
3 Diffusion

In solids, atoms move by a process of diffusion. The vacancy mechanism for diffu-
sion in crystals was presented in Section 1.5.3 and illustrated with Fig. 1.7. Mention
was made of interstitial diffusion and interstitialcy diffusion. Mass transport in
glasses and liquids can also occur by atomic-level diffusion, but for gases or flu-
ids of low viscosity there are larger-scale convective currents with dynamics quite
different from diffusion.1

The diffusion equation has the same mathematical form as the equation for heat
conduction, if solute concentration is replaced by heat or by temperature. The heat
equation has been known for centuries, and methods for its solution have a long
history in classical mathematical physics. Some of these methods are standard
for diffusion in materials, such as the basic solutions of Gaussian functions and
error functions for one-dimensional problems. This Chapter 3 also presents the
method of separation of variables for three-dimensional problems with Cartesian
and cylindrical coordinates. The Laplacian is separable in nine other coordinate
systems, each with their own special functions and orthogonality relationships, but
these are beyond the scope of this book. For the problems in ellipsoidal coordinates,
for example, the reader may consult classic texts in mathematical physics (e.g., (19)).
Today finite element methods are practical for many problems, and often prove
more efficient than analytical methods.

Because diffusion depends on atomic-scale processes, changes in the local atomic
structure during diffusion can depreciate the diffusion equation because the “diffu-
sion constant,” D, is not constant. This can be a serious problem when using the dif-
fusion equation to describe the kinetics of a phase transformation. By deriving the
diffusion equation from the kinetic master equation, however, we can later replace
the assumption of random atomic jumps with an assumption of chemically-biased
jumps to predict the kinetics of chemical ordering or mixing. This is the subject of
Chapter 22. This Chapter 3 concludes by showing how the kinetic master equation
can lead to thermodynamic equilibrium.

1 Convective currents can be driven by differences in density, such as the rising of a hot liquid in a
gravitational field.
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3.1 The Diffusion Equation

Writing the kinetic master equation in the form of Eq. 1.25 motivates a matrix
description of the kinetic processes

W
≈

(∆t) N
∼

(t) = N
∼

(t + ∆t) (3.1)

where N
∼

(t) is a column vector that we lay out along the bins of Fig. 1.9a, and
W
≈

(∆t) is a two-dimensional matrix that gives the new contents after time ∆t. Two
such matrix elements are shown in Fig. 1.9b. This approach has an advantage for
numerical computations. If ∆t is small, after m intervals of ∆t the new contents of
the bins will be

[
W
≈

(∆t)
]m

N
∼

(t) = N
∼

(t +m∆t) . (3.2)

The following assumptions are fundamental to the diffusion equation, and to
our construction of a kinetic master equation for diffusion. They are important
to remember whenever using the diffusion equation for a problem in materials
science.

• all atoms have the same jump probability (unaffected by the presence of other
atoms)

• if an atom has probability δ of jumping out of a bin in Fig. 1.9, it has an equal
probability δ/2 of going left or right (in three dimensions the probability is
shared as δ/6 between left, right, up, down, in, out)

• an atom can jump only into an adjacent bin (but this is not an essential assump-
tion for obtaining the diffusion equation as shown by Problem 2 in Chapter
9)

For our matrix equation we first arrange the two column vectors in correspon-
dence with the bins in Fig. 1.9a, {n}, and their contents {N}

N
∼

(t) =
[
N1(t),N2(t)...Nn−1(t),Nn(t),Nn+1(t)...

]
. (3.3)

For the structure of W
≈

(∆t), first assume zero atom jumps in the time ∆t. In this case
W
≈

(∆t) must be the identity matrix, I
≈
, with all 1’s on its diagonal, and 0’s elsewhere.

The operation of this identity matrix on the vector N
∼

(t) preserves the contents of
all bins at time t + ∆t, so in this case I

≈
N
∼

(t) = N
∼

(t + ∆t).

Next, assume each atom has only a small probability δ of leaving its bin in the
time interval ∆t. The probability of it remaining in the bin is therefore 1− δ, and its
probability of entering an adjacent bin is δ/2. Likewise, the probability of an atom
entering a bin from an adjacent bin is also δ/2. The W-matrix is close to diagonal,




