
8 Pressure

Historically there has been comparatively little work on how phase transitions
in materials depend on pressure, as opposed to temperature. For experimental
work on materials, it is difficult to achieve pressures of thermodynamic impor-
tance, whereas high temperatures are obtained easily. The situation is reversed for
computational work. The thermodynamic variable complementary to pressure is
volume, whereas temperature is complemented by entropy. It is comparatively
easier to calculate the free energy of materials with different volumes, as opposed
to calculating all different sources of entropy.

Recently there have been rapid advances in high pressure experimental tech-
niques, often driven by interest in the geophysics of the Earth. Nevertheless, new
materials are formed under extreme conditions of pressure and temperature, and
some such as diamond can be recovered at ambient pressures. The use of pres-
sure to tune the electronic structure of materials can be a useful research tool for
furthering our understanding of materials properties. Sometimes the changes in
interatomic distances caused by pressure can be induced by chemical modifications
of materials, so experiments at high pressures can point directions for materials
discovery.

This Chapter 8 begins with basic considerations of the thermodynamics of ma-
terials under pressure, and how phase diagrams are altered by temperature and
pressure together. Volume changes can also be induced by temperature, and the
concept of “thermal pressure” from non-harmonic phonons is explained. The elec-
tronic energy accounts for most of the PV contribution to the free energy, and there
is a brief description of how electron energies are altered by pressure. The chapter
ends with a discussion about using pressure to investigate kinetic processes, and
the meaning of an activation volume.

8.1 Materials under Pressure at Low
Temperatures

The behavior of solids under pressure, at least high pressures that induce substan-
tial changes in volume, is more complicated than the behavior of gases. Neverthe-
less, it is useful to compare gases to solids to see how the thermodynamic extensive
variable, V, depends on the thermodynamic intensive variables T and P.
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8.1.1 Gases (for comparison)

Recall the equation of state for an ideal gas comprised of non-interacting atoms

PV = NkBT . (8.1)

Non-ideal gases are often treated with two Van der Waals corrections:

• The volume for the gas is a bit less than the physical volume it occupies because
the molecules themselves take up space. The quantity V in Eq. 8.1 is replaced
by V −Nb, where b is an atomic parameter with units of volume.

• An attractive interaction between the gas molecules tends to increase the pressure
a bit. This can be considered as a surface tension that pulls inwards on a
group of gas molecules. The quantity P in Eq. 8.1 is replaced by P + a(N/V)2.
The quadratic dependence of 1/V2 is expected because the number of atoms
affected goes as 1/V, and the force between them may also go as 1/V. (Also, if
the correction went simply as 1/V, it would prove uninteresting in Eq. 8.1.)

The Van der Waals equation of state (EOS) is

[
P + a

N2

V2

][
V −Nb

]
= NkBT . (8.2)

Equation 8.2 works surprisingly well for the gas phase when the parameters a

and b are small and the gas is “gas-like.” Equation 8.2 can be converted to this
dimensionless form

P = T
V − 1

− 1
V2 , (8.3)

with the definitions
P ≡ P

b2

a
, (8.4)

V ≡ V

Nb
, (8.5)

T ≡ kBT
b

a
. (8.6)

Figure 8.1 shows the Van der Waals EOS of Eq. 8.2 for a fixed a and b, but with
varying temperature. At high temperatures the behavior approaches that of an ideal
gas, with P ∝ T/V (Eq. 8.1). More interesting behavior occurs at low temperatures.
It can be shown that below the critical pressure and critical temperature

Pcrit =
1

27
a

b2 , (8.7)

kBTcrit =
8

27
a

b
, (8.8)

a two-phase coexistence between a high-density and a low-density phase appears.
This is point “C” in Fig. 8.1a, for which the volume is

Vcrit = 3 b N . (8.9)
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tFig. 8.1 (a) Isothermals of the Van der Waal’s equation of state Eq. 8.2, plotted with
rescaled variables of Eqs. 8.4 - 8.6. (b) Maxwell construction for T = 0.26a/(bkB).

At lower temperatures, such as kBT = 0.26a/b shown in Fig. 8.1b, the same
pressure corresponds to three different volumes V1, V2, and V3. We can ignore V2

because it is unphysical – at V2 an increase in pressure causes an expansion (and
likewise, the material shrinks if pressure is reduced). Nevertheless, the volumes
V1 and V3 can be interpreted as the specific volumes of a liquid and as a gas,
respectively. We find the pressure that defines V1 and V3 from the condition that
the chemical potentials of the gas and liquid are equal in equilibrium, i.e., µ3 = µ1.
Along a P(V) curve, the change in chemical potential is 1/N

∫
P dV. Starting at a

chemical potential of µ1 at the point V1 in Fig. 8.1b

µ3 = µ1 +
1
N

∫ V3

V1

P(V) dV . (8.10)

The integral must be zero if µ3 = µ1. The areas above and below the horizontal line
in Fig. 8.1b must therefore be equal, and this “Maxwell construction” defines the
pressure of the horizontal line.

A dimensionless ratio can be formed from Eqs. 8.7, 8.8, 8.9

Pcrit Vcrit

NkB Tcrit
=

3
8
. (8.11)

Rescaled appropriately, the Van der Waals equations of state for all gases are the
same. This is approximately true in practice, although the dimensionless ratio
is lower than 3/8, often around 0.25 to 0.3, and varies for different gases. Some
characteristics of a generic gas are presented in Table 8.1, for comparison with the
characteristics of a solid.
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Table 8.1 Pressures and Temperatures of Gases
and Solids

Gas Solid

Pressure P > 0 P > −Pcoh

Temperature T > 0 T ≥ 0

Stresses isotropic anisotropic

Typical
Pressure 1 Atm = 0.1 MPa 10 GPa = 105 Atm

This instability of the Van der Waals EOS below a critical temperature can be
used to model a pressure-induced liquifaction, for example, or the liquid-gas phase
boundary at constant pressure. The approach has problems with quantitative de-
tails, but it gives the essential behavior, and is worthy of more study than given
here.

8.1.2 Solids (for comparison)

The ideal gas behavior shown at the top of Fig. 8.1a, i.e., P ∝ T/V for large T,
V, is never appropriate for a solid. At P = 0, for example, the solid has a finite
volume. Table 8.1 shows that on the scale of familiar pressures in gases, a solid
is essentially incompressible. More familiar are small compressions of solids and
elastic behavior, where typical materials deform as springs. The bulk modulus of
a solid, B,

B ≡ −V
dP

dV
, (8.12)

is typically a few times 100 GPa, and the elastic energy per unit volume under
uniform dilation is

Eel =
1
2

B δ2 , (8.13)

where δ is the fractional change in volume.
Equation 8.12 can be handy as a definition of B if the elastic energy is needed, and

not individual strains or stresses of Section 6.4. The elastic constants originate from
second derivatives of the interatomic potentials, which give tensorial “springs”
between atoms as explained in Sect. 6.3. These springs are loaded in different
directions when different stresses are applied to a material, but all strains are linear
with stresses, and the macroscopic response of the material is still that of a spring.
It is possible to relate the interatomic force constants to the macroscopic elastic




