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Today’s Lecture: Nonlinear Theory of Patterns near Onset
Outline

» Review: linear instability towards patterns
* Qualitative picture of nonlinear, spatially periodic patterns
» General Patterns Near Onset

o One dimensional amplitude equation

¢ Generalizations to two dimensions

Analogies to and differences from equilibrium phase transition to broken
symmetry state
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Review of Rayleigh-Bénard Instability
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Linear Stability Analysis

« Driving strength: Rayleigh numbé® o« AT
« Look for linear modeu,  oc € @ cogqx)
 Calculates (q) as a function olR

* 0(Q) > O indicates exponential growth, i.e., instability towards a
pattern with periodicity 2 /q
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Rayleigh’s Growth Rat@or P = 1)
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Rayleigh’s Growth Ratéor P = 1)
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Rayleigh’s Growth Rat@or P = 1)
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Rayleigh’s Growth Ratéor P = 1)
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Parabolic approximation near maximum

A
Re g,
. q
1
e
R>R,
R=R,
R<R,
For R nearR; andq nearqc
R-Re
-1 2 2 :
Reo(@) =1 e —§°(@—0d)°] with &=
Re
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Neutral stability curve

Rf—————————== Reo, <0

>
>

|
|
a, g
Re o (q) = 0 defines the neutral stability cunR= R.(q) orq = gn(R)

(qZ + 7.[2)3

Rayleigh: R.(q) = e

Back Forward




Collective Effects in Equilibrium and Nonequilibrium PhysicsApril 28, 2006 11

Linear Stability Analysis

Linear stability theory is often a useful first step in understanding pattern
formation:

« Often is quite easy to do either analytically or numerically
+ Displays the important physical processes
 Gives the length scale of the pattern formatigil
But:
» Leaves us with unphysical exponentially growing solutions
Nonlinear Theory
 Saturation of spatially periodic solution (bifurcation theory)

* General patterns (cf., broken symmetry at phase transitions)
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Quialitative Picture of Nonlinear States
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Qualitative Picture of Nonlinear States
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Quialitative Picture of Nonlinear States

Reoq>0

----------- &—band of growing solutions—9~--------
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Qualitative Picture of Nonlinear States: Periodic BC

A Forward Bifurcation
RT\: ¢t 1 Jau
RC
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Quialitative Picture of Nonlinear States: Periodic BC

Backward Bifurcation
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Quialitative Picture of Nonlinear States: Infinite System

R
RC
q, a
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Quialitative Picture of Nonlinear States

A
R A
Patterns exist.
Are they stable?
RC
No patterns

\4

q; q
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Qualitative Picture of Nonlinear States: Instability of Stripes

E=Eckhaus

v
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Quialitative Picture of Nonlinear States: Instability of Stripes

A\ 4
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Quialitative Picture of Nonlinear States: Instability of Stripes

R
RC
q, a
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Qualitative Picture of Nonlinear States: Stability Balloon

E=Eckhaus
rR 1 7=ZigZag
SV=Skew Varicose
O=Oscillatory
RC

v
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Quialitative Picture of Nonlinear States: Stability Balloon

E=Eckhaus
R A Z=ZigZag
SV=Skew Varicose
O=Oscillatory
RC
Ov. 9s 9. Gdss Oy G
Back Forward
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Tools for the Nonlinear Problem

The instability to a pattern is another example of a broken symmetry transition, now
in the context of nonequilibrium systems

The same basic ideas we discussed in the context of equilibrium phase transitions
apply:
© near the transitionR >~ R, q =~ qc or slow modulations of a pattern af)

describe the behavior using an order parameter

o away from the transition use a phase variable description to describe the behavior
resulting from the broken symmetry

There will be similar general behavior:
© new rigidity
© Goldstone modes

© importance of topological defects

There will be important differences in formulation and behavior because we cannot
start from a free energy, but must consider directly the dynamics
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Amplitude Equations

Systematic approach for describing weakly nonlinear solutions near onset
for solutions near a stripe state

A
R
RF-——————-
Back Forward
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Amplitude Equations
Linear onset solution for stripes
Sug(xy,zt) = [agd@ XL eRemt]  x [ug(z) %] + ce.
Small terms near onset Onset solution
Weakly nonlinear, slowly modulated, solution
SU(X,,z,t) =~ AXp,1) x [ug(2€%*] + cc

