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In 1964 Kolmogorov introduced the concept of the complexity of a finite
object (for instance, the words in a certain alphabet). He defined complexity as
the minimum number of binary signs containing all the information about a given
object that are sufficient for its recovery (decoding). This definition depends
essentially on the method of decoding. However, by means of the general theory
of algorithms, Kolmogorov was able to give an invariant (universal) definition
of complexity. Related concepts were investigated by Solotionoff (U.S.A.) and
Markov. Using the concept of complexity, Kolmogorov gave definitions of the
quantity of information in finite objects and of the concept of a random sequence
(which was then defined more precisely by Martin-Lof). Afterwards, this circle of
questions developed rapidly. In particular, an interesting development took place
of the ideas of Markov on the application of the concept of complexity to the
study of quantitative questions in the theory of algorithms. The present article
is a survey of the fundamental results connected with the brief remarks above.
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Preliminary remarks

In writing this article, apart from the literature quoted, we have used
basically material from lectures of Kolmogorov, from a specialist course
by Petri and Kanovich, and also the seminar of Dushski and Levin. We are
deeply indebted to Andrei Nikolaevich Kolmogorov, who helped us greatly
in editing all the preliminary versions of this article; without his
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constant support the paper could not have been written at a l l . Highly
valuable for us was the constant contact and discussion of resu lt s with
M.I. Kanovich and N.V. P et r i , for which we are very grateful. We are also
very grateful to A.B. Sosinski, who read the whole manuscript and made
many valuable remarks. We would also like to thank V.N. Agafanov, Ya.M.
Barzdin', A.N. Kolodie, P. Martin LOf, L.B. Medvedovski, B.A. Uspenski,
J.T. Schwartz and a ll participants, in the seminar of A.A. Markov for
valuable discussions.

I. Some defin it ions and notat ion . We shall investigate words in the
alphabet {0, l}, i . e . fin it e sequences of zeros and ones. We establish a
one to one correspondence between words and the natural numbers:

Λ —Ο

1
00
01
10
11

000
001

• — 3

< , 4

— 5
— 6
, , γ

— 8

(  is the empty word), and from now on we shall not distinguish between
these objects, using arbitrarily either of the terms "word" or "number"
We denote them, as a rule, by small Latin letters, the set of all word 
numbers being denoted by  .

If a word y is placed to the right of a word x, we get another word
which will be denoted by xy. We also have to be able to write the ordered
pair of words (x, y) as one word. In order not to introduce special
separating signs (like the comma), we agree that if   = xtx2 ... xn

(Xi = 0 or 1), then

(0.1) X
Then from the word xy we can unambiguously recover both   and y. We denote
by 7  ( ) and   2( ) the functions for which rti(ry) = x, Tt2(*y) =y; if a
word   is not representable in the form ~xy, then nx(z) =  , π 2( ) =  .

1

The length l(x) of a word   denotes the number of symbols in x;
l(A) = 0. Obviously,
(0.2) l(xy) = l(x) + Hy),
(0.3) I (Hi) =21 (x)+ 2.

We shall denote by d(A) the number of elements in the set A. Evidently,

(0,4) d{x: l(x) = n} = 2n,
(0.5) d{x:

One could construct a more standard enumeration of the pairs (x, y). However,
for us it is important that the property (0.11) holds (see below).
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The object of our study is also the space Ω of infinite binary
sequences (to be denoted by small Greek le t t e r s) . Ω* =  Ω (J 5 is the set
of a ll finite or infinite sequences. Let ω e Ω*; then the η fragment of
ω, denoted by (ω)η, is defined to be the word consisting of the first η
symbols of ω (here, if ω is a word and Ζ(ω) ^ n, then by definition
(ω)η =  ω). A sequence ω e Ω is called characteristic for a set of natural
numbers A =  {n u n 2, . . . ! not containing zero if in th is sequence the
n{th, n 2th , . . . terms are ones and a ll the other terms are zeros. The set
A for which (0 is the characterist ic sequence will be denoted by 5 ω .

We write Vx for the set of all sequences beginning with the word x,
that is,
(0.6) Γ* =  {ω: (ω);(χ) =  χ).
These sequences are fin ite
or in fin ite, or only infin  • * " ^
ite , depending on whether we
are studying Ω* or Ω, res 
pectively; in each particu 
lar case th is will be clear
from the context. We write DOOO{
χ C y i f Γχ D  Vy ( so t h a t
l i s a begin n in g of y ) . The OOOOO **" *"ΟΟ77Ο . . . lill/ / / / /
relation C is a partial t

ordering of 5 (diagram 1).
Functions defined on the η fold Cartesian product S"=  S x 5 x . . . xS

(with the possible exception of standard functions) will be denoted by
capital Latin le t t ers, occasionally with an upper index (denoting the
number of variables): Fn =  Fn(xls . . . , xn). We always replace the standard
phrase: for any admissible values of the digits yu . . . , ym there exists
a constant C such that for a ll admissible digits xlt . . . , xn

( 0 . 7 ) F»+m(xu . . ., x n ; „ „ . . . , y m ) < £ G * + m ( z u . ..,Xn; y u . . .,  y m ) + C,
by the shorter phrase (using a new notation):

(0.8) F*+m(xu . . . . xn; yu . . . , ym) ^ Gn^m(xi, .. . , xn; yu .. ., ym)

(y{, . . . , ym occur as parameters).

The relation =̂  is defined analogously; F XG if and only if F =4G and
G^.F. I t is clear that the r e la t io n s^ , =̂  and X are t ran sit ive. Further,
i t is clear that
(0.9) I (x) X log2z for χ > 0,

(0.10) Ι (χ) χ 21 (χ),

(0.11) l{xy))^l{y) (x occurs as a parameter),
etc.

2. Facts needed from the theory of algorithms. We quote some
necessary definitions and theorems from the theory of algorithms. The
majority of these facts are proved in any textbook on the theory of al 
gorithms (see, for example, [l]   [4]). The proof of the remaining facts
will not present any difficulty to the reader who is familar with one of
these textbooks.
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Let C 1, 0", IJ} be functions defined to take the following values:
&(x) «. χ +  1, ( )"(*!, . . . , *η) =  0, I £ ( *i , . . . , χη) « *m· The (n + l)  p lace
function F is said to originate from the η place function G and from the
(n+ 2)  place function Η by a primitive recursion if for a ll natural num 
bers z l f . . . . xn,y we have

F(Xi, . . . , Xn, O) =  G(XU ..., X n ) ,

F(xu ..., xlt, y+i) = H (xu ...,xn, y,F(xu . . . t x n , y)).
We denote by

(0.12) µυ (F (xu . . . , xn_u y) = xn)

the least number   for which
(0.13) F(xu ..., xn_u a) = Xn.

Here we agree that the Quantity (0.12) is not defined in the following
cases:

a) the values F(Xi xn x> y) a r e defined for a ll y < a, y 4 xn>
but the value F(xt *η  ι . α ) i s n °t defined ( a =  0, 1, 2, . . . ) ;

b) the values F(x^ xn u y) a r e defined for a l l y =  0, 1, 2, . . . .
y 4 χη·

the value of (0.12) for a given function F depends on the values of
*i» ···· *n i. xn> t h a^ is, it is a function of these variables. We say
that this function is obtained from F by the operation of minimization.

D E F I N I T I O N 0.1. A function F is called partial recursive if it
can be obtained from the functions C1, On, IJJ by a finite number of opera 
tions of substitution (that is, superposition), of primitive recursion and
of minimization. An everywhere defined partial recursive function is
called general recursive. A property of numerical   tuples Un(a1, ..., an)
is called a partial recursive (general recursive) predicate if there
exists a partial recursive (general recursive) function that is equal to
zero for all   tuples satisfying this property, and only for them.

It is easy to verify that the functions l(x), n^z), π 2( ), ^(*) = ~*>
G(x, y) = xy are general recursive.

At the present time, the following scientific hypothesis is generally
accepted:

C H U R C H ' S H Y P O T H E S I S . The class of algorithmically computable
numerical functions (in the intuitively clear sense) coincides with the
class of all partial recursive functions.

Prom now on, by quoting the algorithm which computes a certain func 
tion, we shall repeatedly assume without proof that it is partial recur 
sive. In fact, because of its bulkiness, we shall not write out the con 
struction required by definition 0.1. The diligent reader, who does not
wish to accept Church' s hypothesis as true in every case, can always write
out such a construction for himself.

R E M A R K 0.1. It is easy to see that partial recursive functions
constructed without the operation of minimization (such functions are
called primitive recursive) are defined everywhere. Only the operation of
minimization can lead to functions that are not defined everywhere. This
is because the process of computing the result by minimization (consisting
of successive verification of the validity of equation (0.13) for
  «= 0, 1, 2, ...) can never stop. We say that the value of the partial
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recu r sive fun ct ion Fn on t h e given c o l le c t io n (xlt ..., xn) i s computed
in not more than t steps (operations) i f a l l opera t ion s of min imizat ion
involved in co n st ru c t in g F " were completed on th e values of th e c o r r e s 
ponding param eters a n o t exceeding t. We often use th e concept of the
number of st ep s t h a t were completed by means of the algorithm computing
Fn, in t h e above mentioned se n se . 1

TH EOREM 0 . 1 . For all partial recursive functions Fn, the follow 
ing property of the collection (t; xx xn) is a general recursive 
predicate: the value of Fn(xi, . . . , xn) can be computed in not more than
t steps.

D E F I N I T I O N 0.2. A par t ia l recursive function f/ rn+ 1(i; xu . . . , xn)
is called universal for a ll η place par t ia l recursive functions if for
any par t ia l recursive function Fn(x1 xn) there exists an i such
that

(0.14) F1 (xu . . . , xn) = 3 t r + i (i; xu ..., xn).

The number i i s called the numeral of Fn with respect to 6m + 1 (a function
can have many numerals).

TH F OREM 0.2. For any natural number η there exists a partial re 
cursive function that is universal for all η place partial recursive
functions.

We define an enumeration of the set Sn as any n tuple of general re 
cursive functions Fi (i =  1, 2 n) mapping S onto Sn. A natural
number k is called the numeral of the η tuple (xlt .... xn) in t h is
enumeration if F{(k) = X{ for a ll i =* 1, 2, . . . . n. I t is evident that
the pair of functions τΐχ(ζ), Κ2(ζ) is an enumeration of θ 2 .

The following definition does not depend on the enumeration.
D E F I N I T I O N 0.3. A set X C 5" is called enumerable if the set of

numerals of i t s elements (in the chosen enumeration) is the range of
values of some par t ia l recursive function. (Here we say that t h is function
enumerates X.)

REMARK 0.2. Any enumerable set can also be enumerated by a gen 
eral recursive function.

THEOREM 0.3. Let the predicate Un*k be partial recursive. Then
the set {(xlf .... «„ ) : ] % , . . . . afcIP + fe(*i, ..., xn; ait .... atf is true]
is enumerable.

The following theorem shows that the family of enumerable sets that
depend on the parameters plt . . . . p^ is enumerable without repetition.

TH E OR E M 0. 4 . Let A C Sn*k be an enumerable set. Then there
exists a partial recursive function F(t; plt ...,pk) such that

a) for any fixed px, ..., p^ the set of values of the function
F(t; pi, . . . . pk) coincides with the set of numerals of the collection
(xit .... xn) such that (xx xn; px pk) eA (the numerals are
taken in a certain fixed enumeration of Sn);

b) if t x < f2 and F(t7; pt pk) is defined, then Fd^, px pk)
is also defined and distinct from F ( i 2 ; p 1 ( . . . , p ^ ) .

The number of steps defined in this way is a signalling function in the
sense of Trakhtenbrot [42].
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D E F I N I T I O N 0.4. A set     S" is called solvable if there exists
a general recursive function equal to 0 on X and to 1 on 5" \ X. The
characteristic sequence of a solvable set is called computable.

Clearly every solvable set is enumerable.
THEOREM 0,5. Every infinite enumerable set contains an infinite

solvable subset.

§ I. Complexity

In this section we introduce the concept of complexity. We derive the
simplest evaluations of the quantity of complexity and study the algor 
ithmic properties of this function.

I. Definition. The theorem of optimality. One of the central con 
cepts in this article is the concept of the complexity of a certain text
(communication). We define the complexity of a text as the length of the
shortest binary word containing all the information that is necessary for
recovering the text in question with the help of some fixed method of
decoding. More precisely:

D E F I N I T I O N 1.1. (Kolmogorov). Let F 1 be an arbitrary partial
recursive function. Then the complexity of the word   with respect to F1

is:
JminZ(p): F1(p) = x,

i1·1) *** (*> = \oo if

The word   for which Fl(p) =   is called the code or programme by means
of which F 1 recovers the word x.

