Second Order Phase Transitions

The Ising Ferromagnet

Consider a simplel-dimensional lattice olN classical “spins” that can point up or dows,= +1. We
suppose there is an interactidnbetween nearest neighbor spins so that the parallel alignment is favored,

with the Hamiltonian 1
H=—§J§SS+5—MZSB- (1)

Here the sums run over all sites in the lattice, and sh&um runs over thed®nearest neighbors. The factor
of 1/2 in the first term is to avoid double counting the interaction, and the second term is the interaction of
the momentss with an external magnetic fielB.

The canonical partition function is
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summing the Boltzmann factor over all spin configuratigs The enumeration of all configurations cannot
be done ford > 3, and although possible th = 2 is extremely hard there as well (a problem solved by
Onsager). We will use an approximate solution technique knowneas field theory

Last term we solved the problem of noninteracting spins in a magnetic field described by the Hamiltonian

H0=—Zsb, 3)

writing b for «B. This is easy to deal with, since the Hamiltonian is the sum over independent spins, unlike
Eq. (1) which also has pair interaction terms. For example we can calculate the partition function as the
product of single spin partition functions

Zo=[e " + PN (4)
and the average spin on each site is
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In the mean field approximation we suppose that thespin sees aaffective fieldoes which is the sum of
the external field and the interaction from the neighbors calculated as if each neighboring spin were fixed at
its ensemble average value

bers =b+ 3> (S4s). (6)
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We now look for a self consistent solution where eéghtakes on the same valsevhich is then given in
analogy with Eq. )
s =tanh[B(b+ 2Jd9)]. (7)

Lets first look atb = 0. Defines = 2dB Js so that
¢ = 2dBJ tanhe. (8)

This is easily solved graphically. Far > T, = 2d J/kg the only solution i = 0. ForT < T two new
solutions develop (equal in magnitude but opposite signs) jsfithrowing continuously below,. NearT,
we can get the behavior by expanding tarih smalle, so that Eq. §) becomes
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Figure 1: Graphical solution of the self consistency condition.

giving to lowest order is smalll — T/ T)
_ 1/2
s= 13 (TC T ) : (10)

Focusing on theower lawtemperature dependence ndarmwe introduce the small reduced temperature
deviationt = (T — T.)/ T, and write this for smalt < 0 ass o |t|#. This introduces therder parameter
exponent8 = 1/2 in mean field theory.

We can also calculate the magnetic susceptibylitg ds/db|,_,. FromEq. {) we have (writings'’ = ds/db)

-
s = secl[B(b +2Jd9)](B + ?Cs’) (11)
so that just abové,
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giving adivergingsusceptibility asl approached, from abovey o [t|™” with the susceptibility exponent
y = 1 in mean field theory. (The usual definition of the susceptibility i4/d B = Nu2ds/db.)

Exactly atT. there is anonlinear susceptibility easily derived by expanding the tanh function in Ej. (
1
s:(ﬂcb+s)—§(ﬂcb+s)3+---. (13)

The terms linear irs cancel, so we must retain tis&term. On the other hand the lowest order, linear term,
in b survives, so we can ignore termstifi bs etc. This gives

3b 1/3
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ST=T® > () + (14)
The dependence of the order paramsten the symmetry breaking fielat T, and for smalb, i.e.s o b/
introduces the exponet= 3 in mean field theory.

With a little more effort we can calculate the internal enddggind other thermodynamic potentials. We will
do this in zero magnetic field only. In the mean field approximatiois simply given byNd “bonds” each
with energy—Js?

U=—NdJ§=—3NdJ(T°T_T>. (15)
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We can try to evaluate the free energy from the partition function calculated in analogy with)Eeplacing
uB there withu Bess = 2Jds (rememberB is assumed to be zero). This turns out not to be quite right, so
we will call the expressior, (I for independent)

Fi = —NkgT In[e"Te/T)s 4 gTe/T)s] (16)
replacing 21 J/ kg by T.. We want to expand this in smalup tos*
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The first term is just the free energy of the high temperature phase—in the mean field approximation simply
the entropy contribution of free spins. The second terrsfisuggests that the free energy is lowered by a
nonzeros for any temperature! Clearly something has gone wrong. The problem is, as often happens in
mean field treatments, is that we have double-counted the interaction energy: by adding the free energy of
spin 1 in the mean field of its neighbors (including spin 2 say) and the free energy of spin 2 in the mean field
of its neighbors, including spin 1, we have included the 2 interaction twice. So we need to subtract off a
termU to correct for this

|c_| 2 1 |c 34
F=F —U=—-NkgTIh2—-N _ ——|= e | 1
 —U sT In Jd[( T )s 6<T>S (18)

AC

T

|
L

Figure 2: Specific heat of the Ising ferromagnet calculated in the mean field approximation.

