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Today’s Lecture: Nonlinear Theory of Patterns near Onset

Outline

• Review: linear instability towards patterns

• Qualitative picture of nonlinear, spatially periodic patterns

• General Patterns Near Onset

� One dimensional amplitude equation

� Generalizations to two dimensions

Analogies to and differences from equilibrium phase transition to broken

symmetry state
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Review of Rayleigh-Bénard Instability

HOT

COLD

2π/q
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Linear Stability Analysis

• Driving strength: Rayleigh numberR ∝ 1T

• Look for linear modeu, θ ∝ eσ(q)t cos(qx)

• Calculateσ(q) as a function ofR

• σ(q) > 0 indicates exponential growth, i.e., instability towards a

pattern with periodicity 2π/q

2



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 5

Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=0.5 Rc

Rc = 27π4

4 , qc = π√
2
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Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=Rc q = qc

Rc = 27π4

4 , qc = π√
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Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=1.5 Rc

 q = qc

Rc = 27π4

4 , qc = π√
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Rayleigh’s Growth Rate(for P = 1)

σ
q/π

21

R=1.5 Rc

 q = qc

q+
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Rc = 27π4

4 , qc = π√
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Parabolic approximation near maximum

Re σq

q

R < Rc

R = Rc

R > Rc

qc

For R nearRc andq nearqc

Re σ(q) = τ0
−1[ε − ξ0

2 (q − qc)
2] with ε = R − Rc

Rc
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Neutral stability curve

qqc

R

Rc

Re σq > 0

Re σq < 0

Re σ(q) = 0 defines the neutral stability curveR = Rc(q) or q = qN(R)

Rayleigh: Rc(q) = (q2 + π2)3

q2
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Linear Stability Analysis

Linear stability theory is often a useful first step in understanding pattern

formation:

• Often is quite easy to do either analytically or numerically

• Displays the important physical processes

• Gives the length scale of the pattern formation 1/qc

But:

• Leaves us with unphysical exponentially growing solutions

Nonlinear Theory

• Saturation of spatially periodic solution (bifurcation theory)

• General patterns (cf., broken symmetry at phase transitions)
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Qualitative Picture of Nonlinear States

qqc

R

Rc

Re σq > 0

Re σq < 0
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Qualitative Picture of Nonlinear States

qqc

R

Rc

Re σq > 0

Re σq < 0

Rc(q) or
qN(R)
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Qualitative Picture of Nonlinear States

qqc

R

Rc

band of growing solut ions

Re σq > 0

Re σq < 0

qN- qN+

Rc(q) or
qN(R)
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Qualitative Picture of Nonlinear States: Periodic BC

qqc

R

q = n 2π/l

Rc

R

δu

Forward Bifurcation
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Qualitative Picture of Nonlinear States: Periodic BC

qqc

R

q = n 2π/l

Rc

R

δu

Backward Bifurcation
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Qualitative Picture of Nonlinear States: Infinite System

qqc

R

nonl inear states

Rc
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Qualitative Picture of Nonlinear States

qqc

R

Rc

Patterns exist.
Are they stable?

No patterns

9



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 19

Qualitative Picture of Nonlinear States: Instability of Stripes

qqc

R

Rc

EE

E=Eckhaus

stable
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bleunstable
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Qualitative Picture of Nonlinear States: Instability of Stripes

qqc

R

Rc

ZZ

Z=ZigZag

stable

unstable
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Qualitative Picture of Nonlinear States: Instability of Stripes

qqc

R

Rc

ZZ EE
stable
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Qualitative Picture of Nonlinear States: Stability Balloon

qqc

R

Rc

E

O

E=Eckhaus
Z=ZigZag
SV=Skew Varicose
O=OscillatorySV

EZZ

stable
band
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Qualitative Picture of Nonlinear States: Stability Balloon

qqc

R

Rc

E

O

E=Eckhaus
Z=ZigZag
SV=Skew Varicose
O=OscillatorySV

EZZ

stable
band

qS+qS- qN+qN-

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 24

Tools for the Nonlinear Problem

• The instability to a pattern is another example of a broken symmetry transition, now

in the context of nonequilibrium systems

• The same basic ideas we discussed in the context of equilibrium phase transitions

apply:

� near the transition (R ' Rc, q ' qc or slow modulations of a pattern atqc)

describe the behavior using an order parameter

� away from the transition use a phase variable description to describe the behavior

resulting from the broken symmetry

• There will be similar general behavior:

� new rigidity

� Goldstone modes

� importance of topological defects

• There will be important differences in formulation and behavior because we cannot

start from a free energy, but must consider directly the dynamics
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Amplitude Equations

Systematic approach for describing weakly nonlinear solutions near onset

for solutions near a stripe state

qqc

R

Rc

Re σq > 0

Re σq < 0

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 26

Amplitude Equations

Linear onset solution for stripes

δuq(x⊥, z, t) = [
a0ei (q−qc)·x⊥ eReσqt

] × [
uq(z) ei qc·x⊥

] + c.c.

