
PART II

THE ATOMIC ORIGINS
OF THERMODYNAMICS

AND KINETICS

Free energy is a central topic of this book because a phase transition
occurs in a material when its free energy, or a derivative of its free energy,
has a singularity. Chapter 2 showed how to use the dependence of free
energy on composition or order parameter to obtain thermodynamic
phase diagrams. Chapters 3 and 4 discussed the kinetics of diffusion and
nucleation, which can be calculated with an activated state rate theory
that uses a free energy of activation. Chapter 5 showed how the free
energies of equilibrium phases and the free energies of activation give
rise to competition between thermodynamic and kinetic phenomena in
phase transformations such as alloy solidification, glass formation, and
thin film reactions.

The Gibbs free energy is
G = E − TS + PV .

Chapter 6 discusses the sources of energy of materials that are impor-
tant for phase transitions. The next Chapter 7 addresses the important
sources of entropy, and Chapter 8 discusses effects of pressure. Finally,
Chapter 9 explains chemical effects on diffusion in alloys, which depend
on the free energy of an activated state. This coverage of E, S, P, and
∆G∗ comprises Part II of the book.



6 Energy

This Chapter 6 explains the different types of energies that are important for the
thermodynamics of materials phases and materials microstructures, and some
techniques for calculating them. It begins with the chemical bond between two
atoms – a fundamentally quantum mechanical phenomenon that depends on the
coherent interference of an electron wavefunction with itself, giving an electron
density that is not a linear sum of densities from two separate atoms. In a periodic
solid or in a large box for electrons, the number of electron states depends on a
wavevector k, which can be used to obtain the spectrum of electron energies. The
concepts presented here are important, but quantitative results require quantum
chemical computer calculations.

At a more general, but more phenomenological level, interatomic potentials are
described and used to explain the elastic behavior of solids. The elastic energy
of a misfitting solid particle in a matrix is discussed, and this misfit energy is
generally important for precipitation reactions in solid materials. Surface energy
is also described, along with the Wulff construction for predicting the shapes of
crystals and precipitates.

6.1 Molecular Orbital Theory of Diatomic
Molecules

6.1.1 Interacting Atoms

Start with two isolated atoms, A and B. There are states for a single electron about
each atom of energy ǫA and ǫB, set by the Schrödinger equations
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∇2ψA(~r) + VA(~r)ψA(~r) − ǫAψA(~r) = 0 , (6.1)
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∇2ψB(~r) + VB(~r)ψB(~r) − ǫBψB(~r) = 0 , (6.2)

where ψA and ψB are single-electron wavefunctions at atoms A and B. As isolated
atoms, their nuclei are far apart. Now bring the nuclei close enough together so their
wavefunctions overlap. Our goal is to understand what the individual electrons
do in the presence of both atoms, and understand the chemical bond in the new
diatomic molecule.

We seek single-electron wavefunctions for the diatomic molecule. The potential
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proves to be a real challenge because the potential for one electron depends on
the presence of the second electron. The effect of the second electron is to push
around the first electron, but this alters the potential and wavefunction of the
second electron. Iterative methods are the most accurate for this problem, but here
assume that the total potential is simply the sum of potentials of the isolated atoms

V(~r) = VA(~r) + VB(~r) . (6.3)

This approach does not always work, especially when there are large electron
transfers between atoms, which alter the atomic potentials. The approach works
best when the overlap of the atom wavefunctions is small, and the potentials tend to
retain their original character. We make a related assumption that a single electron
is in a wavefunction ψ constructed from the original atomic wavefunctions

ψ(~r) = cAψA(~r) + cBψB(~r) . (6.4)

It is important to remember that ψ pertains to a single electron, so the coefficients
cA and cB are less than 1 (the atomic wavefunctions ψA and ψB accommodate one
electron each). Thisψ is a “molecular orbital” for one electron. We started with two
electrons though, so we need to find two molecular orbitals. To do so, lay out the
molecular Schrödinger equation twice and do two standard tricks: 1) multiply by
ψ∗A(~r) and ψ∗B(~r)
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ψ∗A(~r)∇2ψ(~r) + ψ∗A(~r)V(~r)ψ(~r) − ǫψ∗A(~r)ψ(~r) = 0 , (6.5)
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ψ∗B(~r)∇2ψ(~r) + ψ∗B(~r)V(~r)ψ(~r) − ǫψ∗B(~r)ψ(~r) = 0 , (6.6)

and 2) integrate

〈A|H|A〉cA + 〈A|H|B〉cB − ǫ(cA + 〈A|B〉cB) = 0 , (6.7)

〈B|H|A〉cA + 〈B|H|B〉cB − ǫ(〈B|A〉cA + cB) = 0 , (6.8)

where the integrals are written in Dirac notation. Equations 6.7 and 6.8 can be
arranged as a matrix equation




〈A|H|A〉 − ǫ 〈A|H|B〉 − ǫ〈A|B〉

〈B|H|A〉 − ǫ〈B|A〉 〈B|H|B〉 − ǫ
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0

0



. (6.9)

6.1.2 Definitions and Conventions

Before solving Eq. 6.9 for ǫ and then for cA and cB, we evaluate some terms and
change notation. The integrals 〈A|B〉 and 〈B|A〉 are not zero – the wavefunctions
are centered on different atoms, but the tails of these wavefunctions overlap. These
are “overlap integrals,” defined as S

S ≡ 〈A|B〉 = 〈B|A〉 . (6.10)