Such a definition of complexity depends very strongly on the form of
F1. However, the following remarkable theorem permits an invariant defin 
ition of this concept. Consequently, the theory as presented in this
article could be based on the concept of complexity.

T H E O R E M 1.1. (Kolmogorov, Solomonoff). There exists a partial
recursive function FQ, (called optimal) such that for any other partial
recursive function G1

(1.2)
P R OOF . See Corollary 1.3.
COROLLARY 1.1. For any two optimal partial recursive functions

F1 and G1

(1.3) KFi{x)^KGi{x).
D E F I N I T I O N 1.2. Fix an optimal partial recursive function FQ,

for example, as in Corollary 1.3 below. Then the complexity K(x) of a
word * is defined to be   *( ).

D E F I N I T I O N 1.3. (Kolmogorov). The (conditional) complexity of a
word   for a given y with respect to the partial recursive function F 2 is

(minl(p): F2(p, y)=x,
(1.4) K & W ) ^

   x.
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THEOREM 1.2. (Kolmogorov, Solomonoff). There exists a partial
recursive function Fo (called optimal) such that for any partial recur 
sive function G2

(1.5)

PROOF . Let Us(n; p, y) be a par t ial recursive function that is
universal for a ll two place par t ia l recursive functions (see, Definition
0.2, Theorem 0.2). We define the function

(1.6) Ft
0(z,y) = Ua{n1(z)1n2(z),y)t

and show that it is optimal. For let G2 be a partial recursive function,
ng2 be any of its numerals (see Definition 0.2), and let

(1.7) KGt(x\y) = l0,
so that there exists a programme p 0 for which G

2(p0» y)   x, Upo)   lo>
and the word p 0 has the minimum length of all words   with G2(p, y) = x.
Then if we substitute   = ngz po in (1.6), we get

F% (z, y) = F% (BC*PO, y) = U
3 (π  («G«Po), π  («dPo), y) =

= C73 (nGi; p0, y) = G
% p0, y) = x,

Hence, (1.4) , (1.7) and (0.2) imply th a t
Ζ ( «G2) + 1 {p0) =

=  Zo +  Ζ (nGS) =  iTG2 (x\ y) +  l Μ Χ ϋΓ02 (* I y),

sin ce Z (rT G 2) does n o t depend on χ and y, but only on G 2.
COROLLARY 1.2» For any two optimal partial recursive functions

F* and G2,
(1.8) KF2(x\y)XKGi(x\y).

D E F I N I T I O N 1.4. Fix an optimal par t ia l recursive function F§
(for example, as defined by (1.6)) . Then the (conditional) complexity of
a word χ for a given y K(x | y) is defined to be Kpz(x | y) .

COROLLARY 1.3. The partial recursive function

is optimal in the sense of Theorem 1.1.
P R O O F . We show t h a t Kfi(x)^ KQi(x), where G1 i s an a r b i t r a r y

p a r t i a l recu rsive fun ct ion . We defin e G^(p, y) =  G1(p). Then from (1.5)
and (1.9) we have KGi(x) =  KQi(x |Λ) p= Kp2(x \  Λ) =  Kpi(x), as requ ired .

From now on Fo and F§ will denote optimal fun ct ion s se lec t ed once and
for a l l .

2. Est im ates for the qu an t it y of complexity. In t h i s paragraph , we
est a b l ish th e most im portan t est im a t es for t h e q u a n t i t i e s K(x) and K(x \y)
t h a t we need in our subsequent in vest iga t io n s.

TH EOREM 1.3. (Kolmogorov). Let A be an enumerable set of pairs
(x, a), and letMa** {χ: (χ, α) ε A\ . Then

(1 10) K{x\a)
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P R OOF . Suppose th at the par t ia l recursive function Fz(p, a) is
computed by the following algorithm we select in the order of enumeration
without repet it ion (see Theorem 0.4) the pth pair of the form (x, a) and
take as the value of F2 the fir st element of th is pair ( that i s, the word
x). I t is clear that if χ e Ma, then we can find ρ <  d(Ma) such th at
F2(p, a)   x; hence, by (1.5) Κ (χ \  a) =4. KF2 (χ | a ) < I (d (Ma)) as required.

REMARK 1.1. For any word y and a fin ite set M, the number of those
χ e Μ for which
(1.11) K(x\ y)Kl(d(M)) m,

does not exceed 2"*+ 1. For if K(x \  y) < n, then a word ρ can be found of
length not exceeding η such that F%(p, y) =  x. Hence the collection of
such words χ certain ly does not exceed the collection of a ll programmes ρ
of length at most n; the number of such programmes ρ is 2 n + 1   1 (see
(0.5) ) . In i t s turn , d(M) > 2 l ( d W )   1. As a result , the number of words

x eM satisfying (1.11) is at most <  2~m+ 1 Thus, the

estimate of Theorem 1.3 is exact for the majority of words; t h is theorem
often makes i t possible to obtain the best estimates ( that is, generally
speaking, estimates that cannot be improved) of the complexity of many
types of words. We shall use i t repeatedly in what follows.

We now prove some propert ies of absolute ( that is, non conditional)
complexity.

THEOREM 1.4. (Kolmogorov). The following assertions are true:
(1.12) a) K{x) l̂(x)
(therefore, K(x) <  oo for all χ e S);

b) the number of words χ for which K(x) <  lo m and l(x) =  l0

does not exceed 2"*+ 1 (so that the estimate (1.12) is exact for the
majority of words);
(1.13) c) ί^ ( χ ) =  Ο°
(therefore also lim m(*)«=co), where

(1.14) m{x)^mmK{y),

that is, m(x) is the largest monotonic increasing function bounding K(x)
from below);

d) for any partial recursive function  ( ) tending monotonically
to oo from some x0 onwards, we have m(x) <  ( ) (in other words, although

L(x)+C m(x) als°  tends to infinity, it does so
more slowly than any partial recursive
function that tends to infinity);
(1.15) e) | K(x + h)   K(x) | <2Z(/i)
(that is, aZt/ iough K(x) varies all the
time between l(x) and m(x), it does so
fairly smoothly).

P ROOF . (Diagram 2) .
a)Ο x; t n e n

and by Theorem 1.1 K(x)
as required.

l(x),
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b) This assertion is a trivial corollary of Remark 1.1 (for y =  ).
We add to this that for any l0 a word   of length Zo can be found such
that K(x) >. Zo (since the number of texts having length l0 is 2

 l° , and
the number of programmes having length less than l0 is 2'

0 " 1 ) .
c) By analogy to Remark 1.1, the number of words   such that K(x) 4. a

does not exceed 2 a + 1 , so that,/ of course, for any   there exists an x0

(x0 = max x) such that K(x) > a for all   > x0, as required.K(x)<a
d) Suppose that the assertion of the theorem is false, so that there

exists a partial recursive function  ( ) <: m(x) for an infinite set of
points x. Then  ( ) is defined on an infinite enumerable set U. By Theorem
0.5, U contains an infinite solvable set V. Let us put1

  ( ) — 1 x £ V,
 ( max y) i, xtY 

 =£*.  /  
The so constructed function  (*) is general recursive, tends monotonically
to infinity, and  ( ) ̂  m(x) on an infinite set of points x. We write
M(a) max x. It is easy to verify that M(a) + 1 = min x. It is not

K(x)€a m(x)>a
difficult to show that max   > min   >  ( ) on an infinite set of

 (*)<  m(x)>a
points a, and the function F(a) = max   is obviously general recursive.

()<

e
 

Thus, F(a) > M(a) =  max * on an in fin it e set of poin ts a, that is,
K(xKa

K(F(a)) > a. But by Theorem 1.1, K(F(a)) =^Kf(F(a)) < l(a). Hence there
exists a constant C such th at l(a) +  C> α for an in fin it ely large set of
numbers a, which is impossible.

e) Let px be the programme of minimal length for the word x, that is,
Fh(px) «=  #_and K(x) ·= l(px). Then the word χ +  h can be obtained from the
programme hpx by applying to i t the function Gi(z) =  Fo(Kz(z)) + K^z);
therefore by (0.2) and (0.10)

= l (h) + l(Px) χ 21 (h) + l(px) =21 (h) + K (x).
But K(x +  h) < KG1(X + h), hence K(x + h) =4 K(x) +  2l(h), or
K(x + h)   K(x) =4. 2l(h). Analogously, by applying the function
ί^(ζ) =  FQ(K2(Z))   7ti(z) to the word Vx+ h. where px+h is the programme
of the word χ +  h, we obtain

3. Algorithmic properties of complexity. THEOREM 1.5. (Kolmogor 
ov). a) The function K(x) is not partial recursive, moreover, no partial
recursive function Φ(χ) defined on an infinite set of points can coincide
with K(x) in the whole of its domain of definition.

a   b =  max{ a  6; 0 }; this operation is introduced in order not to go outside
the set of natural numbers.
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b) There exists a general recursive function H(t, x) mono tonic ally
decreasing in t such that
(1.16) UmH(t, x) ^K{x)

(in other words, although there is no method of computing K(x), we can
nevertheless obtain arbitrarily good upper estimates for this quantity).

PROOF . a) We select an in fin it e solvable set V in the domain of
defin it ion U of Φ(χ) (see Theorem 0.5). The function F(m) = min χ

K(x)>m,xev
is general recursive (since K(x) =  ( ) on V) and takes arbitrarily large
values; also K(F(m)) > m (by construction). On the other hand,
K(F(m))*£ Kp(F(m)) 4 l(m), hence m=4l(m), which is false.

b) Let C be a sufficiently large constant (such that K(x) < l(x) + Q .
We take the algorithm that computes the function FQ and make it complete
in t steps (see Remark 0.1) on all words   of length less than l(x) + C.
If the word   has not yet been obtained as a result, we put
H(t, x) <= l(x) + C; if it has already been obtained as a result (and
possibly not only once), we put H(t, x) equal to the minimum length of
the programmes   from which   was obtained. It is clear that H( t, x) is
general recursive and monotonically decreasing in t. If we complete more
and more steps of the algorithm that computes Fo(p) (that is, as t •* co),
we finally obtain   from its "true" programme p0 of minimum length,
that is, we find the complexity of   (K(x) ~ l(po))< (True, at no step
can we recognise whether this has already happened or not.)

T H E O R E M 1.6, (Barzdin'). Let f(x) be a general recursive function
and lim f(x) *= co. Then the set A = { x: K(x) < f(x)\ is enumerable (and,

in general, the predicate U(x, a)~\K(x) 4  a] is partial recursive). The
complement of A is infinite, but does not contain any infinite enumerable
subset (such sets A are called simple).

P R O O F . The assertion \K(x)   a] is equivalent to [3t:H(t,  ) <  ]
(see Theorem 1.5 b), which proves the first part of the theorem.

Let D be an infinite, enumerable set lying in the complement of A,
and suppose that G1 acts in the following way: it takes the first number
  e D, in the order of enumeration without repetition (see, Theorem 0.4)
for which f(x) >   and puts G^n) = x. It is clear that  ( )=  KG1(X) < l(n).
But   lies in the complement of A, so that by definition K(x) > f(x),
hence K(x) >   and l(n) ̂ = n, which is false.

t[. Majorants of complexity. Obviously, if we know the word   itself
and its complexity, then we can effectively (for example, by sorting out)
find one of the programmes of least length which code the word x. Moreover,
if we know the word   and any number s >^K(x), then we can effectively
find one of the programmes of   which, although possibly not the shortest,
nevertheless are of length not exceeding s. Since, as follows from Theorem
1.5,'we cannot effectively find the complexity, in practice we have to be
content with effectively computable (more precisely, partial recursive)
functions. These functions are of no less complexity in their whole dom 
ain of definition, in other words, they give a value of the code's length
which, although not the shortest, yet is effectively computable.
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D E F I N I T I O N 1.5. We define a majorant of complexity as any par t ia l
recursive function Φ(*) for which

(1.17) Κ(χ)^Φ{χ).
THEOREM 1.7. (Levin). A partial recursive function Φ(χ) is a

majorant of complexity if and only if
(1.18) I (d {χ : Φ (χ) = α}) < α.