Small terms near onset Onset solution

Weakly nonlinear, slowly modulated, solution

δu(x⊥, z, t) ≈ A(x⊥, t) × [
uqc(z) ei qc·x⊥

] + c.c.

Complex amplitude Onset solution

A(x⊥, t) is the order parameter for the stripe state

A(x⊥, t) satisfies the amplitude equation. In 1d [qc = qcx̂, A = A(x, t)]:

τ0∂t A = εA + ξ2
0∂

2
x A − g0 |A|2 A, ε = (R − Rc)/Rc
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Complex Amplitude

Magnitude and phase ofA play very different roles

A(x, y, t) = a(x, y, t)ei θ(x,y,t)

δu(x⊥, z, t) = aei θ × eiqcxuqc(z) + c.c.

• magnitudea = |A| gives strength of disturbance

• phase changeδθ gives shift of pattern (byδx = δθ/qc)— symmetry!

• x-gradient∂xθ gives change of wave numberq = qc + ∂xθ

A = aeikx corresponds toq = qc + k

• y-gradient∂yθ gives rotation of wave vector through angle∂yθ/qc

(plus O[(∂yθ)
2] change in wave number)
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The amplitude equation describes

τ0∂t A = εA − g0 |A|2 A + ξ2
0∂

2
x A

growth saturation dispersion/diffusion
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Parameters

τ0∂t A = εA + ξ2
0∂

2
x A − g0 |A|2 A,

• control parameterε = (R − Rc)/Rc

• system specific constantsτ0, ξ0, g0

� τ0, ξ0 fixed by matching to linear growth rateA = a ei k·x⊥eσqt

gives pattern atq = qcx̂ + k)

σq = τ0
−1[ε − ξ0

2(q − qc)
2]

� g0 by calculating nonlinear state at smallε andq = qc.
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Scaling

τ0∂t A = εA + ξ2
0∂

2
x A − g0 |A|2 A, ε = R − Rc

Rc

Introduce scaled variables

x = ε−1/2ξ0 X

t = ε−1τ0 T

A = (ε/g0)
1/2 Ā

This reduces the amplitude equation to auniversalform

∂T Ā = Ā + ∂2
X Ā − ∣∣Ā∣∣2 Ā

Since solutions to this equation will develop on scalesX,Y, T, Ā = O(1)

this gives us scaling results for the physical length scales.
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Derivation

τ0∂t A = εA + ξ2
0∂

2
x A − g0 |A|2 A, ε = R − Rc

Rc

• Expand dynamical equation in powers ofA and use symmetry

arguments (cf., equilibrium phase transitions where we expand free

energy). Equation must be invariant under:

� A(x⊥) → A(x⊥)ei1 with1 a constant, corresponding to a physical

translation

� A(x⊥) → A∗(−x⊥), corresponding to inversion of the horizontal

coordinates (parity symmetry)

• Multiple scales perturbation theory (Newell and Whitehead, Segel

1969)

• Mode projection (MCC 1980)
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Amplitude Equation = Ginzburg Landau equation

τ0∂t A = εA + ξ2
0∂

2
x A − g0 |A|2 A,

Familiar from other branches of physics:

• Good: take intuition from there

• Bad: noreally new effects

e.g. equation is relaxational (potential, Lyapunov)

τ0∂t A = − δV

δA∗ , V =
∫

dx
[
−ε |A|2 + 1

2g0 |A|4 + ξ2
0 |∂x A|2

]

This leads to
dV

dt
= −τ−1

0

∫
dx |∂t A|2 ≤ 0

and dynamics runs “down hill” to a minimum ofV— no chaos!
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• We have arrived at the same Landau type formulation with an effective

“potential” or “free energy”V !

• This is not fundamental, and is “luck” resulting from our expansion in

ε to lowest order

� no effective potential at higher order

� no effective potential for some side-wall boundary conditions

� no effective potential for rotating convection (and there is chaos at

onset!)
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Applications

What we can calculate:

• Effect of distant sidewalls

• Eckhaus instability

• Propagation of pattern into no pattern region (e.g., from localized

initial condition

• Evolution from random initial condition

• …
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Example: Effect of Distant Sidewalls

One dimensional geometry with sidewalls that suppress the pattern
(e.g. rigid walls in a convection system)

∂T Ā = Ā + ∂2
X Ā − ∣∣ Ā∣∣2 Ā Ā(0) = 0

x

|A|
ξ

Ā = ei θ tanh(X/
√

2)

Unscaled variables:

A = ei θ (ε/g0)
1/2 tanh(x/ξ) with ξ = √

2ε−1/2ξ0
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Solution

A = ei θ (ε/g0)
1/2 tanh(x/ξ)

