution in the end regions. The details of such a calculation
however go beyond the level of these notes.

Properties of the Amplitude Equation

Universality and Scales

In our discussion of Eq. (16) above, we found that we could eliminate the scale factorsτ0, ξ0, andg0 from the
amplitude equation by transforming time, space, and magnitude variables. We can modify this transformation
of variables as follows:

Ā = |g0

ε
|1/2A, X = |ε|

1/2

ξ0
x, T = ε

τ0
T , (19)

to obtain thefully scaled amplitude equationfrom whichall the parameters have been removed

∂T Ā = ±Ā+ ∂2
XĀ− |Ā|2Ā. (20)

(The positive sign for the first term on the right hand side corresponds to above thresholdε > 0, and the
negative sign to below thresholdε < 0). In this equation there are no parameters that depend on the physical
nature of the system. This dramatically demonstrates theuniversalityof pattern forming phenomena near
onset when the amplitude equation is a good description, since we can analyze the behavior of Eq. (20)
without referring back to the physical nature of the system. This shows us that all one dimensional stripe
states near threshold will have thesameproperties.5

Theabsenceof any explicit dependence on the small parameterε in the scaled amplitude equations (20)
immediately tells us thescalingbehavior with smallε of the physical length, time, and pattern intensity.
For example, we expect the time dependence of Eq. (20) to occur on anO(1) time scale with respect to the
variableT . The relationship to the physical time scale then shows us that the physical time scale, for example
for the growth of a small initial perturbation from the spatially uniform state, will beτ0ε

−1 which diverges
toward threshold asε−1, with ε the small parameter that measures the distance of the control parameter from
threshold and goes to zero at threshold. Similarly, the length scale over which the intensity of the pattern
grows from a suppressed value near a boundary or the core of a defect will beξ0ε

−1/2 for the direction
perpendicular to the stripes. It is in fact variations on these scales that are “slow” enough to be captured by
the amplitude equation. Note that the length scale for the spatial variation corresponds in Fourier space to
a wave number deviationq − qc = O(ε1/2ξ−1

0 ). This is the order of the width of the unstable band near
threshold, so that all of these states are accessible to the amplitude equation treatment. Finally, the amplitude

5A caveat we must make is that there are no degeneracies, for example other bifurcations occurring at the same parameter value
which would lead to other amplitudes varying slowly in space and time that might couple toA, and no other slowly varying degrees
of freedom.
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of the pattern will have the characteristic square root dependence proportional to
√
ε, so that the intensity of

the pattern proportional to|A|2 will grow linearly in ε.
These power law dependencies are quite analogous to the divergences such as “critical slowing down”

that occur at a second order phase transition, and indeed have the same parameter dependence as in the mean
field approximate description of that phenomenon.

Figure 2: Smectic Films”, by S. W. Morris, J. R. deBruyn, and A. D. May, J. Stat. Phys.64, 1025 (1991),
and “Electroconvection Patterns in Smectic Films at and Above Onset ” by S. S. Mao, J. R. deBruyn, and S.
W. Morris, Physica A239, 189 (1997)]

There have been numerous direct experimental verifications of these scaling results. As an example,
the results for an experiment on convection in a thin liquid film are shown in Fig.2. The liquid in these
experiments was actually a smectic liquid crystal which has a layered structure that stabilizes the uniformity
of the thickness of the film. The properties of the flow parallel to the film are, however, the same as in a
conventional liquid. The convection is driven electrically, which couples to the fluid motion through charged
ion impurities dissolved in the film. These experiments are particularly simple to interpret since the flow is
accurately two dimensional, and so the pattern formation is a one-dimensional phenomenon (i.e. there is one
confined and one extended dimension, so that the system is described by an amplitude equation in one space
dimension).

