
12. Dynamical Theory

12.1 Chapter Overview

This chapter solves the Schrödinger equation for a high-energy electron in
a solid with translational periodicity – i.e., a crystal. Section 12.2.1 derives
the dynamical equations (the “Howie–Whelan–Darwin equations”) from the
Bethe treatment of the Schrödinger equation, and contains the most con-
densed mathematics in the book. For a first approach to this chapter, the
authors recommend reading the following sections in this order: 12.3, the
first two short subsections of 11.2.1, 12.2.3, the first subsection of 12.4.1, and
finally 12.5. These sections offer an intuitive understanding of the issues in dy-
namical theory. They show how the wavefunction of the high-energy electron
is affected by the potential energy of the crystal – specifically, the periodic-
ity of the potential energy that originates with the periodicity of the atom
arrangements. It turns out that the periodic potential causes the amplitude
of the high-energy electron to be transferred back-and-forth (“dynamically”)
between the forward-scattered1 and diffracted wavefunctions (12.20). At the
precise Laue condition for strong diffraction (s = 0), the physical distance

1 It is no longer proper to use the term “transmitted beam” as we did for kine-
matical theory because the beam leaving the sample in the forward direction has
undergone many interchanges of energy with the diffracted beams.
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over which the wave amplitude is transferred back-and-forth once is called
the “extinction distance.” The extinction distance is shown to be inversely
proportional to the Fourier component of the crystal potential, Ug, where g
equals the difference in wavevector of the two coupled beams.

Quantum mechanics allows an electron wavefunction to be described by
different “representations,” which employ different sets of orthogonal basis
functions. The “beam representation” {Φ(g)}, and the “Bloch wave represen-
tation” {Ψ(r)}, are the two representations used in this chapter. The reader
is already familiar with the forward and diffracted wavefunctions Φ0(r) and
Φg(r) of the beam representation, whose amplitudes, φ0(z) and φg(z), vary
with depth z into the specimen. In its simplest form, the Bloch wave repre-
sentation uses two Bloch wavefunctions, Ψ (1)(r) and Ψ (2)(r). It is a convenient
representation for an electron that propagates in a crystal because the am-
plitudes of the Bloch wavefunctions, ψ(1) and ψ(2), are constant throughout
a perfect crystal. Bloch waves are eigenfunctions of an infinite, periodic crys-
tal. Although the different Bloch waves have the same total energy, their
electron density is distributed differently within the unit cell. The different
Bloch waves therefore have slightly different balances between potential en-
ergy and kinetic energy. Our two Bloch waves therefore have wavevectors
differing slightly from an average k as k + γ(1) and k + γ(2), and these γ(j)

increase with the Fourier component of the crystal potential, Ug. The differ-
ence between γ(1) and γ(2) gives rise to a spatial periodicity, 1/(γ(1) − γ(2)),
that proves to be the effective extinction distance for transfer of amplitude
between the forward and diffracted beams.

On the other hand, the diffracted beams, {Φ(g)}, are plane wave states for
the electron. They have wavevectors of exactly the same magnitude, although
different orientations. They are eigenfunctions of the momentum operator,
−i� grad, which means they are solutions to the Schrödinger equation for an
isotropic and featureless space, i.e., a constant potential. Since a crystal has a
periodic potential that is weak compared to an electron energy of 200 keV, for
example, the beams {Φ(g)} are almost eigenfunctions of the crystal, but they
vary in amplitude through the depth of the crystal. The beams prove useful
for calculating the electron scattering at the location of a defect such as a
stacking fault. The beams are easily related to the eigenstates of the isotropic
vacuum below the specimen, so the beam representation is needed again at
the exit surface of the sample to send the electron through the imaging lenses
of the microscope.

Here is a brief overview of the phenomena and tools of dynamical the-
ory that are presented in this chapter. It is important to be able to switch
easily between the Bloch wave representation and the beam representation.
Specifically, we need to a means to express the same electron wavefunction
in terms of amplitudes of beams or amplitudes of Bloch waves. This transfor-
mation is performed with (12.76) and (12.77). The coefficients

{
C

(j)
g

}
for the

transformation matrix are given in (12.140) and (12.141). They depend on
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the extinction distance and on the tilt of the incident beam (parameterized
by the deviation parameter, s, often called the “diffraction error”). It turns
out that the amplitudes of the Bloch waves are easiest to obtain at the top
of the specimen, where there is only a forward beam and (12.77) does not
depend on the sample thickness (because z = 0). A tool to obtain these am-
plitudes is shown in Fig. 12.17, the “dispersion surface construction,” akin to
the Ewald sphere construction. It provides a quick indication of how s affects
the amplitudes of the Bloch waves.

Dynamical calculations of diffraction contrast are presented later in the
chapter. For a perfect crystal of finite size, it is interesting that the diffracted
intensity (12.161) has the same mathematical form as the intensity of kine-
matical theory (7.12). As discussed in Sects. 7.3 and 12.5, however, there are
several differences in predictions of diffraction contrast from crystal defects
by kinematical and dynamical theories. Hirsch, et al.’s classic example of us-
ing Bloch waves and beams for calculating diffraction contrast from stacking
faults is presented in Sect. 12.7.2. In spite of the complexity of this dynamical
treatment, without a further extension it misses a most important feature of
diffraction contrast from stacking faults – the lack of complementary fringe
contrast in bright- and dark-field images. This asymmetry of diffraction con-
trast from the top and bottom of the sample involves the effects of “absorp-
tion.” As used here, absorption means any incoherent scattering process –
the high-energy electron need not disappear, but merely lose coherence. Ab-
sorption can be included by adding an imaginary component to the crystal
potential. Section 12.7.3 describes the effects of absorption in a qualitative
way.

12.2 ‡ * Mathematical Features
of High-Energy Electrons in a Periodic Potential

12.2.1 ‡ * The Schrödinger Equation

The Average Potential of a Solid. Before we consider the periodicity of
the crystal potential, we consider the effect of the average potential in the
solid, denoted U00. This potential is electrostatic in origin, and is attractive
(i.e., U00 < 0) because the high-energy electron enters the positive ion cores
as it passes through the solid. This potential alters the electron wavevector in
the solid, k. This wavevector is related to the kinetic energy of the electron
in the solid, Ekin, in the usual way:

�
2k2

2m
= Ekin . (12.1)

Conservation of energy is used to find the effect of U00 on the electron
wavevector. When the electron enters the potential of the solid, its kinetic