P R OOF . Let Φ be ammajorant of complexity, and le t χ belong t o i t s
domain of defin it ion ; Φ(χ) = a. By (1.17) a constant C exist s such that
K(x) .£  Φ(χ) + C, hence d[ χ: Φ(χ) = a] does not exceed the number of words
χ such that K(x) 4i a +  C, and so (similarly to Remark 1.1)

d{x:<S>(x) = a}*C2a+c+i and l(d{x :Φ (x) = a})<£a + C+l,

which proves the theorem in one direction.
Now suppose that condition (1.18) holds for a partial recursive func 

tion  , so that there exists a constant C such that d\x:  ( ) =  \42 

for all a. If  ( ) = a, then the word   can be coded in the following way:
let F(i, a) enumerate without repetition all the words y such that  (}0 =  .
(The predicate [ ( ) =  ] is partial recursive, hence such a function
F(i, a) exists; see Theorems 0.4 and 0.3 and Definition 0.1). We write the
word i for which F(i, a) =   (it is easy to see that i ̂ 2°  ), and prefix
it by the cipher 1, attaching so many zeros on the left that the length of
the word becomes a + C + 1. From this word it is easy to recover   (to
start with, we obtain   by subtracting C + 1 from the length of the code;
then we find i by throwing away from the left all the zeros and the first
1, thereby giving the word F(i, a)). Therefore, K(x)=4 a+ C + l    ( ) +C + 1,
which proves the theorem in the other direction.

R E M A R K 1.2. From any partial recursive function F(x) a majorant of
complexity can be made by restricting its domain of definition to the set
of those   for which F(x) > K(x). (A priori it is not obvious that the
function so obtained is partial recursive; this follows easily, however,
from Theorem 1.5b). Hence, in particular, the enumerability of the set of
majorants of complexities follows immediately.

In practice, the general recursive majorants of complexity1 are of
special interest, because in the search for a shorfc code of a word it is
important to be sure that we shall sooner or later find at least one code.
As examples of such general recursive majorants we can take the complex 
ities with respect to any general recursive function (see Definition l.l).2

In Theorem 5.1 yet another important example of a majorant of complexity
is quoted   the " touched up " entropy of Shannon.

It is interesting to investigate complexity in so far as it is (up to
an additive constant) an exact lower bound of majorants of complexities
(see Theorem 1.5b). Hence for a wide class of propositions their state 
ment for complexity is the generalization of their statements for all
majorants of complexities. It is remarkable that even in such a strong
form these assertions remain true.
1 For details of such functions, see [  ] for instance, and also Theorem 2.5 of

the present article.
2 A general recursive function cannot, of course, be optimal.
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R E M A R K 1.3. All results of §1, 3 and 4 and also the definition of
majorant of complexity can be transferred without difficulty to the case
of conditional complexity K(x | y); here, the word y figures as a parameter
in all statements and proofs.

§ 2 . Algorithmic problems and the complexity of solution

We shall study the behaviour of the complexity of fragments of various
infinite binary sequences. With this aim we introduce the concept of the
complexity of solution, which is more suitable than K(x) for investigating
sequences.

I. Definition and simplest properties. In the preceding section we
have developed the apparatus of complexities of those words whose inter 
pretations are complete texts. However, in practice we often have to
investigate words representing sequences that are cut short at a more or
less arbitrary place, Examples of such words are the approximate value of
physical constants, pieces of the text of telegrams, tables of random
numbers, cuttings of newspapers up to a given number, etc. It is not
interesting to measure the complexity of an algorithm restoring such a
word, because even if we possess full information about all sequences, we
do not know at what sign the sequence has been cut short. To measure the
complexity of a word of known length (that is, assuming an already given
truncation place) is not natural either, since it may happen accidentally
that the length of the word contains additional information about it. For
instance, the binary label of the length could coincide with the beginning
of the word. It is far more natural to measure the complexity of the al 
gorithm (or code) which for each number i ̂ l(x) gives the ith s'ign of the
word in question, in other words, models the activity of the sequence' s
source up to the ith sign.

D E F I N I T I O N 2.1. (Loveland).1 The complexity of solution of the
word   with respect to the partial recursive function F2 is defined to be

min / (p) : Vi<[ I (x) F2 (p, i) = Xi,
oo if no such   exists

(here Xi is the ith sign of the word x).
T H E O R E M 2.1. (Loveland)· There exists an (optimal) partial recur 

sive function G$ such that for any partial recursive function F 2

(2.2) KRGl ( ) ̂  KRF2 (x).

The proof is analogous to that of Theorem 1.2.
D E F I N I T I O N 2.2. The complexity of solution KR(x) of the word *

is defined as the complexity of its solution with respect to a certain
fixed optimal partial recursive function.2

The properties of KR(x) are analogous to those of K(x), and the reader
will establish them without difficulty. We shall only mention a few of
them.

t
(

1 Analogous concepts were investigated by Markov (see [l5J).
2 This function will henceforth be denoted by G§.
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THEOREM 2.2. (Loveland). a) If χ C y, then
(2.3)

b) An infinite sequence   4s computable if and only if the complexity

of solution of its fragments is bounded.

(2.4) c) K{x)^KR(x)^K(x\l(x)).

The proof is obvious.
2. Computable sequences. There is also a less trivial link between

the quantities KR(x) and K(x \ l(x)).
T H E O R E M 2.3. (Kolodii, Levin, Loveland, Mishin). For u e u , the

quantity  ((( )  \ n) is bounded if and only if KR((U>)n) is bounded.
1

P R O O F . In one direction the assertion is obvious: if the sequence
is computable, then there exists a general recursive function F1(n) = ( ) .

| *AWe put F*(p, n) = F1(n); then Kf2((w)n

consequently also  (( )  \  ) =  0, or

n) = l(A) = 0, since F*(A,  ) = ( ) ;

(2.5) K(Wn I «) < G.
Let us prove the converse assertion. Suppose that (2.5) holds. We wish

to prove the existence of a procedure which, for each numeral n, would give
( )„ as the nth sign of the sequence W. We write out in a column all words
  of length not exceeding C and construct the following table:

Λ

0

1

0 0

ρ

1 1 . . . 1

c

0

(ω)0

1

(ω)ι

(ω) ι

2

•

•

(ω)2

η . . .

(ω)η 

FI (ρ ηλ

Corresponding to p, the nth column contains Fo(p, n) (see (1.6)) if the
function F% is defined for the pair (p, n). The set of words F%(p, n)
appearing in the nth column is denoted by An. Each An contains not more
than 2 C + 1 words, and we always have ( )„ e An. Let

Obviously, the set

1 = li
  >  

U = {n : d (An) > 1}

However, as Petri has shown, there is no effective method of evaluating
KR((M)n) up to a constant that bounds  ((( )  \  ), so that the former quantity
can be very large.
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is enumerable and infinite. Here, the definition of I implies that
d(An) > I for only finitely many numbers n; the largest of these numbers  
will be denoted by m^.

Let the number of sequences   satisfying (2.5) be fe. We denote by m 2

the smallest number such that all M2 fragments of these k sequences are
distinct. In fact, all columns starting with the m2th must contain at
least k words, namely the fragments of these sequences (these fragments
are distinct). Hence k < I. Let1 m = max(m!, m 2 ) .

We select from U an infinite solvable subset U' (see Theorem 0.5). Let
V  U' fljn: n> mi; obviously, V is also solvable. Renumber the elements
of V in increasing order of magnitude: V = \nlt n2, ...!. The algorithm
solving the ith sequence (in the lexicographic ordering) of our k sequences
acts in the following way: suppose that we wish to define the jth sign of
the ith sequence. We choose the least nr e V such that nr > j, and start
filling in the nrth column (that is, constructing words Fo(p, nr), l(p)4C).
As soon as it turns out that I words have already been constructed, we
stop: we obtain all words from Anr. The next step: we choose words of
length nr from Anr; the set of these words is denoted by Bnr. Next, we
construct the set Bnr+1 similarly,and choose from Bnr+i words that are
continuations of words from Bnr; the set of these words is denoted by C n r + 1 .
Then, from #n r+ 2

 w e choose words that are continuations of words from
C n r + 1   they form the set 0   + 2 ; C n r + g is the set of words from £>nr+s that
are continuations of words from Cn r + 2 , and so on. We stop when exactly k
words occur in the next set Cng. We are now sure that all words in Cn$ are
ns fragments of sequences satisfying (2.5). We choose from the words in Cns

the ith word in size and find its jth sign. This is what was required.
3. Characteristic sequences of enumerable sets. The complexity of

solution of computable sequences is bounded. It is of interest to investi 
gate how the complexity of solution of those sequences increases when they
have more complicated algorithmic structure (for example, that of the
characteristic sequences of enumerable sets).

T H E O R E M 2.4. (Barzdin')·
a) For any sequence   with enumerable   

(2 6)

b) There exists a sequence with enumerable 5   such that

(2.7) KR((u)n)>l(n).

P R O O F . Let F(x) be a function enumerating the set 5   without
repetition (see Theorem 0.4). To restore the word ( )   completely it suf 
fices to give the number s, the last value of the function F (in the order
of construction) that does not exceed n. For let F^Ck, i) be obtained in
the following way: we compute the values of F(x) until we obtain the

This construction of the algorithm uses the numbers I, k and m. This con 
struction is not effective, because there is no effective procedure for con 
structing Z, k and m (see Footnote on p. 95). We only prove that the required
algorithm exists. (An intuitionist might say: "It need not exist".) There 
fore, the mere fact of the existence of I, k and m. is sufficient for us.



The complexity of finite objects 97

number k ( if F(x) 4 k\ f χ e θ ω then F2(k, i) is not defined). Next we put
F^ik, i) ·=  1 if i has already appeared amongst the values of F(x), and
F*(k, i) ·=  0 otherwise· Then Wj =  F2(s, i) for a ll i < n, hence by (2.1)

. But by (2.2) KR((u)n) < Κϋρζ(((ύ)η). Consequently,
(2. 6)

b)
i s

We
true.

put

ί ι
0

i f
i f o(i, 0^= 0 or is not defined

(here G§ is, as in Theorem 2.1). We claim that for such a sequence (θω is
obviously enumerable) (2.7) holds. For, suppose that 7ffi((w)n) ^ l(n) for
some n; then there exists a. p 4 η such that Go(p, i) =  ω̂  for a ll ί ζ n.
In part icular , since ρ 4 n, i t follows that G§(p, ρ) =  ωρ, which contra 
dicts the definition of (0p.

We quote without proof one result (due to Kanovich) which connects the struc 
ture of sequences with enumerable 5 ω with their complexity.

The definition of a process and related concepts is given on p. . We call a
sequence (X with enumerable Sa universal if for any sequence β with enumerable S^
there exists a rapidly growing (weak tabular) process F such that β =  F(00. We
call a sequence α sufficiently complicated if there exists an unbounded general
recursive function F(n) such that KR((u)n) >  F(n).

PROPOSITION 2.1. The concepts of universality and sufficient complexity
of a sequence (X with enumerable Sa are equivalent,

COROLLARY 2.1. Every sufficiently complex sequence Ct with enumerab'; S a
is universal with respect to reducibility in the sense of Turing.

I t is remarkable that in the case of sequences with enumerable θω the
general recursive majorants of complexity (which are really the quantit ies
of pract ical in terest ) show a completely different behaviour to complexity
it self. A

THEOREM 2.5. (Barzdin', P e t r i) . There exists a sequence ω with
enumerable Sa such that for any general recursive majorant of complexity
Φ α constant C can be found such that

(2.8) Φ((ω)η)^~.

P R O O F . We give a construction of the required sequence. It consists
of pieces written one after another having lengths that double at each
stage, the length of the ith piece being 2l. The piece with numeral i is
filled out in the following way: consider a partial recursive function F
with numeral k (see Definition 0.2), where k is the highest power of 2
dividing i (numerals i having the same k form an arithmetic progression
with common difference 2 f e + 1 ) . The ith piece of   is then the first word  
(in the order of recovery by sorting out) of length 2 l for which
F(x) > l(x) = 2*. If there is no such word   (but to check this there is,
in general, no algorithm),then let the ith piece consist only of zeros.
It is easy to see that    is enumerable.

We say that the ith piece of   is "defined" by the feth function.
Let G(x) be a general recursive majorant of complexity. Without loss

of generality we may suppose that for G(x) strict inequality ̂  (instead

1 For further details about this, see [19].
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of =<) holds in Theorem 1.7.1 Then that theorem implies that for any i
there exist s a word χ of length 2 l such that G(yxz) > l(x) =  2 l for a ll
y, z. Consequently, a ll pieces that are definable by G are n on  t r ivial.

