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The Compton scattering of an x-ray is incoherent because there are de-
grees of freedom in each scattering event associated with the atomic electron.
Compton scattering provides a background intensity in x-ray diffraction pat-
terns that can be understood as follows. The outer electrons of an atom are
the ones that can participate in Compton scattering because they can be-
come unbound from the atom and carry momentum when they acquire the
energy of h∆ν. Compton scattering by outer electrons is more likely at higher
diffraction angles 2θ, where h∆ν is as large as 125 eV for Cu Kα radiation,
for example. The Compton background therefore rises with 2θ angle. The
core electrons of heavier atoms do not participate in Compton scattering,
since they are bound too tightly. The relative amount of Compton scattering
versus coherent scattering therefore decreases with the atomic number of the
element. It turns out that the total inelastic Compton scattering intensity
plus the total elastic intensity are exactly equal to the Thompson scattering.

3.2.3 X-Ray Mass Attenuation Coefficients

As an x-ray beam passes through a material, the energy of each x-ray remains
constant, but there is a decrease in number of the incident x-rays. At the
depth x, the increment of thickness of a material, dx, scatters a number of x-
rays, dI, removing them from the beam. The number of lost x-rays, −dI(x),
equals the product of 1) the increment of thickness, dx, 2) the number of
x-rays present at x, I(x), and 3) a material coefficient, µ:

−dI(x) = µI(x)dx , (3.36)
dI(x)
dx

= −µI(x) , (3.37)

I(x) = I0e−µx . (3.38)

The product in the exponent, µx, must be dimensionless, so µ has dimensions
of [cm−1]. When µx is small, it equals the fraction of x-rays removed from the
incident beam. From Fig. 3.1 we know that this fraction also equals Nσ/A,
so:

µ =
Nσ

Ax
=
N

V
σ , (3.39)

where N/V has units [atoms cm−3] and σ is the scattering cross-section with
units [cm2]. Since density varies with the type of material, tabulations such
as the one in Appendix A.2 provide “mass attenuation coefficients,” which
are ratios µ/ρ. Here the density, ρ, has units [g cm−3], so the coefficients
µ/ρ have units [cm−1]/[g cm−3]=[cm2 g−1]. Exponents in 3.38 are products
(µ/ρ)× ρ× x, and are, of course, dimensionless.

As a typical application of mass attenuation coefficients tabulated in Ap-
pendix A.2, consider the characteristic depth of penetration for CuKα x-rays
in a sample of iron metal. This is obtained readily: the mass attenuation co-
efficient is 302 g−1 cm2, the density of iron is 7.86 g cm−3, and the inverse of
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the product of these numbers gives 4.2 µm. For comparison, the table also
shows that higher energy Mo Kα x-rays are more penetrating in iron, having
an e−1 reduction in intensity (e−1 = 0.368) over a distance of 34 µm.

It is straightforward to calculate the composite mass attenuation coef-
ficient for a compound or an alloy. (We obtain a different expression from
(1.67), however, which involved multiple phases.) In all absorption problems,
the point to remember is that the net x-ray scattering depends on the number
and types of atoms in the path of the beam. The composite mass attenua-
tion coefficient is obtained from the mass attenuation coefficients, µi, for the
different elements, i, weighted by their atomic fractions in the material, fi:

< µ >=
∑

i

fi µi . (3.40)

For use with tabulated values of µ/ρ, however, we must use mass fractions.
For example, consider the attenuation of Cu Kα radiation in an Fe-25at.%Al
alloy, which has a density of 6.8 g cm−3. We attribute 13.9% of the density
to Al and 86.1% to the Fe because the alloy composition is Fe-13.9 wt.% Al.
For Cu Kα radiation the product, < µρ >FeAl, is:

< µρ >FeAl =
[
0.139·49.6 + 0.861·302

]
6.8 = 1815 cm−1 . (3.41)

This gives a characteristic length of 5.5µm. Interestingly, if we assume that
the scattering is due entirely to iron, we obtain a characteristic length of
5.7µm. In this example the mass attenuation is dominated by the iron in the
material, primarily because iron is the stronger x-ray attenuator (and secon-
darily because iron is the majority species). Figure 3.4 is an x-ray penetration
image of an important work of art, “Blue Boy,” by Thomas Gainsborough.
Many minerals are used in paint pigments, but in Gainsborough’s day the
mineral lead carbonate was used for the color white. The lead dominates the
x-ray absorption, and in this (negative) image the light regions correspond
to a high lead density.7

The material coefficient, µ, originates with both inelastic and elastic scat-
tering. For x-rays with energies from 1 to 20 keV, however, the mass attenu-
ation coefficient is dominated by photoelectric absorption, where an incident
x-ray loses energy by exciting an electron out of the atom. Photoelectric
absorption requires the energy of the incident x-ray to be greater than the
binding energy of an atomic electron. The mass absorption coefficients are
larger for elements where the x-ray energy exceeds a binding energy of an
atomic electron. For Cu Kα x-rays, for example, this causes a 7-fold increase
in mass absorption coefficient for Co over that of Ni. The energy of a Cu Kα
x-ray is 8.05 keV, whereas the energy required for exciting a K-electron from
Co is 7.71 keV, and from Ni it is 8.33 keV.
7 Notice the dog in the lower right, which Gainsborough evidently decided was

inappropriate for the portrait. The top of the x-ray image also shows the collar
of another person, indicating the canvas itself was used for a previous portrait.
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Fig. 3.4. Left: Neg-
ative image of x-ray
penetration through
the canvas “Blue
Boy,” by Thomas
Gainsborough. Right:
The portrait surface
photographed with
reflected light. After
[3.1].

3.3 Coherent Elastic Scattering

3.3.1 ‡ Born Approximation for Electrons

Almost without a second thought, we treat electron scattering as a wave
phenomenon with the electron wavefunction satisfying the Schrödinger wave
equation. An electron diffraction pattern, with its series of spots or rings
as in Fig. 1.8, is certainly evidence of wave behavior. The interpretation of
the electron wavefunction is different from that of a simple wave, however.
Suppose we were to turn on an electron beam and watch the formation of the
diffraction pattern of Fig. 1.8, using a detector capable of recording impacts
of individual electrons. When the electron beam is turned on, a series of
bright flashes are observed at various points on the detector screen. Each
individual event occurs at a particular point on the detector, and does not
appear as a continuous ring. With time, an obvious bias appears, where the
points of detection are most frequently at the positions of the rings and spots
of the diffraction pattern. This behavior motivates the interpretation of the
electron wavefunction in terms of probabilities – specifically, the electron
probability is the electron wavefunction times its complex conjugate (which
makes a real number). Usually this probabilistic interpretation can be ignored
when we consider a diffraction pattern from many electrons, and we can
consider electron diffraction as the diffraction of any other type of wave.
When individual electron events are considered, however, we may have to
recall the probabilistic interpretation of the electron wavefunction because
individual electron detections look like particles rather than waves.

Another point to remember is that wave behavior is a characteristic of an
individual electron. When considering a diffraction pattern involving multiple
electrons, we do not add the amplitudes of multiple wavefunctions. At the
viewing screen, we add the intensities of individual electrons. The interactions
between different high-energy electrons are not coherent.