The velocity of the convective flow was measured from the motion of tracer particles, as indicated in
Fig. 2a, giving a quantitative measurement of the quantity that defines the pattern forming state, Fig.2c. An
envelope fitted to the measured velocity field yields the amplitude, and to a reasonable approximation the
maxima of the velocity curve in panel (c) can be used to estimate the magnitude of the amplitude function at
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those points, so that we can interpret the velocity magnitudes plotted in panels (b) and (d) as the magnitude
of the amplitude function. Panel (b) shows the time dependence of the maximum flow velocity (which
corresponds to the amplitude away from the boundaries) from a small initial magnitude to saturation, and the
increase near threshold of the time for this process consistent with the scaling ofε−1. The spatial variation
of the amplitude near the side boundary, where the flow velocity is suppressed, is shown in panel (d). The
variation of the length scale over which the amplitude recovers is again consistent with the expected scaling
with ε−1/2. In both panels (b) and (d) the change of the saturated amplitude withε can be read off from the
large time or distance value. The experimentalists also verified quantitatively that this amplitude increases
asε1/2.

Potential Dynamics

The analysis and understanding of the amplitude equation are vastly simplified by a remarkable feature of the
equation, namely the existence of apotential or aLyapunov function. This quantity is an integral functional
of the amplitude and low order derivatives over the domain that for periodic, and a few other boundary
conditions, has properties analogous to the mechanical energy (potential and kinetic) of a frictionally damped
ball in a potential, namely that the functional monotonically decreases in the dynamics. Just as for the damped
ball, for which we know that the motion will eventually cease with the ball at a minimum of the mechanical
energy (zero kinetic energy and potential energy at a minimum, not necessarily the lowest), the potential
for the amplitude equation tells us that the amplitude will approach a configuration giving a minimum of
the potential, and that here the dynamics will cease. This is a very restrictive result that provides strong
constraints on the dynamics. The existence of a potential often provides a powerful tool for understanding
the system. We refer to the existence of the potential as remarkable, because it is not a property that we would
generally expect for a system far from equilibrium. Indeed, more careful analysis shows that the existence of
this type of potential is an artifact of the lowest order truncations in the expansions leading to the amplitude
equation, since higher order amplitude equations are generally no longer potential.

Let us show that the dynamics predicted by the lowest order amplitude equation is potential for certain
kinds of boundaries. The dynamics of the amplitude predicted by equation Eq. (7), together with particular
but common boundary conditions, is easily shown to be consistent with the continual decrease of the potential
V given by

V [A] =
∫∫

dx

[
−ε|A|2+ 1

2
|A|4+ ξ2

0 |∂xA|2
]
. (21)

This quantity evolves according to

dV

dt
= −2τ0

∫ ∫
dx |∂tA|2 , (22)

which necessarily increases in any dynamics ofA.
This can be verified as follows. Taking the time derivative of Eq. (21) yields

dV

dt
=
∫∫

dx

{(−εA+ |A|2A) ∂A∗
∂t
+ ξ2

0 (∂xA)

(
∂x
∂A∗

∂t

)
+ c.c.

}
(23)

We now integrate by parts in the last term, to remove the spatial derivatives from∂A∗/∂t . This operation
generates terms that are evaluated at the boundaries of the domain. ForV to be a potential, these boundary
terms must vanish. This is the case for periodic boundary conditions, and for the boundary conditions
Eq. (17). If the boundary terms disappear we then find

dV

dt
=
∫∫

dx

{[−εA+ |A|2A− ξ2
0∂

2
xA
] ∂A∗
∂t
+ c.c.

}
. (24)
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Figure 3: Nonlinear competition for a potential system. The variation of the potential between states of ideal
stripes and hexagons is shown for the cases where the stripe state has the lower potential (panel a), the stripe
and hexagon states have the same potential (panel b), and the hexagon state has the lower potential (panel c).
In general there will be a potential maximum, orbarrier, between the two minima, so that dynamics from
the higher minimum to the lower cannot be inferred.

Observing that the term in the square braces is just−∂A/∂t gives us Eq. (22).
Equation (22) tells us that if there isanydynamics ofA the potentialV decreases monotonically in time.