Now we see that the free energy is lowered by a nonseasoly for T < T;. Indeed minimizingF with
respect tes gives Eq. (0) as before, and then the reductionFrbelow T, for nonzeros is
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The power law dependence &t nearT, is used to define thepecific heat exponedf  [t|>~ witha = 0
in mean field theory.

The specific heat can be deriveddis/dt or — T d?F /d T2.using the former gives

ds?
C=-NdJ—. 20
daT (20)
This is zeroaboveT,, jumpsto 3Nkg/2 at T, and then decreases to zeroTas> 0, see Fig.2. This is
consistent withC oc |t|™ with @ = 0.



General Remarks
The Ising ferromagnet showssacond ordetransition. Features are

1. A new state grows continuously out of the previous oneTfer T, the two states become quantita-
tively the same.

2. As a consequence of (1) the thermodynamic poterfiiald, S. .. are continuous al. but not neces-
sarily smooth (analytic). In mean field theory the changes from the values just abskiewpower
law behavior in|1 — T/T¢|. Thederivativesof the potentials (specific heat, susceptibility etc.) simi-
larly show power laws (a jump such as@can be considered a power law 0), and illergeat T,
if the power is negative.

3. ForT < T, equally good (i.e. energetically equal) but macroscopically different states exist. In the
Ising ferromagnet these states differ in the macroscopic magnetic mdvhent-Nw |s|. This is a
broken symmetrrthe thermodynamic states do not have the full symmetry of the Hamiltonian (here
alls — —s). Instead the different thermodynamic states belgvare related by this symmetry
operation. Since the states are macroscopically different, once one state is chosen, fluctuations to the
other state will not occur in the thermodynamic limit.

4. Because the states are quantitatively similaf as> T, fluctuations involving admixtures of other
states become important here, so that mean field theoryhaiilin general be a good approximation
nearT.. The power law behavior of thermodynamic quantities Agaurvives (and occurs both above
and belowT, in the more accurate description) but the powers or exponents are different than the values
calculated in mean field theory, and are no longer simple rationals.

5. Because of the power law singularities of the thermodynamic potentialsTpeiris not possible
to classify phase transitions into higher orders (second, third etc.) according to which derivative of
the free energy is discontinuous (the Ehrenfest classification): we simply have first order transitions,
where the entropy, or volume etc. is discontinuous, and second order transitions where such variables
are continuous.

Analogies between liquid-gas and Ising ferromagnet transitions

There are in fact close similarities between the Ising transition and the liquid-gas transition. In particular
the critical point in the liquid-gas system is directly analogous to the transition temperature in the Ising
ferromagnet. The relationship is displayed in F3g.The analogies are in faquantitative—the transitions

at the critical points are said to be ithe same universality clasg-or example the density discontinuity
below the liquid-gas critical point grows &3, — T)? whereg has the same value as in the growth of the
magnetization below, in the Ising ferromagneM ~ (T, — T)#, and the compressibility in the gas diverges
nearT. in the same way that the susceptibility does at the magnet transition!

The main difference between the two transitions is that the magnetic field is an externally applied, symmetry
breaking field that can be set to zero. In the liquid-gas there is no symmetry between the two statds below
(the dense ligquid and rarefied gas), and the valu@ gielding the transition (corresponding BB= 0 in the
magnetic case) is nat priori obvious.

When is mean field theory exact?

Mean field theory is often a useful first approach giving a qualitative prediction of the behavior at phase
transitions. It becomes exact when a large number of neighbors participate in the interaction with each spin,
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since then the fluctuations in the effective field indeed become small compared with the mean. This happens
in high enough spatial dimensidnor for long range interactions. Wandoutescribes the infinite range Ising
model, and also introduces a useful formal approach known as the Hubbard-Stratonovich transformation,
demonstrating this. This is an advanced topic you can consult if you are interested.
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Figure 3. Analogy between Ising ferromagnet transition (left panels) and liquid-gas transition (right panels).
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