THE COMPLEXITY OF FINITE OBJECTS AND
THE DEVELOPMENT OF THE CONCEPTS
OF INFORMATION AND RANDOMNESS BY

MEANS OF THE THEORY OF ALGORITHMS

A.K. Zvonkin and L.A. Levin

In 1964 Kolmogorov introduced the concept of the complexity of a finite
object (for instance, the words in a certain alphabet). He defined complexity as
the minimum number of binary signs containing all the information about a given
object that are sufficient for its recovery (decoding)., This definition depends
essentially on the method of decoding. However, by means of the general theory
of algorithms, Kolmogorov was able to give an invariant (universal) definition
of complexity. Related concepts were investigated by Solomonoff (U.S.A.) and
Markov. Using the concept of complexity, Kolmogorov gave definitions of the
quantity of information in finite objeets and of the concept of a random sequence
(which was then defined more precisely hy Martin-L5f)., Afterwards, this circle of
questions developed rapidly. In particular, an interesting development took place
of the ideas of Markov on the application of the concept of complexity to the
study of quantitative questions in the theory of algorithms. The present article
is a survey of the fundamental results connected with the brief remarks above.
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Preliminary remarks

In writing this article, apart fromthe literature quoted, we have used
basically material from lectures of Kolmogorov, from a specialist course
by Petrl and Kanovich, and also the seminar of Dushski and Levin. We are
deeply indebted to Andrei Nikolaevich Kolmogorov, who helped us greatly
in editing all the preliminary versions of this article; without his
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constant support the paper could not have been written at all. Highly
valuable for us was the constant contact and discussion of results with
M.I. Kanovich and N.V. Petri, for which we are very grateful. We are also
very grateful to A.B. Sosinski, who read the whole manuscript and made
many valuable remarks. We would also like to thank V.N. Agafanov, Ya.M.
Barzdin’, A.N. Kolodie, P. Martin-L8f, L.B. Medvedovski, B.A. Uspenski,
J.T. Schwartz and all participants, in the seminar of A.A. Markov for
valuable discussions.

I. Some definitions and notation. We shall investigate words in the
alphabet { 0,1}, i.e. finite sequences of zeros and ones. We establish a
one-to-one correspondence between words and the natural numbers:

A0
0—1
1«2

00— 3
01«4
10«5
11 -6
000« 17
001 <8

(A is the empty word), and from now on we shall not distinguish between
‘these objects, using arbitrarily either of the terms ‘““word” or “number”.
We denote them, as a rule, by small Latin letters, the set of all word-
numbers being denoted hy S.

If a word y is placed to the right of a word x, we get another word
which will be denoted by xy. We also have to be able to write the ordered
pair of words (x, y) as one word. In order not to introduce special
separating signs (like the comma), we agree that if x = xx, ... x,

(x; = 0 or 1), then

(0.1) T = L424%2Zy .« - - Tnx01.

Then from the word ;& we can unambiguously recover both x and y. We denote
by T,(z) and T,(z) the functions for which 7y(xy) = x, To(xy) =y; if a
word z is not representable in the form xy, then T,(2) = A, T,(z) = A1

The length l(x) of a word x denotes the number of symbols in «x;

I(A) = 0. Obviously,

(0.2) L(zy)=1(z) + 1 (¥),
(0.3) I(z) =21 (z)+2.
We shall denote by d(A) the number of elements in the set A, Evidently,
(0.4) d{x: I(z)=n}=2",
(0.5) d{z: L ()< n} =211,

1 One could construct a more standard enumeration of the pairs (x, y). However,

for us it is important that the property (0.11) holds (see below).
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The object of our study is also the space { of infinite binary
sequences (to be denoted by small Greek letters). Q* = Q | S is the set
of all finite or infinite sequences. Let w € Q*. then the n-fragment of
w, denoted by (®), is defined to be the word consisting of the first n
symbols of « (here, if ®w is a word and I(w) ¢ n, then by definition
(W) = ). A sequence W € ) is called characteristic for a set of natural
numbers A = {n,, n,, ...} not containing zero if in this sequence the
nith, noth, ... terms are ones and all the other terms are zeros. The set
A for which w is the characteristic sequence will be denoted by S, .