A quantity that decreases monotonically in time is called a Lyapunov function, and dynamics given by a
variational form such as Eq. (22), a stricter statement, is said to bepotentialor relaxational. This type of
dynamics is also sometimes calledgradient flow. Potential dynamics is strongly constrained. In particular
if the potential is bounded from below, as is the case for Eq. (21), persistent dynamics on a time scale that
does not increase indefinitely is ruled out— and there is no periodic, quasiperiodic or chaotic dynamics in
such systems. Instead the dynamics runs “down hill” inV until the amplitudeA reaches a minimum of the
potential, when the dynamics will cease.

The existence of a potential leads to many useful deductions. An example is the question of the competition
between two patterns (such as a stripe state and hexagonal state6), if both are present in the system with a
wall or domain boundary between them. We can argue that if there is any motion of the wall, it must be in the
direction that increases the fraction of the pattern with the lower value of the potential. (Note that there will
be a contribution to the potential from the domain wall itself, but this does not change as the wall translates.)
Thus the parameter value for which the two states have equal potentials can be used to identify the point at
which the preferred pattern switches from one to the other. Two caveats should be stated. The first is that the
result appliesonly in the context of an experiment in which the competition between bulk saturated regions,
in contact via a domain wall, occurs. Other experimental conditions, such as the growth from small initial
conditions, may give different results. This is because in general there is a potential barrier between the two
ideal states, see Fig.3, and only in special physical circumstances is there a dynamical path between the two
that flows monotonically down the potential. Secondly, the motion may be impeded, for example by pinning
of the wall to the stripes themselves, in which case there may be no motion even if the potentials are different.
This would then give a finite range of parameters for coexistence.

A second application of the potential is to the question of wave number selection, the precise value of the
wave number in a stripe state (or unit cell size in the lattice states). Again we can argue that any local dynamics
that mediates between two ideal states occupying large portions of the system, which will then dominate the
integral that forms the potential, will favor the state with a lower value of the potentialV (q). (HereV (q) is

6The amplitude equations for a state of superimposed stripes remains potential.
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the potential evaluated for the ideal periodic state with wave numberq.) In the case of potential dynamics,
different dynamical mechanisms that allow the wave number to change, such as dislocation motion, boundary
relaxation etc., will all tend to yield thesamewave number, namely the one that minimizesV (q). For systems
without a potential, there is no such argument, and different dynamical mechanisms may lead to different
wave numbers.

Applications of the Amplitude Equation

Lateral Boundaries

An early vexing question in understanding pattern formation was the degree to which the ideal states of
theory, based on laterally infinite systems or systems with periodic boundary conditions, had anything to
do with the states seen in experiments on necessarily finite systems. Further there was question of how the
properties of a laterally “large” system approached those of the infinite system. For systems that are large
compared with the pattern periodicity, and for control parameter values close to onset, the amplitude equation
gives us a formalism that can readily address these issues. The approach is particularly well suited to systems
with one extended coordinatex, or systems with two extended directions with a pattern of stripes parallel
to the boundary, since in these situations the formalism simplifies to a one dimensional amplitude equation.
The general situation in a two dimensional system is harder, since the boundaries often tend to reorient the
stripes, leading to a pattern with large reorientations of stripes, that cannot be treated within the amplitude
equation description.

We will here study the case of boundaries that tend to inhibit the pattern formation. For steady states
with a one dimensional spatial variation and suppressing boundaries we must solve the amplitude equation
(written in the fully scaled form) Eq. (20) with no time variation

0= Ā+ ∂2
XĀ− |Ā|2Ā. (25)

This must be solved with the condition at the boundaries corresponding to Eq. (17a)

Ā = 0. (26)

The amplitude equation then allows us to determine how the intensity of the pattern grows with distance
away from the boundary, to approach the bulk saturated value far away. There are also dramatic effects on
the range of possible wave numbers of the pattern far away from the boundary, expressed through restrictions
on the phase variation of the complex amplitude. We will see that the stationary solutions to Eqs. (25,26) in
fact have aconstantphase, so that, within the accuracy of the lowest order amplitude equations, the wave
number of the stripes is precisely the critical wave number. Compare this with the infinite or periodic system,
where there is a wide band of stable, stationary solutions of different wave numbers limited only by stability
considerations.

