
7. Diffraction Contrast in TEM Images

7.1 Contrast in TEM Images

This chapter explains the origin of features observed in many TEM images
of crystalline materials. These microstructural features, having sizes from
nanometers to microns, control many important properties of materials. TEM
provides information about these microstructural features that is often more
detailed and more direct than can be obtained by any other experimental
technique. There are subtleties, however, in the interpretation of images such
as those from the dislocation segments running from top to bottom of the
sample in the figure above. The dislocations themselves do not have the mod-
ulations in width seen in the image, and the dislocation images are displaced
horizontally from the actual positions of the cores of the dislocations. By
changing the tilt of the incident beam on the Bragg planes of the crystal, i.e.,
changing the “diffraction condition,” the images of the dislocations can shift
in position, split in two, or disappear entirely.

“Contrast” is the appearance of a feature in an image. Contrast in bright-
field (BF) and dark-field (DF) TEM images is usually “diffraction contrast,”
or the variations in intensity of diffraction across the sample. Chapter 5 dis-
cussed the Laue condition, written as ∆k = g − s, where the direction of
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∆k is adjustable by tilts, and g is a reciprocal lattice vector of the crystal.
Diffraction contrast and the appearance of features in BF and DF images
depend sensitively on how the Laue condition is satisfied – specifically which
diffraction is active, and the value of the deviation parameter, s (the mag-
nitude of s). The alternative “mass thickness contrast” is generally weaker
and overshadowed by the stronger effects of electron diffraction, except in
cases where there are large differences in atomic number or when diffrac-
tion is weak. “Phase contrast” and “Z-contrast” methods of high-resolution
imaging, described in Chap. 10, offer better spatial resolution than conven-
tional TEM imaging, but these HRTEM methods require considerably more
sophisticated instruments, operator skill, and usually more interpretation.

The focus of this chapter is on individual “defects” in crystalline ma-
terials. The name “defect” may lack dignity, but it has come to mean the
microstructural features within materials that are responsible for many of
the structure-property relationships in materials science. Some aspects of
diffraction from three-dimensional defects, e.g., second phase particles, were
presented in Sect. 5.4.3. Their BF and DF TEM images are typically two-
dimensional regions having different contrast (brightness) than the surround-
ing matrix. The present chapter provides a thorough discussion of images of
these defects. It also discusses two-dimensional interfaces between crystals
and between domains. The diffraction contrast from crystalline interfaces
often contains rows of one-dimensional bands, or fringes. There are several
different types of fringes, and they can often be distinguished by how their ap-
pearance changes with the tilt of the beam or with the tilt of the crystal. The
important one-dimensional crystalline defect, the dislocation, has structures
and strains that are reviewed in Appendix A.12. Dislocations cause severe
local distortions of the surrounding crystal. It is, in fact, the strains in the
crystal that provide the diffraction contrast of the dislocation, not the core
of the dislocation itself. Zero-dimensional point defects, e.g., vacancies and
impurities, are generally not visible in conventional TEM images, but strain
effects around nanometer-scale chemical zones, such as clusters of atoms or
vacancies, can be imaged and understood semi-quantitatively.

This chapter begins with a review of kinematical diffraction theory. In
conventional TEM, many of the diffraction effects are dynamical in origin,
but dynamical theory is not presented until Chap. 11. Nevertheless, we use
the “extinction length” from Chap. 11 to justify the kinematical dependence
of diffraction intensity on specimen thickness and diffraction error. The math-
ematical form of the kinematical intensity is the same as for dynamical theory
without absorption, and the predicted contrast is often correct qualitatively.
The physical origin of the diffraction contrast is often different in dynamical
and kinematical theory, however.

Semi-quantitative analyses of diffraction contrast are often performed
with a “phase-amplitude diagram.” The phase-amplitude diagram is a graphi-
cal construction of a complex Fourier transform, so it is drawn on the complex
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plane. The phase-amplitude diagram provides a sum of the relative phases
of the wavelets diffracted from unit cells through the thickness of a sample.
This vector sum provides the amplitude of the total diffracted wave. The
phase-amplitude diagram is often puzzling when encountered for the first
time. Once the reader acquires the knack for using it, however, he or she can
obtain quick answers to many new diffraction problems for which analytical
Fourier transforms are unavailable.

There are indeed several important cases where kinematical theory proves
entirely inadequate for understanding image contrast, even when it is ex-
tended formally to dynamical theory without “absorption.” Results from dy-
namical theory with absorption are needed to analyze quantitatively the na-
ture of stacking faults and the “Ashby-Brown contrast” from small coherent
particles. Such methods are presented in this chapter, but largely without
justification. A full justification is beyond the scope of this book, both in
its level of detail and in its reliance on computer calculation. A qualitative
discussion of dynamical theory with absorption is provided in Chap. 11.

7.2 A Review of Structure and Shape Factors

With the kinematical theory as developed so far, we can obtain simple analyt-
ical expressions for the scattered wave, ψ, for only a few geometries, such as
a perfect crystal with flat surfaces. This chapter presents a graphical method
that is a powerful and intuitive tool for evaluating ψ in an approximate way.
Most importantly, we show how this method of “phase-amplitude diagrams”
can predict the diffraction contrast near an individual crystalline defect.

We begin by reviewing the deviation vector s and its effect on the diffrac-
tion intensity from a crystal:

g = ∆k + s , (7.1)

where g is a reciprocal lattice vector and ∆k is the diffraction vector whose
ends lie on the Ewald sphere (∆k ≡ k − k0). For high-energy electrons, the
shortest distance between the Ewald sphere and a reciprocal lattice point, g,
is parallel to the ẑ direction, so we often work with only the magnitude of s,
plus its sign along ẑ, known as the “deviation parameter,” s:

s is the minimum distance from the Ewald sphere
to the reciprocal lattice point.

We choose a sign convention for s that is convenient when we determine s by
measuring the positions of Kikuchi lines. Positive s means that s points along
positive z.1 Figure 6.25 shows that s is positive when the reciprocal lattice
1 By convention, ẑ points towards the electron gun. This is handy for diffraction

patterns and stereographic projections. On the other hand, when integrating
wavelet amplitudes from top to bottom of a specimen, we may want ẑ to point
down. In such cases it may be necessary to handle with care the sign of the phase
2πsz, as in Sect. 7.9.