• suppression of pattern over lengthε−1/2ξ0

• arbitrary position of rolls

• asymptotic wave number isk = 0, givingq = qc: no band of existence

Extended amplitude equation to next order inε (MCC, Daniels,

Hohenberg, and Siggia 1980) shows

• discrete set of roll positions

• solutions restricted to a narrowO(ε1) wave number band with wave

number far from the wall

α−ε < q − qc < α+ε
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Electroconvection in a Smectic Film

V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)
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Electroconvection in a Smectic Film

From Morris et al. (1991) and Mao et al. (1996)
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Onset in Systems with Rotational Symmetry

qx

qy q+

q−

σ > 0 qc

• Two dimensional amplitude equation for stripes

• Amplitude equations for lattice states

• Rotationally invariant “model equation”
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Stripe state

qx
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Rotational symmetry: amplitude equation for stripes

For a 2d, rotationally invariant system the gradient term is more complicated

τ0∂t A = εA + ξ2
0

(
∂x − i

2qc
∂2

y

)2

A − g0 |A|2 A

Qx

qc + Q

qc

Qy

Q

q − qc =
√
(qc + Qx)2 + Q2

y − qc ≈ Qx + Q2
y

2qc

Note: the complex amplitude can only describesmall reorientations of the stripes.

Isotropic system gives anisotropic scaling:x = ε−1/2ξ0 X; y = ε−1/4(ξ0/qc)
1/2 Y
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Hexagonal state

qx

qy

21



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 43

Amplitude theory of hexagons

Amplitudes of rolls at 3 orientationsAi (r , t), i = 1 . . .3

d A1/dt = εA1 − A1(A
2
1 + g A2

2 + g A2
3)+γ A2A3

d A2/dt = εA2 − A2(A
2
2 + gA2

3 + g A2
1)+γ A3A1

d A3/dt = εA3 − A3(A
2
3 + g A2

1 + g A2
2)+γ A1A2

• A1 6= 0, A2 = A3 = 0 gives stripes

• A1 = A2 = A3 6= 0 gives hexagons

For Ai → −Ai symmetry,γ = 0 and stripes v. hexagons depends ong

For noAi → −Ai symmetry,γ 6= 0 and always get hexagons at onset
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Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar fieldψ(x, y, t) that

captures the same physics as the amplitude equation

∂tψ =
[
ε − (∇2⊥ + 1)2

]
ψ − ψ3 [∇⊥ = (∂/∂x, ∂/∂y)]

• originally introduced to investigateuniversalaspects of the transition

to stripes

• later used to study qualitative aspects of stripe pattern formation

• no systematic derivation: model rather than controlled approximation

• equation is again relaxational

∂tψ = −δV
δψ
, V =

∫∫
dxdy

{
−1

2εψ
2 + 1

2

[
(∇2⊥ + 1)ψ

]2 + 1
4ψ

4
}
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Motivation

• Mode amplitudeψq(t) at wave vectorq satisfies linear equation (forq ' qc)

ψ̇q = τ−1
0 [ε − ξ2

0 (q − qc)
2]ψq

• To be able to write this as a local equation for the Fourier transformψ(x, y, t)

approximate this by

ψ̇q = τ−1
0 [ε − (ξ2

0/4q2
c )(q

2 − q2
c )

2]ψq

• In real space this gives

τ0ψ̇(x, y, t) = εψ − (ξ2
0/4q2

c )(∇2⊥ + q2
c )

2ψ

Simplest linear pde that gives the ring of unstable modes (forε > 0)

• Add simplest possible nonlinear saturating term

τ0ψ̇(x, y, t) = εψ − (ξ2
0/4q2

c )(∇2⊥ + q2
c )

2ψ − g0ψ
3

• Alternative motivation:

A(x, y)eiqcx ⇒ ψ(x, y)

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 28, 2006 46

Relaxation to steady state

(from Greenside and Coughran, 1984)
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Coarsening in a periodic geometry

(From Elder, Vinals, and Grant 1992)
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Generalized Swift-Hohenberg models

Qualitatively include other physics:

• breakψ → −ψ symmetry

∂tψ =
[
r − (∇2⊥ + 1)2

]
ψ + γψ2 − ψ3

• change nonlinearity to make equation non-potential, e.g.

∂tψ =
[
r − (∇2⊥ + 1)2

]
ψ + (∇⊥ψ)2∇2⊥ψ

• model effects of rotation

∂tψ =
[
r − (∇2⊥ + 1)2

]
ψ − ψ3+

g2ẑ · ∇⊥ × [(∇⊥ψ)2∇⊥ψ] + g3∇⊥ · [(∇⊥ψ)2∇⊥ψ]
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Conclusions

I have introduced the ideas and methods used to understand nonlinear

patterns, focussing on the regime near threshold.

Next Lecture: Symmetry Aspects of Nonlinear Patterns

• Analogies with and differences from equilibrium phase transitions

• Phase variable description

• Topological defects
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