Let us estimate G((U))n). To do t h is, we investigate the last piece χ
lying wholly in (ω) η that is "defin able" by G. The numeral ι of t h is
piece sa t isfies the inequality i ~%. l(n) — 2   1, where k is the numeral

fe+ i
of G ( th is inequality follows from 2 l 2 >  ) .

Let y and ζ be words supplementing χ to (ω) η (so that yxz =  (ω)η; ob 
viously, l(y) =  2* l , Z(z) < 22l) . Then G((u>)n) =  G(yxz) > Z(x) =  2* >

, , >  k + 2 fe +  2 «fe +  2
^ 2L(n)"   n/ 22 . This proves the theorem if C is chosen to be 2 ;
C depends only on G, since k depends only on i t (k i s the numeral of G ) .

4. Maximally complex sequences. Solvable and enumerable set s corres 
pond to set s of zero and fir st rank, respectively, in Kleene's projective
classificat ion . Examination of sequences with a more complex set θ ω , for
instance of the second rank, that is, expressible by a two quantifier pre 
dicate, shows th at there are maximally complex sequences among them. (The
complexity of solution of th eir fragments is asymptotically equal to the
length of these fragments.) This fact will be stated more precisely in
Theorem 4.5 and Corollary 4.1. There i t will be proved that there exist s
a two quantifier sequence for which the complexity of i t s η fragments dif 
fers from η by not more than 4Z(n). Here we show that we cannot reduce the
quantity 4Z(n) successively. Although for any η there is a word χ of length
η such th at K(x) > η (see the proof of Theorem 1.4b), there i s no sequence
for which / ί((ω)η) >=  η. More than that :

THEOREM 2.6 (Martin Lflf). For any sequence ω e Q there exist in 
finitely many numerals η such that2

Ρ RO OF · Among a l l the words of length η we define a set An of
"se le c t e d " words in the following way (by induction): suppose that we

have defined a l l selected words in the (n   l) th row and that the largest
of them i s y; then we select 2 n ~ i ( n ) words in the nth row beginning with
the word following yl (see Diagram 1). I f they are not a ll in t h is row,
then we select the remaining family from the beginning of the next row,
and further we begin already to select words from the (n +  2)th row. I t
is clear th at any sequence has in fin it e ly many selected fragments. ( I t is
easier to see t h is fact for oneself rather than to explain i t to somebody
else. I t follows from the fact that the number of selected words in the
nth row is (as a rule) equal to 2 "^ n ^ = ^ l / n and the series Σ 1/rc diverges.)
1 For this, it is sufficient to increase G(x) by a constant that does not

change it s asymptotic behaviour.
2 In fact, Martin Lof has established a more precise fact, which we quote with 

out proof. Let F(n) be a general recursive function. We say that ω is F 
_ CO

complex if K((U)n) ^=n F(n).  ϊιβη: a) if Σ 2~ F ( n ) =  oo, then F complex

sequences do not exist ; b) if Σ 2~ ί"(")<οο then two quantifier F complex
n= 1

sequences exist, and F complex sequences form a set of full measure (concerning
the measure L, see p. 100).
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Let x be a selected word of length n. It is obvious that1

  ( ) ̂  I (d I LJ Ah}) < 1 (   2h~'(k)) < n  l (n)

§3. Effective random processes

This section investigates effective deterministic and non deterministic
processes (algorithms with random entries) producing sequences. The central
result is the construction of a universal semi computable measure and the
explanation of its connection with complexity.

I. Definitions. The equivalence of measures. D E F I N I T I O N 3.1. An
algorithmic process, or simply a process, is defined to be a partial re 
cursive function F that maps words into words so that if F(x) is defined
for the word   and y C x, then F(y) is also defined and F(y) C F(x).

Let   be an infinite sequence. We apply the process F successively to
all fragments of   as long as this is possible (that is, while F is defined),
As a result we obtain fragments of a certain new sequence "^p (possibly fin 
ite or even empty),2 the result of applying the process F to   (so that F
maps Ω into Ω* ) . In this case the notation p = F(w) will also be used.

R E M A R K 3.1. There exists a universal process, that is, a partial
recursive function H(i, x) such that H(i, x) for any i is a process and
that for any process F(x) there exists an i such that

(3.1) H(i,x) = F(x).

H(i, x) can easily be constructed from a universal partial recursive func 
tion lP(i, x) (see Definition 0.2). Without loss of generality we may
assume that

(3.2)  ( , ) =  
(we shall need t h is la t e r on). We call two processes F and G equivalent if
F(to) =  G(d)) for any ω e Ω.

REMARK 3.2. For any process there exist s a primitive recursive
process equivalent to i t .

D E F I N I T I O N 3.2. We say that a process is applicable to a sequence
ω if the resu lt of i t s application to ω is an in fin ite sequence.

REMARK 3.3. Any process on the set of sequences to which i t is
applicable is a continuous function (with respect to the natural topology
of the space of in fin it e binary sequences).3

D E F I N I T I O N 3.3, We call a process F weakly tabular or rapidly
growing (rapidly applicable to a sequence ω) if there exists a monotone

The last inequality follows from the estimate 2 2k~^h'> < C 2n"'< n).
fe=0

If F((d))n) for some   is defined and if all F((bi)m), m > n, coincide with
i"((W)n) or are not defined, then the result will be F((to)n). The empty word is
obtained when F((W)n) is not defined or is empty for all n.
In this topology Ω is homoeomorphic to a Cantor perfect set.
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unbounded general recursive function Φ(η) such that for any χ (for any χ
that are fragments of ω) and η for which l(x) =  η and F(x) i s defined, the
length of the word F(x) is not less than Φ(η). In th is case we say that
the speed of growth (of applicability to ω) of F is not less than Φ(η).

REMARK 3.4. I t is easy to show that a process that is applicable
to a ll ω e Ω is general recursive and rapidly growing. Obviously, the con 
verse is also t rue.

D E F I N I T I O N 3.4. Let Ρ be a probability measure on Ω. We say that
a process is P regular if the set of sequences to which i t is applicable
has P measure 1.

In order to give an arbit rary measure on the Borel σ algebra of sub 
sets of Ω i t is sufficien t to give i t s values on the set s Γ,.

D E F I N I T I O N 3.5. We call a measure Ρ on Ω computable if there
exist general recursive functions F(x, n) and G(x, n) such that the
rat ional number

(3.3) ap(x,n) =  4fc*L
approximates the number Ρ { Γχ \  to within an accuracy of 2~™.

REMARK 3.5. Obviously, if Ρ is computable, then dp(x, n+1) +  2 " ( n + l )

approximates P{TX\  to within an accuracy of 2"n in excess. Therefore la t er
on, without loss of generality, we shall always suppose that dp(x, n) is
already an approximation in excess, and we shall take ttp(x, n)   2"" as an
approximation falling short of Ρ {Γ1*! with accuracy 2"".

We denote by L  the uniform measure

(3.4) Ζ{Γ*}= 2 '<*>.
This measure corresponds to Bernoulli t r i a l s with probability ρ = 1/2. I t
is also the Lebesgue measure on the in terval [θ, l ] . L  is obviously com 
putable.

THEOREM 3.1. (Levin), a) For any computable measure Ρ and any P 
regular process F, the measure

(3.5) Q{Ty} = P{[jVx:F(x) = y}
(that is, the measure according to which the results of F are distributed)
is computable.

b) For any computable measure Q there exists an L regular process F
such that the results of its approximation to sequences distributed accord 
ing to L are distributed according to Q and such that a process G exists
which is the inverse of F (in the domain of definition of F°G) and is
applicable to all sequences except perhaps the solvable ones or those lying
in intervals of Q measure zero.

P R OOF , a) We must be able to compute Q{Fy! with an accuracy of 2"",
or to find1 <XQ(y, n). We choose m so that

Ρ {ω: I (F ((ω)™)) > I (y)} > 1   2 <»+*>

We shall not construct an approximation in excess, but an arbitrary approxi 
mation; it is easy to derive an approximation in excess from it (see Remark
3.5).
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(such an m exists because F is P regular, and i t is easy to find m effect 
ively) . We take a ll words χ of length m such that y C F(x) and sum the
corresponding measures ΡΙ Γ*! that are computable to within accuracy
2 (m+ n+ i)( l n o t h er words, we put

(3.6) (y, n) = 2J aP ( , m + n 
 : l(x)=m, yCF(x)

1

6"

6'

/

J
J

0   t' t" /

Then our error | &Q(y, n)   Q{Ty\ does not exceed
2 (n+i) + 2

m . 2"(m+iI+ 1) = 2"" (since there are at most 2m words   over
which the summation was carried out), as required.

b) We regard binary sequences as real numbers in the interval [ 0, l]
(a sequence is the binary expansion of the number corresponding to it).
All cases when this can lead to ambiguity (because the expansion into
such sequences of binary rational numbers is non unique) will be discussed
separately. Fig. 3 (where the abscissae
and ordinates are distributed according to
to Q and L, respectively) shows the dis 
tribution function g corresponding to Q.
As is well known, if a random variable <*
is uniformly distributed on [ , l], then
g"1(S) is distributed according to Q.
Our construction will be based on this
idea.

I. We construct the process F by in 
ducing Q from L (in fact, this will be
the process of calculating g"1; for such
a calculation to be possible, it is es 
sential that Q is calculable). Let a be
a sequence and (a)n its   fragment. With
reference to it we find an approximation (with accuracy 2~n) of the numb 
er   with deficiency ot̂  and excess oî . We examine all words y of length  
and calculate for each of them the measure Q{Fy\ with accuracy 2~

2" and
excess (that is, &Q(y, 2n)). We select those words   of length   for which

(3.7) 2 (a« (y, 2n)   2 2'1) > 1   a"n

(the sum on the left i s an approximation to Qi U  Yy\  with accuracy 2~n

and deficiency) and

(3.8) 2 a<? (y>2n)> a'n

(the sum on the left is an approximation to Q! U P y j with accuracy 2~n

and excess). We choose the longest common fragment of a l l the selected
words ζ and take i t as the value of F on ( a ) n .

I I . By (3.7) and (3.8), the sets (J Γζ are in tervals containing (for
every n) the g inverse image of the point a. Hence, if the process F is
applicable to oi, i t s result will be g"1(Ot) (we regard γ as the inverse
image of points α e [ σ', σ"] , see Diagram 3). To prove that F is the re 
quired process we need only show that i t is L regular.
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1) Suppose that   lies in an interval of type [ ',  "] corresponding
to a unique sequence   of positive measure. If   lies inside [ ',  "],
since the 2~" neighbourhood of [ o^, < ] lies completely inside [ ',  "],
the set of selected words   then consists of the unique word which is an
  fragment of the required sequence  . Consequently, the process F is
applicable to a. In general, F may not be applicable to the end points of
[ ',  "].

2) Suppose now that    does not lie in an interval of type [  ',  "].
Then it follows from (3.7) and (3.8) that QiUTz} » 0 as n »co, Hence,
if   is not a point of type   corresponding to an interval of measure
zero, then the intervals \j    themselves shrink to a single point  ,
namely the g inverse image of  . Therefore the length of the longest
common fragment of the selected words   tends to infinity except, possibly,
when   is a binary rational, because if   = m/2fe, then the intervals U   

can always contain both sequences lying to the left of m/2k and hence
starting with the word m   1, and sequences lying to the right of m/2k

and hence starting with the word m. In this case, the longest common frag 
ment of all selected words   is of length less than k).

Thus, F can only be inapplicable to sequences of type  ,  ' and a"
(see Diagram 3), and also to sequences having binary rational inverse
images. It is clear  that the set of such sequences is at most countable.
Hence F is L regular.

III. There is no difficulty in constructing the inverse process: this
is the process of calculating the function g. Here G is inapplicable first 
ly to sequences of type   having positive measure (such sequences are
easily shown to be computable; we do not prove this here, since in
Corollary 3.1 a more general result will be proved), and secondly (perhaps)
to sequences   on which g takes binary rational values   (in analogy to
II (2)). If F is applicable to these binary rational values (X, then our
sequences   are computable (as F images of binary rationale). But if F is
inapplicable to a, then (see II) our sequences   are either points of type
  (this case has already been investigated) or they form a whole interval
[ 1,  " ] of Q measure zero, or they themselves are binary rational (conse 
quently computable). The theorem is now completely proved.

2. Semi computable measures. D E F I N I T I O N 3.6. (Levin). A meas 
ure is said to be semi computable* if the results of applying an arbitrary
(not necessarily regular) process to sequences that are distributed
according to a certain computable measure are distributed according to it.

