
7 Entropy

Without entropy to complement energy, thermodynamics would have the impact
of one hand clapping. The epithaph on Boltzmann’s monument shown in Fig. 7.1

S = kB lnΩ , (7.1)

is an equation for entropy of breathtaking generality. Here it is modernized slightly,
with kB as the Boltzmann constant. The nub of the problem is the numberΩ, which
counts the ways of finding the internal coordinates of a system for thermodynamically-
equivalent macroscopic states. Physical questions are, “What do we count for Ω,
and how do we count them?”

Sources of entropy are listed in Table 7.1, and some were discussed in Chapter
1. Configurational entropy in the point approximation was used extensively in
Chapter 2, and Section 17.4 accounts for magnetic entropy in essentially the same
way. This Chapter 7 shows how the configurational entropy of chemical disorder
or magnetic disorder can be calculated more accurately with cluster expansion
methods. The other major source of entropy is vibrational entropy, and its origin is
explained in Section 7.5. Critical temperatures of ordering and unmixing, calculated
previously with configurational entropy alone, are then adapted to include effects
of vibrational entropy.

tFig. 7.1 The Boltzmann monument in Vienna. The constant k is related to kB by the factor
2.3026 if log denotes log10. Our notation uses Ω instead of W.
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Table 7.1 Sources of Entropy in Materials

Matter Structural Configurations

nuclei sites for the nuclei (the electrons will adapt)
electrons sites for electrons in mixed-valent compounds

electron spins orientational disorder (magnetic disorder)

Energy Dynamics

nuclei vibrations (phonons)
electrons excitations across Fermi level (electronic heat capacity)

electron spins spin waves (magnons)

For metals there is a heat capacity and entropy from thermal excitations of
electrons near the Fermi surface, but as discussed in Section 6.2.4 this is often a
small effect because not many electrons are available for these excitations. The
electronic entropy of a metal increases with temperature, but at high temperatures
the electronic excitations may interact with phonons, and phonons interact with
other phonons as discussed in Chapter 24.

7.1 Static and Dynamic Sources of Entropy

It is often reasonable to separate the internal coordinates of a material into configu-
rational ones and dynamical ones. As an example, when the numberΩ enumerates
the ways to arrange atoms on the sites of a crystal, the method to calculateΩ does
not depend on temperature. We used this idea extensively in Chapter 2. On the
other hand, when the numberΩ for dynamical coordinates counts the intervals of
volume explored as atoms vibrate, this Ω increases with temperature, as does the
vibrational entropy.

Configurational entropies of atoms or spins undergo changes during chemical
ordering or magnetic phase transitions, respectively.1 Configurational entropy was
largely understood by Gibbs, who presented some of the combinatoric calculations
of entropy that are used today (23). The calculation ofΩ is more difficult when there
are partial correlations over short distances, but cluster approximation methods
have proved powerful and accurate (53)-(55), and are presented in Section 7.2. In
essence, new local variables are added to the list of composition and long-range-

1 Electronic entropy can also have a configurational component in mixed-valent systems. Nuclear
spins undergo ordering transitions at low temperatures, too, although at most temperatures of
interest in materials physics the nuclear spins are fully disordered and their entropy does not change
with temperature.
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order parameter to describe more precisely the atom configurations on lattice sites.
Again, although the configurational variables have different equilibrium values at
different temperatures, temperature does not alter the combinatorial method for
calculating Ωwith the configurational variables.

Dynamical entropy grows with temperature as dynamical degrees of freedom of
a solid, such as normal modes of vibration, are excited more strongly by thermal en-
ergy.2 With increasing temperature more phonons are created, and the vibrational
excursions of atomic nuclei are larger. Fundamentally, the entropy from dynamical
sources increases with temperature because with stronger excitations of dynam-
ical degrees of freedom, the system explores a larger volume in the hyperspace3

spanned by position and momentum coordinates, as discussed in Section 7.5. This
volume, normalized by a quantum volume if necessary, is the Ω for Eq. 7.1. For a
phase transition, what is important is not the total vibrational entropy so much as
the difference in vibrational entropy between the two phases.4

7.2 Short-Range Order and the Pair
Approximation

Section 2.10 presented a thermodynamic analysis of the order-disorder transition
in the point approximation, which assumed that all atoms on a sublattice were
distributed randomly. This assumption is best in situations when 1) the temperature
is very high, so the atoms are indeed randomly distributed on the sublattice, 2)
the temperature is very low, and only a few antisite atoms are present, or 3) a
hypothetical case when the coordination number of the lattice goes to infinity. For
more interesting temperatures around the critical temperature, for example, it is
possible to improve on this assumption of sublattice randomness by systematically
allowing for short-range correlations between the positions of atoms.

For example, a deficiency of the point approximation for ordering is illustrated
with Fig. 7.2. We see that the numbers of A-atoms and B-atoms on each sublattice are
equal, so the LRO parameter L = (R−W)/(N/2) = 0. Nevertheless, there is obviously
a high degree of order within each of the two domains. It might be tempting to re-
define the sublattices within each domain, allowing for a large value of L, but this
gets messy when the domains are small. The standard approach to this problem is

2 Temperature also drives electronic excitations to unoccupied states, and when many states are
available the electronic entropy is large. Spin excitations are another source of entropy, but care must
be taken when counting them if the configurations of spin disorder are already counted.

3 This is frequently called a “phase space,” not to be confused with geometric properties of crystallo-
graphic phases.

4 The “Kopp–Neumann rule” from the nineteenth century states that the heat capacity of a compound
is the sum of atomic contributions from its elements. By this rule, the vibrational entropy of a solid
phase depends only on its chemical composition, and not on its structure. This rule is not helpful
for understanding the thermodynamics of phase transitions. Furthermore, the Kopp–Neumann rule
has inconsistencies when picking an atomic heat capacity for carbon, for example.