We write I', for the set of all sequences beginning with the word x,
that is,

(0.6) Tx={o: (0);@ ==}
These sequences are finite
or infinite, or only infin-
ite, depending on whether we
are studying Q* or Q, res-
pectively; in each particu- a0 d oy owd o
lar case this will be clear
from the context. We write a000
xCyif Iy > T, (so that

x is a beginning of y). The JJiW
relation C is a partial

ordering of S (diagram 1).

Functions defined on the n-fold Cartesian product S" = S xS x ... xS
(with the possible exception of standard functions) will be denoted by
capital Latin letters, occasionally with an upper index (denoting the
number of variables): F* = F*(x,, ..., x,). We always replace the standard
phrase: for any admissible values of the digits y,;, ..., y, there exists
a constant C such that for all admissible digits x;, ..., %,

(07) Fn+m(x1’ corr Iny Yiy ooy ym)\<Gn+m(xh oy Tny Yuy ool s, ynz)+c7

by the shorter phrase (using a new notation):

(0'8) Fner(‘Zh <vey Xny Y1y oo ey ym) _\<Gn+’m(x“ ceey Ingy Yy ooy ym)
(y¢y .+.y Ym occur as parameters),

The relation >= is defined analogously; FX G if and only if F=<G and
G=F. It is clear that the relations={,’> and < are transitive. Further,
it is clear that

(0.9) l(z) X logsz for x> 0,

(0.10) 1(z) < 21 (x),

(0.11) I(zy) X 1(y) (x occurs as a parameter),
etc.

2. Facts needed from the theory of algorithms. We quote some
necessary definitions and theorems from the theory of algorithms. The
majority of these facts are proved in any textbook on the theory of al-
gorithms (see, for example, (1] - [4]). The proof of the remaining facts
will not present any difficulty to the reader who is familar with one of
these textbooks.
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Let C', O™ I} be functions defined to take the following values:
Cl(%) = 2 +1, 0™(xy, +evs %n) = 0, IN(Xy, «ue, Xp) = %y The (n+1)=-place
function F is said to originate from the n-place function G and from the
(n +2)~place function H by a primitive recursion if for all natural num-
bers x,, ..., %p,y we have

Fry, ..., 2p, 0)=G (24, ..., Za),
F(xiq ey Zay y+1)=H($1, <o ey Iy va(xiv oo op Tny y))'
We denote by

(0'12) ”y (F (231, ceey Tneqy y)=xn)
the least number a for which
(0.13) Fzy, ..., Tney, @) =2y,

Here we agree that the quantity (0.12) is not defined in the following
cases:

a) the values F(Xy, «v+y %Xp.1, ¥) are defined for all y < a, y ¥ 2p,
but the value F(xy, ..., %p.y,a) is not defined (a= 0, 1, 2, ...);

b) the values F(x,, ..., %p.1, ¥) are defined for all y =0, 1, 2, ...,
y # %, '

The value of (0.12) for a given function F depends on the values of
X1y, sevs Xn-1, %p, that is, it is a function of these variables. We say
that this function is obtained from F by the operation of minimization,

DEFINITION 0.1. A function F is called partial recursive if it
can be obtained from the functions C!, 0% I? by a finite number of opera-
tions of substitution (that is, superposition), of primitive recursion and
of minimization. An everywhere defined partial recursive function is
called general recursive. A property of numerical n-tuples II"(a,, ..., ap)"
is called a partial recursive (general recursive) predicate if there
exists a partial recursive (general recursive) function that is equal to
zero for all n-tuples satisfying this property, and only for them.

It is easy to verify that the functions I(x), T,(2), To(2), F(%) = 7%,
G(x, y) = xy are general recursive.

At the present time, the following scientific hypothesis is generally
accepted:

CHURCH’S HYPOTHESIS. The class of algorithmically computable
numerical functions (in the intuitively clear sense) coincides with the
class of all partial recursive functions.

From now on, by quoting the algorithm which computes a certain func-
tion, we shall repeatedly assume without proof that it is partial recur-
sive. In fact, because of its bulkiness, we shall not write out the con-
struction required by definition 0.1. The diligent reader, who does not
wish to accept Church’s hypothesis as true in every case, can always write
out such a construction for himself.