We illustrate how the amplitude equation can be used to understand the effect of lateral boundaries by
considering first the case of a semi-infinite one dimensional systemX > 0, with a suppressing boundary at
X = 0. It can be verified by substitution that a solution to the amplitude equation Eq. (25) and the boundary
condition Eq. (26) atX = 0 is

Ā = eiφ tanh(X/
√

2), (27)

whereφ is a real constant. This becomes in the unscaled variables the expression

A = eiφ
√
ε

g0
tanh(

x

ξ
), (28)
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Figure 4: Plot of the amplitude as a function of positionx near a boundary atx = 0 where the amplitude
A = 0. The arrow shows the length of the healing lengthξ = √2ξ0ε

−1/2, which sets the length scale for the
variation of the magnitude.

with
ξ = √2ξ0ε

−1/2. (29)

The form of the magnitude|A| of the solution is shown in Fig.4. This simple solution demonstrates
many of the important features of the effect of boundaries in suppressing the pattern nearby. We see that
the suppression of the amplitude from its bulk saturated value extends over ahealing lengthor coherence
lengthξ that diverges asε−1/2 towards threshold. This is the characteristic length scale for variations of
the magnitude|A|. The result that the suppression extends over many stripe widths near threshold is quite
surprising without the insights of the amplitude equation approach. This prediction is amply confirmed by
experiment: Eqs. (28) and (29) were used in constructing Fig.2d, and Fig.4 directly corresponds to that
figure.

The solution Eq. (28) contains an arbitrary constant phase factor, corresponding physically to any posi-
tioning of the stripes relative to the boundary. There are no solutions with a spatially varying phase, which
would correspond to a deviation of the wave vector of the stripes from the critical wave vector. Thus, far away
from the boundary where the magnitude has saturated, we have a stripe state with wave number completely
determined atO(ε1/2)

q = qc + 0× ε1/2+O(ε). (30)

Compare this to the laterally infinite or periodic system for which states exist over a wave number band that
grows asε1/2 above threshold. These conclusions are modified when the calculation is extended to higher
order inε. In those more extended calculations it is found that the phase does vary in space, but in a manner
consistent with Eq. (30). The solution far away from the side wall again tends towards saturated stripes,
now with a wave number somewhere in a narrow band, which has a width that scales linearly withε near
threshold, rather than asε1/2 as in the periodic or infinite system. In addition, the stripe positions relative to
the boundary become restricted to a discrete set of values.

Now consider a finite geometry 0≤ X ≤ L with boundary conditions̄A(0) = Ā(L) = 0. For large
L the regions of suppressed magnitude near the boundaries are far apart, and can be treated independently,
so that|Ā| has a “top hat” typeX dependence, saturating atĀ = 1 in the bulk away from the boundaries,
as shown by the solid curve in Fig.5. As L is reduced, the suppression regions begin to overlap, and the

13



1

1

0 X/L

A

Figure 5: Solution of the fully scaled amplitude equation Eq. (25) in a finite geometry of sizeLwith boundary
conditionsĀ = 0 atX = 0, L , plotted as a function ofX/L. The full curve is forL = 15 (physical size
l = 15ε−1/2ξ0), and the dashed curve is forL = 3.5 (physical sizel = 3.5ε−1/2ξ0). Note that for system
sizes large compared to the healing length, the amplitude away from the boundaries saturates at the bulk
saturated value, whereas for sizes comparable to the healing length, the amplitude does not reach this value.
ForL < π (corresponding toε < π2ξ2

0/l
2 in unscaled units) there is no nonzero solution. ForL slightly

larger thanπ , the solution is proportional to sinπX/L, which is the solution to the linearized amplitude
equation.