R E M A R K 3.6. A semi computable measure in concentrated on the space
Ω*. because an irregular process can also yield infinite sequences with
positive probability. By Vx we understand (throughout this section) the
set of all finite or infinite sequences beginning with the word x.

R E M A R K 3.7. The results of applying any process to sequences that
are distributed according to an arbitrary semi computable measure are also
distributed according to a certain semi computable measure (since the
super position of two processes is a process), and any semi computable
measure can be obtained by a certain process from a uniform measure (see
Theorem 3.1b).
1 The name " semi computable " is justified by Theorem 3.2.
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THEOREM 3.2. (Levin). A measure Ρ is semi computable if and only
if there exist general recursive functions F(x, t) and G(x, t) such that
the function

(3.9) β ( r t\ _ F(*, t)

is monotone increasing in t, and

(3.10)

PROOF . Let Ρ be a semi computable measure. Then there exist s a pro 
cess F that obtains t h is measure from a uniform one. We complete i t within
t steps on a ll words y of length not exceeding t. Denoting the resu lt by
Ft(y) ( if i t has not yet been obtained, then Ft(y) =  A), we put

(3.11) pP(x, t) = L{\ j Ty:xczFt(y)}.

Conversely, suppose that there exists a function &p(x, t) satisfying
the conditions of the theorem. We wish to construct a process F that
derives   from a uniform measure. The idea of this construction is simple:
roughly speaking, we have to decompose the interval [ 0, l] into non 
intersecting sets of measure P{TX\, and to add the word   when our uni 
formly distributed sequence gets into the corresponding set. Now we carry
out the construction accurately. Obviously, P\ Yx\ > {   0 \ +\P{ Txi],
Further, without loss of generality we may assume that
  ( , t) >   (  , t) + $p(xl, t) for all t (whenever this inequality is
not satisfied, we can decrease &p(xO, t) and   ( 1, t) proportionally to
the extent that the inequality becomes valid; by doing this, condition
(3.10) is not infringed). It is easy to construct sets in [ , l] satis 
fying the following conditions: to each pair (x, t) there corresponds a
set, namely the union of finitely many intervals with rational end points
having Lebesgue measure   ( , t); here, for words   4 y of the same length
the sets corresponding to (x, tj) and (x, t2) do not intersect for any tj
and t2; if   C y, then for every t the set corresponding to (x, t)
contains that corresponding to (y, t); for tx < i2 and every   the set
corresponding to (x, i2) contains that corresponding to (x, ti).

The process F acts thus: with respect to   it constructs our sets for
all pairs (x, t) such that l(x) •£ l(z) and t 4 l(z) and it produces the
word   of largest length such that   belongs to the set corresponding to
(x, t) for some t (obviously there is only one such x, because the sets
corresponding to various   are disjoint and x' C x" if z' C z").

3. A universal semi computable measure. T H E O R E M 3.3. (Levin).
There exists a universal semi computable measure R, that is, one satis 
fying the following condition: for any semi computable measure Q a con 
stant C can be found such that

(3 12) C R{TX}>Q{YX)
for any x*1

In other words, Q is absolutely continuous relative to R, and the Radon 
Nikodym derivative is bounded by C.
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P R O O F . By Remark 3.1 there exist s a un iversal process II(i, x). We
put

(3.13) F(z) = H(n1(z),a2(z)).

It is easy to show that F(z) is a process (see (3.2)). This process, when
applied to uniformly distributed sequences, induces the required measure.
For suppose that the process G(y) maps a certain set of sequences into Tx.
Then F(z) maps into    the same sequences preceded by the word  , where i
is the numeral of G (that is, H(i, x) = G(x) for all x), and possibly also
some other sequences. Therefore the measure cannot decrease by more than
C times, where we can take C = 2 Z (l).

R E M A R K 3.8. There is no analogous result for computable measures:
amongst all computable measures there is no universal one. This fact is
one of the reasons for introducing the concept of a semi computable
measure.

The measure R (if we disregard the multiplicative constant) is
" larger " than any other measure, and is concentrated on the widest sub 
set of Ω*. In mathematical statistics the following problem arises: to
clarify with respect to what measure a given sequence can be obtained
"randomly". If nothing is known in advance about the properties of the
sequence, then the only (weakest) assertion we can make regarding it is
that it can be obtained randomly with respect to /?. Thus, R corresponds
to what we intuitively understand by the words "a priori probability" .
However, the attempt to apply this concept for the foundation of mathem 
atical statistics comes across difficulties connected with the fact that
R is not computable.

The following fact is of interest:
a) there exists a constant C such that the probability (with respect

to R) of the non occurrence of the digit 1 after η zeros is not less than
J_ 1
~ ' c log!n '

b) for any constant C the portion of those   for which the probability
(with respect to R) of the non occurrence of the digit 1 after   zeros is

larger than  Clog!   does not exceed 1/C on any sufficiently large

interval [ 0,   ].
Therefore, t h is probability has order1 approximately 1/n.
The proof of t h is assert ion follows easily from (3.14) if we take

in to account that the complexity of solution of a word consist ing of η
zeros and one 1 does not exceed log2 n, and for the majority of such
words i t is almost equal to lo g2 n .

We point to an analogy between the construction of complexity and of
a universal semi computable measure. In fact, these quan t it ies turn out
to have a numerical connection.

Observe that th is assertion is related only to a universal (a priori) prob 
ability. For example, if i t is known that the sun has been rising for 10,000
years, th is st i l l does not mean that the probability that tomorrow i t will
not rise is equal to approximately · ,_. . „ . . This would be true if our in 

3,650,000
formation about the sun were exhausted by the fact stated.
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THEOREM 3.4. (Levin).

(3.14) \KR(x) ( log2 R {Tx}) | =< 2 log2KR (x).

P R OOF . Let KR(x) =  i, so that there exist s a word ρ with l(p) =  i
such that Go(p, n)   xn for every η < l(x) (here G§ is as in Theorem 2.1) .
Then i t i s easy to construct a process th at transforms any seauence
beginning with the word l(p)p in to a sequence beginning with the word x:
fir st ly, i t must select l(p), restore l(p) from l(p) and then, knowing
l(p), "r e a d " the word ρ it self; finally, i t must st a r t ascribing the
corresponding values Go(p, n) for η =  1, 2, . . . . I f t h is process is ap 
plied to uniformly dist ributed sequences, then the induced measure of Γχ
will not be less than 2 " ^ ^ P ^ ^ . Therefore by Theorem 3.3

hence
(3.15)  log2R{Tx} ^

= i + 2l (i) = KR (x) + 21 (KR (x)).

Now let R\rx\ = q. We write
1 l(q) = [ log2q]. We estimate the com 

plexity of solution of the word x; for this purpose we show that any sign
of   can be restored with reference to the information given by the triple
of words  (  ), k and i (or, what is the same thing, by the one word
l(q)ki), where k = 0 or 1 and i 4 2 * ^ ) + 1 . Our algorithm acts in the
following manner: beginning with the word l(q) it builds up a tree (see
Diagram 1) of words y such that /{{Py} > 2"l^q'>"1 (to do this we have to
compute  /Ky, t) for all large values of t and y, and to attach y to the
tree as soon as P/}(y, i) > 2 " Z ^ " 1 for some t). The word   belongs to
this set. At each stage of the algorithm we select the totality of
"maximal" words in the previously constructed part of the tree, that is,
words that have as yet no continuation in the previously constructed part
of the tree. It is clear that the number of maximal words does not de 
crease from step to step, remaining less than 2 l ^ ) + 1 . i n Diagram 4, let
A be the point from which the last " collateral branching" from   des 
cends (see Diagram 4), which illustrates the spreading of the tree of
words having sufficiently large measure R; a solid line denotes the tree
at that instant when the number of branches at first becomes equal to i
(at this moment, the branching occurs at A); a dotted line depicts the
tree built up as far as all the signs of   have already been solved.)
Prom then on, the word   goes without branching. To solve x, it suffices
firstly to give k, which is 0 or 1 according as   goes "to the left" or
"to the right" of A, secondly to give some information with reference
to which the algorithm could " find" A. As this information we give the
number i of maximal words at that moment when both branches at first
spread out from A (in the previously constructed part of the tree). This
happens precisely when we attach the second branch in the order they are

Here square brackets denote the integral part of a real number.
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obtained and the number of maximal words increases by 1 to i. Moreover,
i < 2 i ( 9 ) + \ or l(i) < l(q) + 1. As a result,

X   log2 R {Tx} + 2 log2 (   log , R {Tx}).
By (3.15)

2 log2 (   log, /? {IV}) ̂ 2 log2 [KR (x) +
+ 2l(KR(x))]^2log2KR(x),

hence
(3.10) KR (a) ̂   log, R {Tx} + 2 log2 KR (,·);

(3.15) and (3.16) together give (3.14).
It is interesting to note that by the

usual arguments of measure theory it follows
that any (not necessarily semi computable) measure   is almost completely
concentrated on the set of those   for which 3 C such that for all  

(3.17) P{TWn}>C R{T^n} 

Exactly in the same way, for " almost a l l sequences the opposite in  
equality holds; if Ρ i s absolutely continuous re la t ive to R, then the in  
equality i s sa t isfied for P almost a l l sequences. Prom t h is i t follows
th at the fact analogous t o Theorem 3.4 holds for any semi computable
measure Ρ on the fragments of P almost any sequence (of course, every
sequence having i t s own constan t) .

As a corollary to Theorem 3.4 we obtain the well known theorem of
de Leeuw Moore Shannon Shapiro on probabilist ic machines,

COROLLARY 3.1. A sequence ω has positive probability with res 
pect to one (and hence also with respect to a universal) semi computable
measure if and only if is) is computable,

P R O O F . Prom (3.14) i t follows t h a t the measure R of a l l fragments
of ω is larger than a posit ive number if and only if the complexity of
t h e i r solut ion i s bounded.

4. P robabilist ic machines. The preceding result of Shannon is sometimes
interpreted as the impossibility of solving by means of probabilistic machines
tasks that are unattainable using deterministic machines. However, the task does
not always consist of constructing a certain concrete unambiguously defined object;
sometimes the task can have many solutions, and we have to construct only one of
them. In such a formulation, obviously, there exist tasks that are unattainable
using deterministic machines, but can be solved by means of machines using tables
of random numbers (for example, the task of constructing a non computable sequence).

We say that the task of constructing a sequence having the property Π is sol 
solvable by means of a probabilistic machine if the universal measure R of such
sequences i s posit ive. The following propositions show that such tasks can be
solved with a rbit ra r i ly large r e liabi l i t y.

P R OP OSI TI ON 3.1. (Levin). * LctACtl, R(A) > 0. Then for any Ε > 0

We note firstly that the construction of this process with respect to   is not
always effective, and secondly, as N.V. Petri pointed out, that if it is bound 
ed by general recursive processes (and not partial recursive ones) then not
every solvable task can be solved by a rapidly growing process.
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there exists a weakly tabular (rapidly growing) process with speed of growth
HF(x)) > l(x), a process which on application to sequences distributed according
to the measure L yields sequences in A with probability at least 1 — E.

Obviously, for example, one cannot solve the task of obtaining some maximally
complex sequence by a more rapidly growing process, because under the application
of the process the complexity of words (more precisely, the closely related
quantity [   log2i? 1 Vx \ ]) cannot increase. It turns out that when this argument is
not essential, the process can be accelerated considerably (that is, the result
can be obtained using a smaller number of signs from the tables of random numbers).

P R O P O S I T I O N 3.2, (Levin). Let g be an arbitrary general recursive
function. The task of obtaining a sequence from a set A is solvable by means of a
process that grows with speed g(n) if and only if there exists a set   C A,
R(B) > 0, such that   log2i? {ix} =̂    for any sequence (0 € B, where x = (W)g(n).

We quote without proof some results concerning the possibility of a solution
of standard algorithmic tests by probabilistic machines. The first interesting
result of this character is due to Barzdin' . We call an infinite set of natural
numbers immune if it does not contain any infinite enumerable subset.

P R O P O S I T I O N 3.3 (Barzdin'). There exists an immune set (for example,
the complement of the set A in Theorem 1.6) such that the task of obtaining a
sequence that is characteristic for a certain infinite subset of it is solvable
by means of a probabilistic machine.

The proof of this proposition can easily be obtained from Theorem 1.6 and
Corollary 4.1.

An interesting variety of immune sets consists of those sets whose immunity
is governed by a too rapid growth of the function that gives, for each i their
ith element in order of magnitude; such sets are called hyperimmune (more pre-
cisely, a set of natural numbers is called hyperimmune if there is no general
recursive function F such that F(i) > x{, where x± is the ith element of the set
in order of magnitude).