REMARK 0.1. It is easy to see that partial recursive functions
constructed without the operation of minimization (such functions are
called primitive recursive) are defined everywhere. Only the operation of
ninimization can lead to functions that are not defined everywhere. This
is because the process of computing the result by minimization (consisting
of successive verification of the validity of equation (0.13) for
a«0, 1, 2, ...) can never stop. We say that the value of the partial
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recursive function /™ on the given collection (x,, ..., x,) is computed
in not more than t steps (operations) if all operations of ninimization
involved in constructing F™ were completed on the values of the corres-
ponding parameters a not exceeding t. We often use the concept of the
number of steps that were completed by means of the algorithm computing
F", in the above-mentioned sense.?

THREOREM 0.1. For all partial recursive functions F*, the follow-
ing property of the collection (t; x4, ..., %) is a general recursive-
predicate: the value of F(xy, ..., %,) can be computed in not more than
t steps.

DEFINITION 0.2. A partial recursive function U"*1(i; x4, ..., x,)
is called universal for all n-place partial recursive functions if for
any partial recursive function F"(x,, ..., x,) there exists an i such
that

(0.14) F'(zy, «o., ) =U"(i; 24, ..., Zn).

The number i is called the numeral of F™ with respect to U"** (a function
can have many numerals).

THFORRM 0.2. For any natural number n there exists a partial re-
cursive function that is universal for all n-place partial recursive
funetions,

We define an enumeration of the set S™ as any n-tuple of general re-
cursive functions F; (i =1, 2, ..., n) mapping S onto S" A natural
number k is called the numeral of the n-tuple (x4, ..., x,) in this
enumeration if F;(k) = x; for all i =1, 2, ..., n. It is evident that
the pair of functions mMy(z), Mp(z) is an enumeration of S2.

The following definition does not depend on the enumeration.

DEFINITION 0.3, A set XC S" is called enumerable if the set of
numerals of its elements (in the chosen enumeration) is the range of
values of some partial recursive function. (Here we say that this function
enumerates X.)

REMARK 0.2. Any enumerable set can also be enumerated by a gen-
eral recursive function.

THEOREM 0.3. Let the predicate II"** be partial recursive. Then
the set {(xi, veey X)) daq, ..., akII"J'k(xt, ceey Xpi @4, ..., Q) 1S true}
is enumerable,

The following theorem shows that the family of enumerable sets that
depend on the parameters p;, ..., pp 1s enumerable without repetition.

THROREM 0.4. Let AC S™* be an enumerable set. Then there
exists a partial recursive function F(t; ps, ..., py) such that

a) for any fixed ps, ..., pr the set of values of the function
F(t; p1y ..., pr) coincides with the set of numerals of the collection
(%4, eosy %) such that (%4, ...y Zni Pey eoes pp) € A (the numerals are
taken in a certain fixed enumeration of S™);

by if ty < ty and F(ty; py, ..., pp) is defined, then F(ty; pi, ..., pp)
is also defined and distinet from F(ty;, pe, «vv, PR)-

The number of steps defined in this way is a signalling function in the
sense of Trakhtenbrot [42].
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DEFINITION 0.4. A set X C S" is called solvable if there exists
a general recursive function equal to 0 on X and to 1 on S™ \ X. The
characteristic sequence of a solvable set is called computable.

Clearly every solvable set is enumerable.

THEOREM 0.5. Every infinite enumerable set contains an infinite
solvable subset.

§1. Complexity

In this section we introduce the concept of complexity. We derive the
simplest evaluations of the quantity of complexity and study the algor-
ithmic properties of this function.

I. Definition. The theorem of optimality. One of the central con-
cepts in this article is the concept of the complexity of a certain text
(communication). We define the complexity of a text as the length of the
shortest binary word containing all the information that is necessary for
recovering the text in question with the help of some fixed method of
decoding. More precisely:

DEFINITION 1.1, (Kolmogorov). Let F* be an arbitrary partial
recursive function. Then the complexity of the word x with respect to F*
is:

' minl (p): F*(p) ==z,
(1.1) Em (”)={oo i1f VpesS Fi(p)+=.

The word p for which F'(p) = x is called the code or programme by means
of which F! recovers the word x.