maximum amplitude is reduced below the bulk saturation, as for the dashed curve in Fig.5. For smaller
L, the maximum amplitude decreases, and we may eventually use a linear approximation to the amplitude
equation This yields the linear onset solution in the finite geometry

Ā = āeiφ sinX. (31)

The magnitude prefactor̄a is not determined by the linear equation7, but the solution only satisfies the
boundary conditions ifL = nπ , n = 1,2, . . .. Translating to the unscaled units, in which the system size
is l with L = ε1/2l/ξ0, we see that the onset (then = 1 solution) occurs at the shifted value of the control
parameter

εc = π2ξ2
0/l

2. (32)

This is an explicit calculation of the suppression of the onset by finite size effects in the case of suppressing
boundaries. The solution Eq. (31) again contains an arbitrary constant phase factor to a continuum of
onset solutions with different stripe positions. If the amplitude equation is extended to higher order, this
degeneracy is removed, to give a discrete set of onset solutions with values ofεc as in Eq. (32), together with
small corrections of order(ξ0/l)

4.

Eckhaus Instability

The amplitude equation provides a direct way to investigate the instability of ideal states with respect to
spatially dependent perturbations, and so to construct the stability balloon near onset. The universal form of

7The magnitudēa can be determined by a Galerkin type approach, substituting this form back into thenonlinear amplitude
equation, and then collecting terms in sinX, whilst ignoring the higher harmonic term in sin 3X that is developed by the nonlinearity.
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the equation implies that the stability balloon too will have universal features near onset. In addition we can
learn much more about the instabilities, for example how the wave vector of the fastest growing perturbation
varies as we move into the unstable region. Further, numerical simulations of the amplitude equation can
be used to follow the growth of the perturbation to large amplitudes, so that the wave number changing
dynamics, for example involving the elimination or creation of stripes, can be followed to completion.

The scheme of attack for a linear stability analysis is the standard one: first construct the unperturbed
solution (here the nonlinear saturated steady state with a wave vector deviating form critical), and then
investigate the dynamics of small perturbations linearizing about the base state. With the one dimensional
amplitude equation we can study the stability of stripe states to longitudinal perturbations.

The stability balloon is given by testing the stability of states as a function of their wave number. The
stripe state with wave vector differing slightly fromqc is given by the amplitude (in the scaled representation)

ĀK(X) = aKeiKX, (33)

where the phase factor gives the wave number shift of the stripes

q = qc + ξ−1
0 ε1/2K, (34)

and the magnitude prefactor is obtained as a simple result of substitution into the amplitude equation Eq. (20)

a2
K = 1−K2. (35)

The existence band
−1≤ K ≤ 1, qc − ξ−1

0 ε1/2 ≤ q ≤ qc + ξ−1
0 ε1/2 (36)

is the width of the band of wave numbers between the neutrally stable wave numbers.
The stability of these states is tested by adding toĀK a small perturbationδĀ

Ā(X, Y, T ) = ĀK(X)+ δĀ(X, T ). (37)

By linearizing the amplitude equation, we see that the perturbation evolves according to the following linear
evolution equation:

∂T δĀ = δĀ+ ∂X2δĀ− 2|ĀK |2δĀ− Ā2
KδĀ

∗. (38)

The solution to Eq. (38) for δĀ turns out to be messy because of the spatial dependence of the coefficient
Ā2
K of the last term. Fortunately, since we are looking at the perturbation to a spatially periodic state, a version

of Bloch’s theorem applies, so that the stability eigenvalues and eigenvectors can be labelled by a Bloch wave
vectorQ (we will see that the perturbationδĀ actually has components with wave vectorsK ±Q). The task
is then to calculate the exponential growth rateσK(Q), which will depend on both the wave numberK of
the base state, and the Bloch wave vectorQ characterizing the perturbation.