P R O P O S I T I O N 3.4. (Agafonov, Levin). Whatever the (fixed) hyperimmune
set M, the task of obtaining a sequence characteristic for a certain infinite
subset of it is not solvable by means of a probabilistic machine.

However, we have

P R O P O S I T I O N 3.5. (Petri). The task of obtaining a sequence having the
property that the set for which it is characteristic is hyperimmune is solvable
by means of a probabilistic machine.

  "     

For further details about probabilistic machines, see 123J, 125J.

§u. Random sequences

I. Definitions. Universal test. The axiomatic construction of prob 
ability theory on the basis of measure theory [26] as a purely mathematical
discipline is logically irreproachable and does not cast doubts in any 
body' s mind. However, to be able to apply this theory rigorously in prac 
tice its physical interpretation has to be stated clearly. Until recently
there was no satisfactory solution of this problem. Indeed, probabiliy is
usually interpreted by means of the following arguments: "If we perform
many tests, then the ratio of the number of favourable outcomes to the
number of tests performed will always give a number close to, and in the
limit exactly equal to, the probability (or measure) of the event in
question. However, to say "always" here would be untrue: strictly speak 
ing, this does not always happen, but only with probability 1 (and for
finite series of tests, with probability close to 1). In this way, the
concept of the probability of an arbitrary event is defined through the
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concept of an event that has probability close to (and in the limit equal
to i), consequently cannot be defined in this manner without an obviously
circular argument.

In 1919 von Mises put forward the following way of eliminating these
difficulties: according to von Mises there are random and non random
sequences.1 Prom the mathematical point of view, random sequences form a
set of full measure and all without exception satisfy all the laws of
probability theory. It is physically possible to assume that as a result
of an experiment only random sequences appear.

However, the definition of random sequences proposed by von Mises [27]
and later defined more precisely by Wald [28], Church [29] and Kolmogorov
[3l] turned out to be unsatisfactory. For example, the existence was
proved of random sequences, according to von Mises (his so called
collectives) that do not satisfy the law of the iterated logarithm [3 ].

In 1965 Martin LOf, using ideas of Kolraogorov, succeeded in giving a
definition of random sequences free from similar difficulties. Kolmogorov' s
idea was that one should consider as "non random" those sequences in
which one can observe sufficiently many regularities, where a regularity
is defined as any verifiable property of a sequence inherent only in a
narrower class (of sufficiently small measure). If the "quantity of
regularity " is measured according to this traditional logarithmic scale
(to base 2) of Shannon, then the last phrase is made more precise in the
following way: the measure of the set of sequences containing more than m
bits of regularity cannot exceed 2"m.

The choice of scale is not essential for the description of the class
of random sequences, and 2"m can be replaced by l//(m), where f(m) is an
arbitrary general recursive monotone unbounded function. However, the
choice of scale is a question of the accuracy of measuring the quantity
of regularities. But even on a more detailed scale the quantity of reg 
ularities could not be measured without obvious arbitrariness, because
the theorem on the existence of a universal test (Theorem 4.1) holds only
in the logarithmic scale to within an additive constant, and the selection
of a less detailed scale would lead to an unjustifiable loss of accuracy.

R E M A R K 4.1. We stress particularly that by regularities we under 
stand not any rare properties of sequences, but only verifiable ones, that
is, we regard as random those sequences which under any algorithmic test
and in any algorithmic experiment behave as random sequences.

All the preceding arguments lead us to the following definition.
D E F I N I T I O N 4.1. (Martin LCf). A correct method of proof of P 

regularity (where   is a certain probability measure on Ω) or P test is
defined to be a function F(x) that satisfies the following conditions:

a) it is general recursive;
b) for m > 0

(4.1) P{oJ:,

where
(4.2) /»

We construct the theory in the simplest case, for the space Ω of infinite
binary sequences. However, it can easily be generalized (see the small print
on pp. 110 111.
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The " quantity " of regularit ies found by a t est is taken to be the
value of the test . We say that a sequence ω does not withstand a P  test F,
or that the P  test F rejects ω, if F(U) =  00.

The meaning of Definition 4.1 a) is .conditioned by Remark 4.1. In
certain papers t est s are investigated for which the condition of comput 
ability is replaced by the weaker condition that they can be formulated
in a certain theory. That is, these test s also state regularit ies that
cannot be detected yet can somehow be described. Condition (4.1) guaran 
tees that the set of sequences rejected by a P  test has P measure zero.
The converse is also true: for any set of P measure zero there exists a
not necessarily computable function having property (4.1) which rejects
a ll sequences from th is set.

Tests can be very varied. However, as in the case of measuring com 
plexity with respect to different part ial recursive functions, there is a
theorem on the existence of a universal t est .

THEOREM 4.1. (Martin LOf). For any computable measure Ρ there
exists a P test F (called universal) such that for any P test G a constant
C can be found such that for all ω e Ω

(4.3) C(G))<f(ffl) + C.

P R O O F . We begin by constructing a general recursive function HQ(i, x) such
that HQ( i0, x) is a P test for any fixed i0 and that for any P test G there is
an i0 such that /7

2(i0.
  ) > G(u)   1 for all   e Ω. For this purpose we

take a universal partial recursive function U2(i, x) (see Definition 0.2).
For each i0 we transform it in such a way that it becomes a P test and,
if U2(i0, x) + 1 was already a test, then the suprema over   e Ω of
[/̂ (io, x) are not changed.

We fix i0. We take all fragments y of the word   and on each fragment
we perform l(x) steps of the algorithm computing' U2(i0, y); we put
Gx(io, y) equal to the result of applying the algorithm, if the result
has already been obtained, and Gx(i0, y) = 0 otherwise. Let
G(i0, x) = sup Gx(iOt y). Obviously, G(i0, x) is general recursive and

y c y
for any   e Ω

(4.4) £/«(i0> co) = G(i0, . ).

However, G(i0, x) cannot satisfy condition (4.1). To satisfy (4.1) we
replace G(io, x) by

(4.5) H*(i0, x) = min{G(i0,  );   (i0, *)},

where M(i0, x) is the minimum number m such that for m +  1 and G(i0, x)
condition (4.1) is not satisfied "with a reserve" on the accuracy of
computation of the measure, that is,

(4.6) M(i0, x) = min{m: 2 «P (y, l(x) + m + 2) > 2 O+ D }

G(io, y)>m \  l

where i t can be verified that m= max G'(i0, y) (the
v.Hv)=i(x)

sum in (4.5) approximates P{ \ jry: l(y) =  l(x), G(i0, y) > m +  l | with
surplus and to within 2~("l+ 2V The function H2(i0, x) sat isfies (4.1) by



110 Α.Κ. Zvonkin and L.A. Levin

construction . F urther, if G(i0, x) + 1 sa t isfies (4.1), then
P i U T y : l(y) « l(x), G(i0, y ) > m +  1 U  2'(a+2) ( s i n c e G(i0, y) + l > m + 2
for those y) and, consequently, the inequality in (4.6) cannot hold for
any m, that is, G(i0, x) =  / / 2( i 0 , x). Now H2(i, x) has been constructed.

We shall show th at the function

(4.7) F(x)= max [ # 2 (i, x)~ (i +  1)]
i<i(x)

i s a universal t e st . The fact that (4.1) holds for i t follows from the

inclusion {x: I (x) =  n, *" (a;) > m) =  lj {̂  Ϊ (») =  w> # 2 (i, a;) — (i +  1) > m)
i— 1

and that ff2(i, *) sa t isfies (4.1) . F inally, if G(x) is a P  test and i0 is
i t s numeral (see D efinition 0.2), then by construction
Hz(io, x) > G(i0, χ)  1 1. Hence for words χ of length at least i0 we have
F(x) > G(i0, x)   (io +  2), which implies that for a ll ω e Ω
(4.8) F (ω) > G (i0, ω) — (i0 +  2).
Comparing (4.4) and (4.8) we obtain (4.3).

D E F I N I T I O N 4.2. (Martin LOf). We call a sequence   random with
respect to a measure   if it withstands any P test.

With this definition, all random sequences without exception satisfy
all conceivable effectively verifiable laws of probability theory, since
for any such law we can arrange a test that rejects all sequences for
which this law does not hold (in other words, the fact that a law is
violated is a regularity). A law is understood to mean the assertion that
a certain event occurs with probability 1; examples of laws are the strong
law of large numbers and the law of the iterated logarithm for sequences
of independent trials, the recurrence property of Markov chains, and so on.

R E M A R K 4.2. According to the theorem just proved, if   is a com 
putable measure, then the randomness of a sequence   is equivalent to the
fact that   withstands a universal P test. Thus, for any computable meas 
ure the non randomness of a sequence can be established effectively.

R E M A R K 4.3. In what follows it will be convenient for us to use a
"monotone" universal test, that is, one for which   C y implies that
F(x) 4 F(y). It is easy to obtain it from the constructed test by putting

(4.9) F'{x)=maxF{x)1).
2/Cx

In what follows we shall always assume that the universal test is of this
form.

Above we have introduced the concepts of a test of randomness, of a random
sequence, of a universal test (and we have proved a theorem on its existence for
the case of computable measures) for objects of the simplest type, namely elements
of Ω. However, the constructions of Martin Lbf can also be carried out in a more
general case. Let   be a topological space with a countable base of open sets *£
(i = 1, 2, . ·.), and let   be a measure on the   algebra of Borel subsets of T.

Here it is obvious that (4.1) is not violated since

sup F' ((co)n) = sup F (( ) ).
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It will be convenient for us to assume that the elements of the base are numbered
in such a way that for any number   of a certain element   of the base we could
effectively find a sequence of numbers larger than   that are the numbers of ele 
ments of the base whose union is   (for example, we could find another number,
larger than n, of x ) . 1 obviously, such a condition is no restriction of generality,,
since any enumeration can be altered to an enumeration having this property: re 
place the (old) number   of each element by the (new) number (2i + 1).2
(k = 1. 2· ..·)· "e say that an element   £   is given if we are given the not
necessarily monotone sequence of all numbers i such that w e J;, A general recur 
sive function F(n) is called a P test if

(4.10) P{ U a:,l}<2 'n.
n: F(n)^m

We define the value of the test F at an element       to be

(4:11) F ( ( U ) = sup F(n);
 :     

the measure   is called computable if for any finite collection of numbers i^ and
a number   there is an algorithm computing p{  /*;. \ with an accuracy of 2"n.

k R

P R OP OSI TI ON 4.1. For any computable measure Ρ there exist s a universal
P  test (the definition of a universal P test is the same).

D E F I N I T I O N 4.3. An element ω £ Τ is called P random if F((0) < oo for
any P  test F.

Obviously, for computable measures th is is equivalent to the value of a
universal t est being fin it e at ω .

Thus, the concept of a random object has a very general character. I n terest in g
examples of t h is are the concepts of a random vector, a random element of any
function space (of a random process), and so on.

We say that two bases are equivalent if for any number i of an element χ of
one base one can effectively obtain a sequence n& of numbers of elements of the
other base whose union is x.

P R OP OSI TI ON 4.2. The property of an element ω 6 Τ of being P random
(P is not necessarily computable) is invariant under replacement by an equivalent
base.

REMARK 4.4. I f we go over to another enumeration that is non computably
related to the in i t i a l one, then we can obtain an inequivalent base. Here the
class of random elements can be changed. Example: le t γ ε Ω be a random sequence;
we renumber the binary words χ (they correspond to elements Γχ of the base) so
that the set R of numerals of the fragments of Υ becomes solvable, and th eir
length remains a computable function of the numeral. Obviously, the t est F(n)
that i s equal to the length of χ if η £ Β and equal to zero otherwise, rejects γ.
This example shows that the t o t a l i t y of random elements does not depend only on
the topologically homogeneous space Ω would be either a l l random or a l l non 
of a topological homogeneous space Ω would be either a l l random or a l l non 
random), but also on other st ructures (for example, connected with the coordinate
system.

2. Proper sequences. THEOREM 4.2. (Levin ) .
a) For all computable measures P, any P regular process is applicable

to all P random sequences.
b) If Ρ is an arbitrary measure (not necessarily computable), F is a

process, Q is the measure induced in F by P, and Ιύ is a P random sequence
to which F is applicable, then its result F((0) is Q random.