Such a definition of complexity depends very strongly on the form of
F. However, the following remarkable theorem permits an invariant defin-
ition of this concept. Consequently, the theory as presented in this
article could be based on the concept of complexity.

THEOREM 1.1, (Kolmogorov, Solomonoff). There exists a partial
recursive function F§ (called optimal) such that for any other partial
recursive function G*

(1.2) Kry (2) < Ko (@).

PROOF . See Corollary 1.3.
~ COROLLARY 1.1, For any two optimal partial recursive functions

F! and G*
(13) KF1 (x) )—( KG1 (SC)

DEFINITION 1,2. Fix an optimal partial recursive function F3,
for example, as in Corollary 1.3 below. Then the complexity K(x) of a
word x is defined to be Kp}(x).

DEFINITIGN 1.3. (Kolmogorov). The (conditional) complexity of a
word x for a given y with respect to the partial recursive function F? is

minl (p): F2(p, y) =z,
(1.4) Kpa (z|y) = {oo if VpeS F2(p,y)+*=z.
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THEOREM 1.2. (Kolmogorov, Solomonoff). There exists a partial
recursive function F3 (called optimal) such that for any partial recur-
sive function G2

(1.5) Kpz (2]Yy) < Koz (z]y)-

PROOF. Let U3(n; p, y) be a partial recursive function that is
universal for all two-place partial recursive functions (see, Definition
0.2, Theorem 0.2). We define the function

(16) Fg (Za y) =U3 (ﬂ?1 (Z), Ty (Z), y)y

and show that it is optimal. For let G? be a partial recursive function,
ng2 be any of its numerals (see Definition 0.2), and let

(-7 Kos (2]3) = lo,
so that there exists a programme po for which G*(po, y) = %, l(po) = los
and the word po has the minimum length of all words p with G%(p, y) = «x.
Then if we substitute z = ngz po in (1.6), we get

F2(z, y) = F} (ngape, y) = U® (1 (neapo), T2 (ngabo), Y) =
= U3 (ng2; po, Y) = G* po, Y) =7,
Hence, (1. 4). (1.7) and (0.2) imply that
KW (z|y) <i(z) =1 (ngzpo)— l (nGZ) 4 1(po) =
— Iy + 1 (ng2) = Koz (2] y) + 1 (ng2) X Koa (2 1),

since Z(ﬁGz) does not depend on x and y, but only on G2.

COROLLARY 1.2. For any two optimal partial recursive functions
F? and G2, .
(1.8) K (z|y) R Ko (z]|y).

DEFINITION 1.4. Fix an optimal partial recursive function F3
(for example, as defined by (1.6)). Then the (conditional) complexity of
a word x for a given y K(x |y) is defined to be 1F2(x |y)

COROLLARY 1.3. The partial recursive functwn

(1.9) Fo(p)=F3(p, A)

is optimal in the sense of Theorem 1.1.
PROOF. We show that KFi(x)——( Koi(x), where G* is an arbitrary

partial recursive function. We defime G*(p, y) = G'(p). Then from (1.5)
and (1.9) we have Kj1(x) = Kpno(x IA) = KF2(x FA) = KFé(x), as required.

Prom now on F3 and F3 will denote optimal functions selected once and
for all.

2. Fstimates for the quantity of complexity. In ‘this paragraph, we
establish the most important estimates for the quantities K(x) and K(x | ¥)
that we need in our subsequent investigations.

THEOREM 1.3, (Kolmogorov). Let A be an enumerable set of pairs
(x, @), and let My = {x: (%, a) € A}. Then

(1.10) K (z]a) L 1(d(M,)).
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PROOF. Suppose that the partial recursive function F?(p, a) is
computed by the following algorithm we select in the order of enumeration
without repetition (see Theorem 0.4) the pth pair of the form (x, a) and
take as the value of F? the first element of this pair (that is, the word
%), It is clear that if x € ¥,, then we can find p < d(M,) such that
F?(p, a)y = x; hence, by (1.5) K (z|a) X Km(z]|a)<1(d(Ms) as required.