The usual form of Bloch’s theorem addresses the properties of a perturbation to a real solution. To study
Eq. (38) we need to generalize Bloch’s theorem for a complex base state. The form of the generalization is
shown by trying the ansatz for the perturbation in the formδĀ ∼ eiKXeiQX. Substitution into Eq. (38) gives
a number of terms with the same spatial dependence, but also generates a termeiKXe−iQX. Thus we make
the more general ansatz

δĀ = eiKX[δa+(t)eiQX + δa∗−(t)e−iQX] (39)

(where we use the complex conjugate onδa∗− for later convenience). Now substituting into Eq. (38), lin-
earizing inδa±, and collecting the coefficient of the two independent functionsei(KX±QX) gives the pair of
equations

dtδa+ = −(P 2+ U+)δa+ − P 2δa−, (40a)

dtδa− = −P 2δa+ − (P 2+ U−)δa−, (40b)
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Figure 6: Sketch of a stripe system undergoing an Eckhaus instability which is a modulation of the wave
length of the stripes. The onset of instability occurs with a length scale of the modulation that is large
compared with the stripe width.

with
P 2 = 1−K2, (41)

and
U± = [K ±QX]2−K2. (42)

The growth rateσK(Q), defined byδa± ∼ exp[σK(Q)t] is given by a standard matrix eigenvalue calculation.
The algebra eventually leads to the following expression for the most positive growth rate

σK(Q) = −P 2− 1

2
(U+ + U−)+ [P 4+ 1

4
(U+ − U−)2]1/2. (43)

This is the growth rate function that tells us the stability of the state at wave numberK.
We test the stability of a base state solution with wave numberK, by finding the maximum growth rate

σK(Q), Eq. (43), as a function of the perturbation wave vectorQ. The stateK is stable if this maximum
growth rate is negative. It turns out that for the form ofσK(Q) in Eq. (43), asK is increased from zero
(q moves away fromqc) where the base state is stable, the instability always occurs first for a long wavelength
disturbance, i.e. in the limitQ→ 0.

For a perturbation characterized by the Bloch wave vectorQ, the growth rate is

σK(Q) = (1−K2)−Q2+
√
(1−K2)2+ 4K2Q2. (44)

This is a type II instability, as can be shown by expanding in smallQ:

σK(Q→ 0) = −
(

1− 3K2

1−K2

)
Q2−

(
2K4

(1−K2)3

)
Q4+O(Q6). (45)

Since the coefficient of theQ4 term is always negative within the existence band|K| < 1, we see that the
stability boundary occurs when the coefficient of theQ2 term becomes negative, and the most unstable mode
is a long wavelength perturbation,Q→ 0. The instability occurs for

|K| > 1√
3
. (46)
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Thus the band of wave numbers near threshold that are stable to the longitudinal insatiably is 1/
√

3 times
the width of the existence band, independent of any details of the system. Returning to physical units, the
longitudinal instability occurs atq = qc ± kE with

kE = 1√
3
ξ−1

0 ε1/2, (47)

and the width of the stable band of wave numbers 2kE grows as the square root of the distance above onset.
This instability is named after Walter Eckhaus, who first studied the instability in 1965. The form of the

perturbation is a sinusoidal spatial modulation of the wave number of the pattern, with regions of compression
and stretching, Fig.6. The result for the boundary of the stability balloon, Eq. (46), can be obtained by a
simpler calculation using the phase equation, §7. The present calculation gives us additional insights into the
instability. For example, it can be shown from Eq. (44) (see Exercise??) that for wave numbersK unstable
to the Eckhaus instability, the maximum growth rate occurs for a perturbation of wave number

Q2
max(K) = 3

(K2+ 1)(3K2− 1)

4K2
, (48)

for which the growth rate is

σmax(K) = (3K2− 1)2

4K2
. (49)

These results for the instabilities teach us important general lessons. We see that the instability boundary
for the Eckhaus instability takes on a universal quantitative form near threshold. Since the stability balloon
gives us our basic understanding of the periodicities available for pattern formation, this is an important
insight. As in the analysis about the uniform state, the linear stability analysis leaves us with an exponentially
growing perturbation in the unstable regions. We need to study effects nonlinear in the perturbation of the
stripe state to understand the subsequent fate of the stripes, such as the important question of whether the
perturbation saturates at small amplitude, or continues to catastrophically change the pattern, for example by
eliminating a stripe pair in the Eckhaus instability). This cannot be done analytically, but it is quite easy to
simulate the amplitude equations numerically.