PROOF . a) Let F be a P regular process that i s not applicable to a
sequence γ, so that there exists a number (denoted by k) such that the

Omission of t h is condition would necessitate a more cumbersome defin it ion of
of a t e st .
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length of F(y) does not exceed k. This property of our sequence is unique,
because the P measure of such sequences is zero. Hence it is easy to con 
struct a P test that rejects all sequences   such that F(to) has length at
most k. This test acts on the word   as follows: it selects the fragment
(x)m of maximum length such that l(F((x)m)) 4. k, then it computes an ap  ·
approximation (with excess to within 2"^*)) of the measure of those
sequences   for which I(F( ((·))„) ̂ k, and it gives as its value for   the
integral part of the negative of the logarithm of this measure. Obviously,
the value of the test for the words ( ),, tends to infinity. The reader can
easily verify that conditions a) and b) of Definition 4.1 are satisfied.

b) Suppose that a Q test U(x) rejects the sequence p= F((A), and that
G is a general recursive process equivalent to F (see Remark 3.2). Then the
the P test

(4.12) V(x) = U{G{x))

(conditions a) and b) of Definition 4.1 are easily verified) rejects  ,
i.e.   is not P random.

D E F I N I T I O N 4.4. We call a sequence proper if it is random with
respect to a certain computable measure.

All sequences   with solvable Su are proper. It is easy to show that
an example of an improper sequence is any sequence   whose S   is the
domain of definition of a universal partial recursive function.

T H E O R E M 4.3. (Levin). Any proper sequence is either computable or
algorithmically equivalent1 to a certain L random sequence.

P R O O F . Let Q be a computable measure with respect to which our
proper sequence   is random. We show first of all that   cannot belong to
an interval [ ',  "] of Q measure zero (see Diagram 3). More precisely,
there is not a single Q random sequence in the whole of [ ',  "]. For
this purpose we construct a Q test that rejects all sequences from this
interval. Let   be a rational number inside the interval. On the word   of
length   our test takes as its value the largest number m for which

(4.13) ^ ( y , 2  ) < 2  ( « + < ) ,

where the sum is taken over a ll words y of length η lying between the words
χ and ( a ) n inclusive. Conditions a) and b) of D efinition 4.1 are t r ivia l ly
verified, and t h is t e st is obviously the required one, because for any
sequence β from [ τ # , τ "] the Q measure of a l l sequences lying between α
and β i s zero, and the sum on the left hand side of (4.13) i s the approxi 
mation of t h is measure (with surplus) to within 2"n . That is, the sum
tends to zero as η  » oo and consequently, the value of the t e st for (β)η
tends to in fin ity as η  » oo.

I f ω is not computable, then, since i t does not l ie in an in terval of
type [τ*, τ " ] , the inverse G of the process F, where F induces Q from L
(see Theorem 3.1 b), is applicable to i t ; we write G(Ui) = δ . The process
F is applicable to δ, since i t can only be inapplicable to sequences that
map in to binary rat ion al poin ts (and ω i s not a binary rat ion al, because

Ttaro sequences ω' and oo" are called algorithmically equivalent if there exist
two processes F and G such that F(W) =  ω" and G(U)") =  to'.
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it is non computable). F is also applicable to sequences of type   which
are the image under g of the whole interval (see Theorem 3.1b and Diagram
3), and      [ #,  "]. Thus,   and   are al gori thmi cal ly equivalent.

It remains to show that   is L random. Let U be a universal 1, test.
Then the Q test V(x) = U(G(x)) (conditions a) and b) of Definition 4.1 are
easily verified) rejects all sequences for which the G results are not
L random; if   is not L random, V also rejects  , that is,   is not Q 
random, which contradicts our assumption.

3· A universal test and complexity. As Theorem 4.3 shows, the study
of sequences that are random with respect to an arbitrary computable
measure leads to the study of sequences that are random with respect to
the uniform measure. V>'e call such sequences simply random,

A universal test, if it works on all longer fragments of a sequence,
will eventually discover all regularities occurring in the sequence. How 
ever, insofar as the universality of the test only appears in the limit,
it will only find certain regularities that are concentrated in the initial
fragment of the sequence, when it investigates a longer fragment. Then the
test takes a small value k on a certain word x, and takes a value   > k
on any sufficiently long extension of x. It is clear that in this case all
these   bits of regularity are defined by   itself and are concentrated in
it. We denote by F(x, n) the minimum value of the universal test on words
of length   beginning with x. Letting   tend to infinity, we get the
quantity of all regularities occurring in x:

(4.14) p(x) = limF(x, n)1)
n >oo

(according to Remark 4.3, lim F (χ, ή) = sup F (x, n)). Obviously (by
η κχ> n voo

(4.1)), we always have p(x) 4. l(x). The quantity l(x) ~ p(x), that is, the
number of signs in   minus the number of regularities in it, is very simil 
ar to complexity as regards its own properties (because of the presence of
regularities, these are parasitic signs in the recorded word). It is not
computable (since p(x) is not computable), but it can be estimated from
above with arbitrary exactness by the function l(x)   F(x, n) (see Remark
4.3 and Theorem 1.5 b). The construction of a universal test is similar to
that of an optimal partial recursive function; the portion of words on
which l(x)   p(x) takes values significantly less than l(x) is small, etc.
It turns out that the quantity l(x)   p(x) and K(x) are also numerically
very close.

THEOREM 4.4. (Martin LOf).

( 4  1 5 ) I [I(z) P(x)] K(x) \ ^U(l (x)).
P R O O F . Let l(x)   p(x)   a, or p(x) > l(x)   a. This means that on

all sufficiently long extensions y of   we have F(y) > l(x)   a, where F
is a universal test. From (4.1) it follows that

We would remind the reader that we are only considering those regularities
which can be demonstrated algorithmically. If p(x) 4. m then there exists an
infinite sequence   e P, in which the universal test discovers at most m
regularities. Since the universal test finds all regularities in the limit,
there are no other regularities in  , which means there are none in x, either.
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and hence the number of words   such that l(z) = l(x) and p(z) > l(z)   a
is at most 2° , and the collection of such   is enumerable without repet 
ition (see Theorem 0.4). Thus, to find   it is sufficient to give as
information the numbers l(x), a and m, where m is the number of   (in order
of enumeration) among words   with l(z) = l(x), p(z) ̂ l(z)   a (so that
m <; 2° ). This same information can be written in one word: l(x)am* Hence

  ( ) <   (  ( ) am)   21 {I (x)) + 2l(a) + l(m)^.a + il(l ( ))

(because  ^ l(x)). This inequality holds for all a> l(x)   p(x), so that
K(x) 4 l(x)   p(x) + 4l( !(*)).

Now we prove this inequality in the opposite direction. For this pur 
pose we construct a test selecting the regularity that consists in the
fact that the complexity of a word differs considerably from its length
(this is indeed a regularity, because there are few such words   see
Theorem 1.4 b). We take the function H(t, z) approximating the complexity
from above (see (1.16)). Then the required test is the function

(4.16) G(y)= m*x\i 2 2l{i)+H(l(y), (y)i)}.

This function takes values at least m only on those sequences   for which
there exists one i such that  ((( ) {) < i   2   2Z(i)   m. By Theorem 1.4 b
it follows that the measure of these sequences does not exceed

V 2 2i(i) 2 m^ 2~'"^1 V  i   2"m~1

—

that is, G(y) satisfies (4.1). The fact that G is general recursive is
obvious.

COROLLARY 4 . 1 . For any random sequence1 ω

(4.17) Κ((οήη))?η Α1(η)

C O R O L L A R Y 4.2.   sequence with enumerable S   cannot be random
(with respect to L).

 . An example of a random sequence. For more complex sets S w the
situation is different.

T H E O R E M 4.5. (Martin LOf). There exists a random sequence   with
respect to L with a set S   of rank 2 according to Kleene's classification
(that is, given by an arithmetical predicate with two quantifiers).

P R O O F . Let A be the set of words having arbitrarily long extensions
on which the universal test F takes values not exceeding 1. A is non empty,

As is easy to see from the second part of the proof of Theorem 4.4, 4Z(n)
can be replaced by 2l(n) and, in general, by an arbitrary function F(n)

CO

such that the series   2 " ^ ^ converges computably fast (for example,
n= 1

F(n) = l(n) + 2l(l(n)). See also Footnote 2 on p. 98.



The complexity of finite objects 115

since L|co: F(co) ^. 2 ! =  1/4. Obviously, Λ e 4, and if χ e A, then eith er
*O or xl (or both) belong to 4. We define a sequence ω by induction:

0 if OCA,
( ω )ι=  1  . if

( ) i Hn 1
if ( ) 0 . ,

"+1"=<i ( )1 if (<a)n0gA (hence ( )   1

Clearly   is random, since F(W) ̂  1. We show that   is of rank 2. To
do this we have to construct a solvable predicate R(n, k, z) such that the
predicate

P(n)~\/k 3zR(n,k, z)

characterizes Sa. To construct R(n, k, z) we note th at ((·))„ i s the small 
est word of length η belonging to A. Therefore the required predicate
R(n, k, z) is sat isfied by defin it ion if

1) z   ~χ Ι, where x, a, I are words satisfying the following condi 
t ions:

2) l(x) =  n; the last d igit of χ is 1;
3) χ C u, F(n) £ 1, where F i s the universal t est ;
4) Ζ > η and for a l l pairs of words y, ν of lengths η and I,  respect 

ively, and such th at y C ν and y C x, we have F(v) > 1.
Theorem 4.5 and Corollary 4.1 make more precise the assertion on the

existence of maximally complex sequences of rank 2 that was stated on
p. . Of course, the fact that the sequence characterizes a predicate
with two quan t ifiers can be regarded as a regularity. However, i t is quite
impossible to detect t h is regularity, and in a ll algorithmic experiments
t h is sequence i s indistinguishable from the remaining mass of random
sequences.

§5. The concept of the quantity of information

I . D efinition and simplest properties. The complexity K(x) in tu it ive 
ly represents the quantity of information necessary for the recovery of a
text x. Conditional complexity K(x \  y) in tu it ively represents the quantity
of information that i t is necessary to add to the information contained in
the text y, in order to restore the text x. The difference between these
quan t it ies is naturally called the quantity of information in y about x.

D E F I N I T I O N 5.1. (Kolmogorov). The quantity of information in y
about Λ; i s
• (5.1) I{y:x) = K{x) K{x\y).

REMARK 5.1.
'(5.2) I(x:y)^0,
<5.3) \Ι(χ:χ) Κ(.τ)\χθ.

P R O O F . We prove ( 5 . 2) . Let F2(p, x) =  Fh(p) ( see ( 1 . 9 ) ) . I f
y and K(y) =  Up0),  then sin ce F 2 ( p 0 , x) =  y,
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We now prove (5.3) . Let F^(p, x) =  x. Then also F 2 (Λ, x) =  x, hence
K(x | x) =< Kp2(x | χ) =  Z( Λ) =  0. Noting that I ( * : Λ;) =  K(x)   K(x \  x) we
obtain the required resu lt .

The following theorem establishes the link between the defin it ions of
quantity of information due to Kolmogorov and to Shannon (more precisely,
between the complexity of a word in the sense of Kolmogorov and the
entropy of frequency d ist r ibu t ion in the sense of Shannon). I t turns out
th at Shannon' s entropy i s simply the coefficien t of the lin ear part of
one of the par t ia l complexities.

THEOREM 5.1. (Kolmogorov). Let r be a number and suppose that a
word χ of length i.r consists of i words of length r, where the kth word
of length r occurs in χ with the frequency q^ (k =  1, 2, . . . , 2 r ) . Then

(5.4) K(x)^i(H(q
where

and

α (i) =  CT — > 0 npu i

In the general case, a closer link between entropy and complexity can 
not be established. This is indeed natural, since entropy is adapted for
studying texts having no regularities other than frequency regularities,
that is, for sequences of results independent of the tests. In this
special case, we can establish a complete link between the quantities in
question (this is done in Theorem 5,3).

P R O OP O P T H E O R E M 5.1. Let   be the mth word in order of mag 
nitude consisting of i words of length r that occur s^ times in it, res 

2 r

pectively \ ^ =  γ, 2 Sft =  0 · T o f i n d x i t ; i s sufficient to give as the
ft= l

information about i t the words m, slt ...,, s 2 r . All t h i s information can
be written in a single word: ρ =  st s 2 . . . s2rm.