REMARK 1.1. For any word y and a finite set M, the number of those
x € M for which

(1.11) | K (z|))<1(d(M)—m,

‘does not exceed 2™**1, For if K(x|y) < n, then a word p can be found of
length not exceeding n such that F3(p, y) = x Hence the collection of
such words x certainly does not exceed the collection of all programmes p
of length at most n; the number of such programmes p is 2"*! - 1 (see
(0.5)). In its turn, d(M) > 2Ud(N) _ 1, As a result, the number of words
Q(d(M)—m+1 _ 4
2l(d(M)) _y

estimate of Theorem 1.3 is exact for the majority of words; this theorem
often makes it possible to obtain the best estimates (that is, generally
speaking, estimates that cannot be improved) of the complexity of many
types of words. We shall use it repeatedly in what follows.

We now prove some properties of absolute (that is, non-conditional)
complexity.

THEOREM 1.4, (Kolmogorov). The following assertions are true:

(1.12)  8) K () < 1(x)
(therefore, K(x) < @ for all x € S);

b) the number of words x for which K(x) < lo~m and I(%) = lq
does not exceed 2°™*! (so that the estimate (1.12) is exact for the
majority of words);

x € M satisfying (1.11) is at most

< 2-™+1 Thus, the

(therefore also lim m(x)= ), where
Fado] .
(1.14) m (z) =min K (y),

yzx
that is, m(x) is the largest monotonic increasing function bounding K(x)
from below);

d) for any partial recursive function ®(x) tending monotonically
to @ from some xo onwards, we have m(x) < ®(x) (in other words, although
\ J(z)+& ~ m(x) also tends to infinity, it does so

more slowly than any partial recursive
function that tends to infinity);

w118 e Kz + R ~Kn | <21k

(that is, although K(x) varies all the
time between l(x) and m(x), it does so
mix)  fairly smoothly).
PROOF. (Diagram 2).
7 z a) Let G'(x) = x; then K 1(%) = [(x)
and by Theorem 1.1 K(x) -4KG1(x) = [(%),
as required.
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b) This assertion is a trivial corollary of Remark 1.1 (for y = A).
We add to this that for any lo a word x of length lo can be found such
that K(x) > lo (since the number of texts having length l, is 210, and
the number of programmes having length less than lo is 210‘1).

¢) By analogy to Remark 1.1, the number of words x such that K(xy < a
does not exceed 2““, so that,, of course, for any a there exists an x4

(x0 = max x) such that K(x) > a for all x> x5, as required.
K(x)<a

d) Suppose that the assertion of the theorem is false, so that there
exists a partial recursive function ®(x) € m(x) for an infinite set of
points x. Then ®(x) is defined on an infinite enumerable set U. By Theorem
0.5, U contains an infinite solvable set V. Let us put?

Q(x) -1 zeV,
ly(x)={ ®( max y)=-1, z€V.
y<x, YV
The so constructed function W(x) is general recursive, tends monotonically

to infinity, and ¥(x) < m(x) on an infinite set of points x. We write
M(a) max =x. It is easy to verify that M(a) + 1 = min =x. It is not

K(x)<a m{x)>a

difficult to show that max x> min x> M(a) on an infinite set of
Y(x)<a m{(x)>a

points @, and the function F(a) = qj(maSJé x is obviously general recursive.
X a

Thus, F(a) > M(a) = Kmax x on an infinite set of points a, that is,

x)<a
K(F(a)) > a. But by Theorem 1.1, K(F(a)) <X Kr(F(a)) < l(a). Hence there
exists a constant C such that [(a) + C> a for an infinitely large set of
numbers a, which is impossible,

e) Let p, be the programme of minimal length for the word x, that is,
F3(py) = x and K(x) = I(py). Then the word x + h can be obtained from the
programme hp, by applying to it the function G(2) = F3(Tmy(2)) + My(2);
therefore by (0.2) and (0.10)

Ko (@+h) <1 (hps) =1 (B) +1 () K 20 (B) +1 (pe) = 21 (h) +K (2).
But K(x + h) <X Kgi(x + h), hence K(x + h) X K(x) + 21(h), or
K(x + h) - K(x) < 21(h). Analogously, by applying the function

H(z) = F§(My(2)) + My(z) to the word hpy+p, where py+p is the programme
of the word x + h, we obtain

K (z)—K (@+h) < 2L ().
3. Algorithmic properties of complexity. THEOREM 1.5. (Kolmogor-
ov). a) The function K(x) is not partial recursive, moreover, no partial

recursive function ®(x) defined on an infinite set of points can coincide
with K(x) in the whole of its domain of definition.