Phase Dynamics

The magnitudea and phaseφ of the complex amplitude play different dynamical roles in the description
of pattern formation. In particular, a perturbation ofa will tend to relax to the value determined by the
nonlinear terms in the amplitude equation on time scaleε−1τ0. On the other hand, a phase perturbation that
is independent of position does not relax at all, and the relaxation of a perturbation on a length scalel would
be expected to relax on a time scale that diverges withl (asl2 or longer, as we will see). We can therefore
imagine situations where the phase is relaxing much more slowly than the magnitude, so that the magnitude
can be evaluated as the value consistent with the instantaneous phase field as if this were time independent.
Technically, we neglect terms in∂a/∂t , since these are small compared with other terms in the dynamical
equation for the magnitude, such asεa. The magnitude is said toadiabatically follow the phase variation,
and the approximation method is known asadiabatic elimination. This approach allows us to derive a
simple dynamical equation for the slow phase variation, known as thephase equation. Since a change in the
phase at some position corresponds to a displacement of the pattern at that point, the phase equation captures
some of the essential features of pattern dynamics.

For simplicity of notation, we again consider the amplitude equation in its scaled form Eq. (16). Our goal
is to find dynamical equations for the slow variation ofφ due to long wave length perturbations. Although
the calculation can be done more generally, we choose to look at small perturbations from a uniform stripe
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state at a wave numberq shifted from criticalq = qc + ε1/2Kξ−1
0 that is described by the time independent

amplitude as in Eq. (33)
Ā = aKeiKX, (50)

with the value of the constantaK =
√

1−K2 as in Eq. (35). We now write for the perturbed amplitude

Ā(X, T ) = aeiφeiKX, (51)

with a = aK + δa(X, T ), and linearize in small spatial derivatives of the phaseφ(X, T ) and small amplitude
perturbationsδa(X, T ). Since the length scale of the perturbations is supposed long, we neglect higher-order
spatial derivatives of the same quantity, e.g.∂2

Xa � ∂Xa, and we only keep terms that lead to terms in the
final equation for the phase up to derivatives ofφ that are second order.

The formal scheme is to insert Eq. (51) into the amplitude equation Eq. (16), multiply through by
e−iKXe−iφ and collect real and imaginary parts. Using

∂T A = (∂T a + ia∂T φ)eiKXeiφ, (52)

shows, after multiplying through bye−iKXe−iφ, that the real part of the equation will give the dynamical
equation fora, and the imaginary part the dynamical equation forφ.

Keeping only terms linear inδa andφ and up to second order derivatives, the real part gives

∂T δa = −2a2
Kδa − 2KaK∂Xφ + ∂2

Xδa. (53)

Note that for a spatially uniform perturbation, Eq. (53) shows that the magnitude perturbationδa relaxes
exponentially as exp(−a2

KT ). Sincea2
K is of order unity, this is a rapid decay of magnitude perturbation as

discussed in the introduction to this section. The phase variations drive a nonzero value ofδa. In comparing
the size of the terms in Eq. (53) involving δa we see that the dominant term is the first one on the right hand
side, since all the other terms involve spatial derivatives or time derivatives ofδa that are small for slow
variations. Thus

aKδa ' −K∂Xφ, (54)

andδa adiabatically follows the perturbations of the phase gradient. Note that this is just the equation for
the change in magnitude given by Eq. (35) arising from a change in the wave numberK by ∂Xφ.