Back

Complex amplitude Onset solution

A(x_, t) is the order parameter for the stripe state

A(x_, t) satisfies the amplitude equation. In Ig i qcX, A = A(x, D)]:

0 A=eA+EGOZA—go|APA, e=(R—R)/Re

Forward
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Complex Amplitude

Magnitude and phase & play very different roles

AX,y,t) =a(x,y, t)gfxy.h

su(xi,zt) = ad’ x &%uq (2) + cc

* magnitudea = | A| gives strength of disturbance

phase chang&) gives shift of pattern (byx = §6/9c)— symmetry!

 x-gradientdy6 gives change of wave numbgr= q. + dx6
A = ad** corresponds tq = qc + k

* y-gradientdy6 gives rotation of wave vector through angl@/qc
(plus O[(aye)z] change in wave number)
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The amplitude equation describes

A = A — glAPA + £202A

growth saturation dispersion/diffusion

Back Forward
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Parameters

0 A =eA+ E202A — go | A A,

* control parameter = (R — R;)/Rc
» system specific constants, &9, do

o 10, & fixed by matching to linear growth rate = a €**1 et
gives pattern af] = q.X + k)

oq = 10 e — £0°(q — Gc)?]

© Qo by calculating nonlinear state at smalindq = qc.
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Scaling
R-Re
0 A=ecA+ES02A— go|AZA, &=
Re
Introduce scaled variables
X =g Y 2%‘0 X
t=c"1¢0T

A= (¢/go)"* A
This reduces the amplitude equation toraversalform
orA=A+iA—|AA

Since solutions to this equation will develop on scate¥, T, A= O(1)
this gives us scaling results for the physical length scales.

Back Forward
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Derivation

00 A=eA+ E202A — go | A2 A, £ =

« Expand dynamical equation in powersAfand use symmetry
arguments (cf., equilibrium phase transitions where we expand free
energy). Equation must be invariant under:

o A(X1) — A(x1)€2 with A a constant, corresponding to a physical
translation

o A(xp) — A*(—x_), corresponding to inversion of the horizontal
coordinates (parity symmetry)

» Multiple scales perturbation theory (Newell and Whitehead, Segel
1969)

* Mode projection (MCC 1980)
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Amplitude Equation = Ginzburg Landau equation
0 A =eA+E302A — go | A A,

Familiar from other branches of physics:
» Good: take intuition from there
» Bad: noreally new effects
e.g. equation is relaxational (potential, Lyapunov)

sV

ToatA = —m,

V= [ax[-e A2+ doo A1+ 6 A7)

This leads to

dv
Tl —ro_lfdx|3tA|2 <0

and dynamics runs “down hill” to a minimum &— no chaos!

Back Forward
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» We have arrived at the same Landau type formulation with an effective

“potential” or “free energy™V!

 This is not fundamental, and is “luck” resulting from our expans
¢ to lowest order

¢ no effective potential at higher order

© no effective potential for some side-wall boundary conditions

ionin

¢ no effective potential for rotating convection (and there is chaos at

onset!)

Back

Forward
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Applications

What we can calculate:

Effect of distant sidewalls

» Eckhaus instability

34

» Propagation of pattern into no pattern region (e.g., from localized

initial condition

Evolution from random initial condition

Back

Forward
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Example: Effect of Distant Sidewalls

One dimensional geometry with sidewalls that suppress the pattern
(e.g. rigid walls in a convection system)

orA=A+3A—|APA  AO0)=0

Al

PN

A =€’ tanh(X/+/2)
Unscaled variables:

A = €%(¢/go) 2 tanh(x/£) with £ = /2:7Y%,

Back Forward
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Solution

A = €% (e/go)/? tanh(x/£)
« suppression of pattern over length/2&y
« arbitrary position of rolls

» asymptotic wave number ks= 0, givingq = q¢: no band of existence

Extended amplitude equation to next ordet MCC, Daniels,
Hohenberg, and Siggia 1980) shows