{

a-b = max{ q - b; 0}; this operation is introduced in order not to go outside
the set of natural numbers.

a
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b) There exists a general recursive function H(t, %) monotonically
decreasing in t such that
(1.16) }ir}_: H(t, )= K (x)
(in other words, although there is no method of computing K(x), we can
nevertheless obtain arbitrarily good upper estimates for this quantity),

PROOF . a) We select an infinite solvable set V in the domain of
definition U of ®(x) (see Theorem 0.5). The function F(m) = min x
, K{x)om, x€V
is general recursive (since K(x) = ®(x) on V) and takes arbitrarily large
values; also K(F(m)) > m (by construction). On the other hand,
K(Fm)) < Kp(F(m)) < l(m), hence m =< I(m), which is false.

b) Let C be a sufficiently large constant (such that K(x) < I(x) + O).
We take the algorithm that computes the function F§ and make it complete
in t steps (see Remark 0.1) on all words p of length less than I(x) + C.
If the word x has not yet been obtained as a result, we put
H(t, x) = l(x) + C if it has already been obtained as a result (and
possibly not only once), we put H(t, x) equal to the minimum length of
the programmes p from which x was obtained. It is clear that [I(t, x) is
general recursive and monotonically decreasing in t. If we complete more
and more steps of the algorithm that computes F3(p) (that is, as t » o),
we finally obtain x from its “true” programme po of minimum length,
that is, we find the complexity of x (K(x) = l(pp)). (True, at no step
can we recognise whether this has already happened or not.)

THEOREM 1.6, (Barzdin’). Let f(x) be a general recursive function
and 1im f(x) = co. Then the set A= {x K(x) < f(x)} is enumerable (and,

X
in general, the predicate II(x, a)~[K(x) < al is partial recursive). The
complement of A is infinite, but does not contain any infinite enumerable
subset (such sets A are called simple).

PROOF. The assertion [K(x) < o} is equivalent to [3¢:H(t, x) < a)
(see Theorem 1.5 b), which proves the first part of the theorem.

Let D be an infinite, enumerable set lying in the complement of A,
and suppose that G' acts in the following way: it takes the first number
x € D, in the order of enumeration without repetition (see, Theorem 0.4)
for which f(x) > n and puts G'(n) = x. It is clear that K(x) <X Kgi(x) < U(n).
But x lies in the complement of A, so that by definition K(x) > f(x),
hence K(x) » n and l(n) 2= n, which is false.

§}, Majorants of complexity. Obviously, if we know the word x itself
and its complexity, then we can effectively (for example, by sorting out)
find one of the programmes of least length which code the word x. Moreover,
if we know the word x and any number s > K(x), then we can effectively
find one of the programmes of x which, although possibly not the shortest,
nevertheless are of length not exceeding s. Since, as follows from Theorem
1.5, “we cannot effectively find the complexity, in practice we have to be
content with effectively computable (more precisely, partial recursive)
functions. These functions are of no less complexity in their whole dom-
ain of definition, in other words, they give a value of the code’s length
which, although not the shortest, yet is effectively computable.
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DEFINITION 1.5. We define a majorant of complexity as any partial
recursive function ®(x) for which

(1.17) K (z) X D ().
THEOREM 1.7. (Levin). A partial recursive function ®(x) is a
majorant of complexity if and only if

(1.18) L d{z: D (z)=0a}) < a

PROOF. Let ® be ammajorant of complexity, and let x belong to its
domain of definition; ®(x) = a. By (1.17) a constant C exists such that
K(x) < &(x) + C, hence di{x: ®(x) = a} does not exceed the number of words
x such that K(x) € ¢ + C, and so (similarly to Remark 1,1)

d{z: @ (z)=ay <27 and 1(d{z: D (2)=a})<a+C+1,

which proves the theorem in one direction.