Suppose that the function F^ip) obtains from t h is word the word x.
Then K(x) =4 2Z(Si.) +  . . . +  2Z (s2 r) +  l(m). We note that m cannot exceed
the number of words satisfying the conditions imposed on x, so that
TO<—j— —ρ . Furthermore, sk < i. Hence

(5.6) K(x)^2r+H(i) + l( i] \
V s l   · · · s

2 r  /

Using Stirling's formula n\  ==  i/ 2ro (—Ye1^" , where |θη | ζ 1, to

estimate m we obtain (5.4).
2. The commutativity of information. The classical Shannon quantity

of information in one random variable about another satisfies the condi 
tion of commutativity, that is, J( S:  ) = J( : S ) . Generally speaking,
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there is no exact equation for the Kolmogorov quantity of information in
one text about another.

EXAMPLE 5.1. By Remark 1.1 for any l0 there exists a word χ of
length Zo such that K(x | l(x)) >  l(x)   1.

By Theorem 1.4b there exist arbit rar ily large Zo such that K(lo) 5= 
> l(l0)   1. For such a chosen pair of words χ and Zo (l(x) =  Zo) we have

(5.7) I{x:lo) = K(lo) K(lo\x)^l(lo),

(5.8) I(lo:x) = K(x) K(x\ lo)^lo lo = O.

Thus, in certain cases the difference between I(x : y) and I(y: x) can
be of order of the logarithm of the complexities of the words in question,,
However, as Levin and Kolmogorov have shown independently, t h is order is
limited for i t and, consequently, if one neglects quan tit ies that are
in fin itely small in comparison with the information contained in both
words, then I(x : y) is commutative a ll the same.

THEOREM 5.2. (Kolmogorov, Levin), 1

a) \ I{x:y) I{y:x)\^12l{K{xy)),

b) \ I{x:y) [K (x) + K{y) K (xy)} | < 12Z (K (xy)).

P ROOF , a) We only prove the inequality in one direction :

(5.9) I(x:y)^I(y:x) \

The reverse inequality follows from it if by interchanging   and y.
We construct two auxiliary functions. Suppose that the partial recur 

sive function FA(n, b, c, x) enumerates without repetition words y such
that K(y)   b, K(x \ y) 4 c. The existence of such a function follows from
Theorem 0.4 and Theorem 1.6 (taking into account Remark 1.3). We denote
by j the number of such y (j depends non computably on x, b, c). Then FA

is defined for all     j and only for them. Consequently, the predicate
  (6, c, d, x) asserting that the number j defined above exceeds 2d is
obviously equivalent to the assertion that F4(2rf, b, c, x) is defined,
and hence is partial recursive. By analogy with F* there exists a function
G5(m, a, b, c, d) that enumerates without repetition all words   such that
K(x) 4  ,  (6, c, d, x). We denote by i the number of these words   (i
depends non computably on o, 6, c, d). Obviously, Gs(m, a, b, c, d) is
defined for all m 4 i and only for them.

Let us proceed with the proof. Let   and y be words with K(x)   a,
K(y)   b, K(x I y) = c. Then I(y : x) = a c. Further, as was defined above,
j is the number of words y' such that K(y') 4 b and K(x y') 4 c (j de 
pends on x, b, c), and i is the number of words x' such that K(x') 4 a
and the corresponding number j' > 2l^\ It is easy to see that i
does not exceed the number of pairs (x', y') such that K(y') < b,
K(x' \y') 4 c, which in its turn does not exceed 2 6 + c + 2 . Hence

By making more accurate estimates, we can improve them slightly. For example,
12l(K(xy)) can be replaced by (5 + E)l(K(xy)). It is not known whether the
estimate can be reduced to l(K(xy)).
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Since the word y is given as the value of FA(n, b, c, x) for some   < j,
we see that

(5.11) K(y\x)^ ()

Further, since the word   is given as the value Gs(m, a, b, c, d) for
d = l(j) and some m ̂  i, we have

(5.12) a = K(x)^l (abcdm) < 21 (a) + 22(6) + 21 (c) + 21 {d) + 1 (i).

Prom (5.10)   (5.12) and also from the fact that each of the quantities
l(a), l(b), l(c), l(d) = l(l(j)) does not exceed l(K(xy)), it follows
easily that K(y | x) < b + c     + l2l(K(xy)). This implies (5.9).

b) Obviously, K(xxy) =^ K(~xy); this implies, by part a) of this theorem,
that

| / (x"y : x)  I (x : xy) \ ̂  12Z (Z (xy)),

that is,

|   (xy)  K&y\  )   ( ) +   (  I xy) \ ̂  121 (K (xy)),

or
| [K (xy)  K(x) K(y)] + K (y)     (ly \x) K (x \xy)\^\2l (K (xy)),

from which we obtain assertion b) of Theorem 5.2 noting that  (  | "xy) X 0
and U(5y | x)   K(y \ x)\ X 0 .

3. Independent trials. The connection with the (probabi1istic
definition of information. Now we can finally explain the connection
between the probabilistic and algorithmic definitions of quantity of in 
formation. We recall the former in a form convenient for us (see [39]).
If 5 is a random variable taking a finite set of values x{ with probabil 
ities <ji, then we put

(5 13) flra)= I'?ilog2gi.
i

Let £ and   be two random variables with finite sets of values defined on
the same probability space. Then the quantity of information in   about  
is equal to

(5.14) /( : ) = #( ) + #( ) #( , ),

where (£,  ) is a random vector. If   and   are random variables with
values in Ω (see, however, small print on pp. 110 111), then we put

(5.15) / (|:  ) = 1  /((|) , ( ) )

(note that here lim coincides with sup). Suppose th at we have two such
n » 00  

random variables, jointly distributed according to the measure   (not
necessarily computable). We consider the sequence of independent random
vectors (£,  ) f (i = 1, 2, . . . ) , each of which is distributed according
to Q. These conditions (independence and identity of distribution accord 
ing to Q) uniquely define the joint distribution   of the vectors (  ,  ) .
We call a sequence of pairs of infinite binary sequences ( ,  ) f a
sequence of independent trials of the random variables 5 and   random with
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respect to P. We denote by α£ and β£ t h e words (α 1 ) , , (Λ2 ) η . . . (θίι)η and
(β 1 )η (β 2 )η ·• · (Ρ*)η . r e sp ec t ive ly.

TH EOREM 5.3. (Kolmogorov). If (<X, β ) 1 is a sequence of independent
trials of the random variables Ε and ψ, then

(5.16) lim lim ' ( a» :^> = / ( ξ : ψ ) .
n »oc i >oo *

P R O O F . The a sse r t io n of t h e theorem follows from t h e equat ion

(5 17)

To prove it we note that (5.8) implies

By definition,

Hence it is clear that the assertion of the theorem is equivalent to the
following.

Let Qit  2, ... be a sequence of independent identically distributed
random variables taking as values binary words of length r with prob 
ability qk, k 4 2

r, and let   be a binary sequence partitioned into words
of length r, which is random with respect to the measure corresponding  to
the distribution of  1 (  2, ... . Then

(5 18) lim^pi^H(qk).
We prove (5.18). Let   be a word of length i.r consisting of i words of

2 r

length r occurring in it s, times, respectively (   s,=i). The set of
* *=  1 ft

numbers st, . . . , s 2 r is called the set of frequencies of x. We denote by
h(x) the logarithm of the quantity of words having the same set of fre 
quencies as x, that is,

Our sequence   is random with respect to the measure for independent
trials and in each trial the results are obtained with fixed probabilities
qk. Using the strong law of large numbers it is easy to construct, for any
  > 0, k   2r, a test rejecting all sequences that have infinitely many
fragments in which s^/i differs from qk by more than  . Since   is random
and, consequently, withstands these tests, the limits of s^/i for its
fragments are exactly equal to q^. Prom this and Stirling' s formula it
follows that for the fragments of  ,

We show that
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i im : = U.
ί voo  l

Prom Theorem 1.3 we have K(x \~si . . . T 2 r ) =4 h(x), hence
K(x) =< h(x) +  2 r + 1 . Z(i) ( r is fixed); consequently

lim ft(W,.f) A ((T)t.r)

I t remains t o prove that

(5.19) Π5 *«^> *«^> < 0 ,

For t h is purpose we note th at since the random variables θ̂ · are independent
and iden t ically dist ributed, a ll words with the same set of frequencies
s1 ( . . . s2r are equally probable ( th eir probability being equal to
qll . . . ql%r)· By Remark 1.1 i t follows that the quantity of words χ with
a fixed set of frequencies slt . . . sQr such that K(x) 4 h(x)   m does not
exceed 2"m. Consequently, the measure of the set of sequences th at st a r t
with such words does not exceed 2"m. The measure of the set of sequences
that st a r t with a word having the set of frequencies s l f . . . , sQr and
satisfying the condition

(5.20) K{

doe's not exceed 2"^2 i(i)+m)> ^ e m e a s u r e of the set of sequences

having any fragment satisfying condition (5.20) does not exceed

Therefore, the t e st that gives for ω the supremum of the quantity
h(x)   2r+1l(l(x))   K(x) on a ll i t s fragments, sa t isfies (4.1) . I t is
not d ifficu lt to construct i t s algorithm ( th is i s done as in the second
part of the proof of Theorem 4.4) . Obviously, t h is t e st reject s a l l
sequences th at do not sat isfy (5.19), and since γ i s random, i t withstands
t h is t e st . Hence (5.19) holds as required.

Theorem 5.3 does not only hold for the case of independent t r ia ls. Schwartz
has raised the question whether a similar fact occurs for arbitrary ergodic
stationary processes. A positive answer to this question is given by the follow 
ing proposition.

PROPOSITION 5.1. (Levin). Let{?^\  (i =  1, 2, . . . ) be any ergodic
stationary random process with values *j € Ω , Ρ α m easure on its trajectories
(0 € f P given by this process, and Η its entropy. Ve denote by (Xl(U)) the word
( S i ) n ( 5 2 ) n . . . (*i)n. Then for P almost all W

h m lim
n voo i—voo

The requirement of ergodicity is not essential here. The only difference is that
in the case of a non ergodic process, the limit under discussion is not a constant
H, but a function /( ) that is measurable with respect to the   (algebra of in 
variant sets of trajectories. It is easy to describe this function. Each invariant

For the definition of entropy of an arbitrary stationary random process, see
[40].
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set of trajectories A, P(A) > 0, can be regarded as an original stationary random
process (distributed according to the corresponding conditional probabilities).
We denote by h(A) the entropy of this process. It is easy to see that the function
P(A).h(A) is additive. Then it has a Radon Nikodym derivative which is measurable
with respect to the O algebra of invariant sets. This is the required function
/( ).

Index of terms and notation

A priori probability
Code
Complexity
 , with respect to F1

 , conditional
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 , universal
 , weak tabular
~es, equivalence of
Quantity, of information in

one random variable
about another
, in one word about
another

—, of operations
Sequence, characteristic for

for a set
 , computable
 , not withstanding a test
 , proper

99

100
99
99
99

118

115
87

85
88
109
112

 , random (P random) no, ill, 113
 , sufficiently complicated 97
 , universal 97
 s, algorithmic equivalence of 112
Set, enumerable 87
 , hyperimmune 107
 , immune 107
 , simple 92
 , solvable 88
Task, solvable by means of

a probabilistic machine 106
Test (P test) 1 8, 110
 , rejecting   109
—, universal 109
Word 84
a.p(x, n) 100
  ( , t) 103
rx ss
d(A) 84
FQ 88
Fl 89
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G§ 94
H(t, x) 92
H(Z) 118
I(x' y) 115
J( ? ;•  ) 118
Kfi(x) 88
K(x) 89
K( * | y) 89

|y) 89

KR(x)
KRFi(x)
 
Z(«)
ni(z)
K2(z)
R
S
. ..

94
94
84
84
84
84
103
84
85

 /  + 1

Ω
Ω*
 
C
=<

87
85
85
84
85
85
85
85

Guide to the literature

The literature is referred to by section. The papers [5], [ ], [ll], [34] and
textbooks [l], [37] seem especially useful to us for the relevant sections.
Preliminary remarks:

§1 :
§2 :
§3 :
§4 :

 [4]

i •
[22], [26] [36] (the articles [27] [32] are

concerned with the concept of von Mises collective).
§5 : [5]  [7], [37] [4l] (the articles [37]  [40] are concerned

with the classical concept of information).
In our paper we do not touch on questions connected with estimating the

number of steps of an algorithm and the necessary size of memory, nor those con 
nected with other aspects of the complexity of calculation. The reader who is
interested in these questions can turn to the papers [42], [43] (where he will
also find more references).

Our bibliography does not pretend to completeness. However, we have tried to
include in it the principal publications supplementing the contents of our article.
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