» discrete set of roll positions

« solutions restricted to a narro@(s1) wave number band with wave
number far from the wall

a_e < —0 <o4e

Back Forward
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Electroconvection in a Smectic Film
z
* /-47
A - y
V72
+V2
X
V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)
Back Forward
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Electroconvection in a Smectic Film
(a) L)
g‘ . s » . e
L AAA ""',\:'
From Morris et al. (1991) and Mao et al. (1996)
Forward

Back
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39
Onset in Systems with Rotational Symmetry
» Two dimensional amplitude equation for stripes
» Amplitude equations for lattice states
 Rotationally invariant “model equation”
Back Forward
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Stripe state

PN
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Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

; 2
I 2 2
—0 A— Al A
ZQC y) do | |

00 A=A+ & (ax -

QZ
q_QCZ\/(QC‘f‘QX)Z‘f’Q%—QC%Qx+ﬁ
c

Note: the complex amplitude can only descrdpeall reorientations of the stripes.

Isotropic system gives anisotropic scaling= e~ 1/2& X; y = e Y4 (&/00) Y2 Y

Back Forward
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Hexagonal state
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Amplitude theory of hexagons

-2 -

Amplitudes of rolls at 3 orientation4; (r,t), i =1...3

dA/dt = eAp — AL(AZ + gAZ + gAD)+y ArAg
dAg/dt = e Ay — Ap(A3 + gAS + gAD) +y Aghy
dAg/dt = s Az — Ag(A3 + gAZ + gAD)+y AlA,

e A1 #0, Ao = A3 = 0 gives stripes
« A; = Ay = A3 # 0 gives hexagons
For Ay — —A; symmetry,y = 0 and stripes v. hexagons dependgjon

For noA; — —A; symmetry,y # 0 and always get hexagons at onset
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Swift-Hohenberg Equation
Rotationally invariant formulation in terms of a scalar figidx, y, t) that
captures the same physics as the amplitude equation
oy = [e = (V2 + 12|y —y° (VL = (8/dx, 3/9y)]
« originally introduced to investigateniversalaspects of the transition
to stripes

« later used to study qualitative aspects of stripe pattern formation

* no systematic derivation: model rather than controlled approximation

 equation is again relaxational

sV
oy = v

5 V=/ dxdy{—%s¢2+%[(Vi+l)1ﬂ]2+;1ﬁ/f4}
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Motivation

» Mode amplitude/q(t) at wave vectoq satisfies linear equation (for=~ gc)

g = 70 e — £5(0 — 9o)*1¥q

To be able to write this as a local equation for the Fourier transip(r) y, t)
approximate this by

Vg = 10 e — (£§/403)(0” — a))?1Yq

In real space this gives

w0y (X, Y, ) = ey — (65/40)(VE + )’y
Simplest linear pde that gives the ring of unstable modes:(fo10)
Add simplest possible nonlinear saturating term

oY (X, y, 1) = ey — (6§/40D)(V +aD)*¥ — goy'®
Alternative motivation:

AKX, )€U = y(x, y)

Back

Forward
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Relaxation to steady state

. 7

T=2455 F=-609 <¥Z>=00453
. (d)

poe |

T=3055 F=-613 <x2>=00472 T=4505 F=-6.22 <¥Z>=00477 T=6805 F=-632 <XZ>=0.048|

(from Greenside and Coughran, 1984)

Back
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Coarsening in a periodic geometry

Fo10 S
é; S

/

N S22
M‘?Z@lﬁ?

2

(From Elder, Vinals, and Grant 1992)

Back Forward

Collective Effects in Equilibrium and Nonequilibrium PhysicsApril 28, 2006 48

Generalized Swift-Hohenberg models
Qualitatively include other physics:

* breaky — —i symmetry
o = [r = (V2 + 2|y +yyP— v
» change nonlinearity to make equation non-potential, e.g.
oy = [r = (V2 +22] v + (Viy)?V2y
» model effects of rotation

= [r (V2 4 1)2] v — 3t
02 Vi x [(VLY)?Viv]l+ gaVi - [(Viy)?Viy]

Back Forward




25

Collective Effects in Equilibrium and Nonequilibrium PhysicsApril 28, 2006 49

Conclusions

| have introduced the ideas and methods used to understand nonlinear
patterns, focussing on the regime near threshold.

Next Lecture: Symmetry Aspects of Nonlinear Patterns
 Analogies with and differences from equilibrium phase transitions
» Phase variable description

» Topological defects
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