The imaginary part of Eq. (52) multiplied bye−iKXe−iφ, and again keeping only terms linear inδa and
φ and up to second order derivatives, gives

aK∂T φ ' 2K∂Xδa + aK∂2
Xφ. (55)

Eliminatingδa using Eq. (54) and using Eq. (35) leads to the following evolution equation for small phase
perturbations

∂T φ =
[

1− 3K2

1−K2

]
∂2
Xφ. (56)

This is adiffusion equationfor the phase, with diffusion constantD‖ for variations along the stripe normal.
Transforming back to the unscaled space and time variables, the equation becomes

∂tφ = D‖∂2
xφ, (57)

with diffusion constant for phase perturbations about the stripe state with wave numberq = qc + k (with
k = ξ−1

0 ε1/2K)

D‖ = (ξ2
0τ
−1
0 )

ε − 3ξ2
0k

2

ε − ξ2
0k

2
. (58)
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The phase dynamics is the Goldstone mode that reflects the broken translational symmetry of the stripe
state. Consequently, the phase equation is a powerful tool, and many important results can be derived from
it. For example, we know that diffusion equations lead to exponentially growing solutions if the diffusion
constant is negative, signalling instability. We therefore see that the state with wave numberqc+k is unstable
to long wavelength longitudinal phase perturbations for|ξ0k| > ε1/2/

√
3. This is just the Eckhaus instability

described previously in Section7.
Although the phase dynamics is easily derived from the amplitude equation formalism as we have just

done, it has a wider validity. Even away from threshold, the symmetry aspects of the pattern are captured by
an appropriately defined phase variable. Again slow spatial variations of the phase necessarily evolve slowly
in time, and this slow variation can be isolated mathematically from the faster dynamics of other degrees
of freedom in the form of a “phase equation”. The phase dynamics provides a simple way to investigate
some important questions such as what are some of the instabilities that bound the stability balloon of the
finite-amplitude nonlinear stripe states. It can also be used to study patterns that change their orientation
over large angles.

Limitations of the Amplitude Formalism

Although many interesting questions can be addressed within the amplitude equation, it is important to bear
in mind the limitations of the formalism.

The amplitude equation is derived by perturbation expansion and truncation, and so is only a good
approximation over a restricted range of parameters, in particular near onset, and for long wave length and
temporally slow modulations of the ideal pattern.

There are limitations on the nature of the patterns that can be treated. For example, because of the lack
of a rotationally invariant formulation, the only patterns that can be calculated quantitatively are those that
are close to a single set of parallel stripes, or, in the two dimensional generalization to be studied in the next
chapter, a superposition of stripes such as squares and hexagons. Patterns in which the orientation of stripes
or lattices vary through large angles over large distances cannot be treated even though the rate of variation
may be slow.

The way in which the approximation is “good” may be quite subtle. Indeed the answers to qualitative
question may be quite wrong! For example if we ask the question “Can systemABC show chaos near onset?”
the amplitude equation immediately leads us to the answer “No”, because of the existence of the potential.
However, since the equation is derived as an approximation, we should not be so definite in any physical
statement. Indeed, the correct answer might be: “The relaxational dynamics predicted by the amplitude
equation should be a good gross description of what happens.” However at very long times, there may be
very slow persistent dynamics at a time scale beyond theO(ε−1) time scale of the dynamics controlled by
the amplitude equation, or there may be small amplitude persistent dynamics, perhaps on a fast scale, that
is again outside of the control of the amplitude equation. Alternatively, the amplitude equation may predict
dynamics that is quenched by residual effects not captured by the perturbation formalism. We have said that
the amplitude equation is good “near onset”. We might also question more carefully the this phrase: does
this mean asymptotically near onset, or just at some small but finite distance from onset? Finally, as a worst
case, if the solutions predicted by the amplitude equation are actually very sensitive to slight changes in the
equations (such solutions are called structurally unstable), the predicted behavior might be quite misleading
and bear no resemblance to the actual physical behavior.
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