Now suppose that condition (1.18) holds for a partial recursive func-
tion @, so that there exists a constant C such that d{x: ®&zx) = a}g29*C
for all a. If ®(x) = a, then the word x can be coded in the following way:
let F(i, a) enumerate without repetition all the words y such that &y) = a.
(The predicate (B2 = al is partial recursive, hence such a function
F(i, a) exists; see Theorems 0.4 and 0.3 and Definition 0.1). We write the
word i for which F(i, a) = x (it is easy to see that i 2“+C), and prefix
it by the cipher 1, attaching so many zeros on the left that the length of
the word becomes a + C + 1., From this word it is easy to recover x (to
start with, we obtain a by subtracting C + 1 from the length of the code;
then we find it by throwing away from the left all the zeros and the first
1, thereby giving the word F(i, a)). Therefore, K(x)Xa+ C+1 = O(x) +C +1,
which proves the theorem in the other direction.

REMARK 1.2. Prom any partial recursive function F(x) a majorant of
complexity can be made by restricting its domain of definition to the set
of those x for which F(x) > K(x). (A priori it is not obvious that the
function so obtained is partial recursive; this follows easily, however,
from Theorem 1.5b). Hence, in particular, the enumerability of the set of
majorants of complexities follows immediately.

In practice, the general recursive majorants of complexity®' are of
special interest, because in the search for a short code of a word it is
important to be sure that we shall sooner or later find at least one code.
As examples of such general recursive majorants we can take the complex-
ities with respect to any general recursive function (see Definition 1.1).2
In Theorem 5.1 yet another important example of a majorant of complexity
is quoted - the *‘‘touched-up” entropy of Shannon.

It is interesting to investigate complexity in so far as it is (up to
an additive constant) an exact lower bound of majorants of complexities
(see Theorem 1.5b). Hence for a wide class of propositions their state-
ment for complexity is the generalization of their statements for all
majorants of complexities, It is remarkable that even in such a strong
form these assertions remain true.

! Por details of such functions, see [19] for instance, and also Theorem 2.5 of

the present article.

2 A gemeral recursive function cannot, of course, be optimal,
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REMARK 1.3. All results of §1, 3 and 4 and also the definition of
majorant of complexity can be transferred without difficulty to the case
of conditional complexity K(x Iy); here, the word y figures as a parameter
in all statements and proofs.

§2. Algorithmic problems and the complexity of solution

We shall study the behaviour of the complexity of fragments of various
infinite binary sequences. With this aim we introduce the concept of the
complexity of solution, which is more suitable than K(x) for investigating
sequences.

I. Definition and simplest properties. 1In the preceding section we
have developed the apparatus of complexities of those words whose inter-
pretations are complete texts. However, in practice we often have to
investigate words representing sequences that are cut short at a more or
less arbitrary place, Examples of such words are the approximate value of
physical constants, pieces of the text of telegrams, tables of random
numbers, cuttings of newspapers up to a given number, etc. It is not
interesting to measure the complexity of an algorithm restoring such a
word, because even if we possess full information about all sequences, we
do not know at what sign the sequence has been cut short. To measure the
complexity of a word of known length (that is, assuming an already given
truncation place) is not natural either, since it may happen accidentally
that the length of the word contains additional information about it. For
instance, the binary label of the length could coincide with the beginning
of the word. It is far more natural to measure the complexity of the al-
gorithm (or code) which for each number i £ I(x) gives the ith sign of the
word in question, in other words, models the activity of the sequence’s
source up to the ith sign. :

DEFINITION 2.1. (Loveland).® The complexity of solution of the
word x with respect to the partial recursive function F? is defined to be

min/ Vigl(z) F2(p, i)==x;,
2.1) Kﬁpz(x)z{ (p) Vi< Ha) PP, )=
oo if no such p exists
(here x; is the ith sign of the word x).

THEOREM 2.1. (Loveland). There exists an (optimal) partial recur-

sive function G3 such that for any partial recursive function F?

2.2) KR (x) < KRps (2).

The proof is analogous to that of Theorem 1.2.

DEFINITION 2.2. The complexity of solution KR(x) of the word x
is defined as the complexity of its solution with respect to a certain
fixed optimal partial recursive function, 2

The properties of KR(x) are analogous to those of K(x), and the reader
will establish them without difficulty. We shall only mention a few of
them.

Analogous concepts were investigated by Markov (see [15]).
2 Tnis function will henceforth be denoted by G3.
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THROREM 2.2. (Loveland). a) If x Cy, then
(2.3) KR (z) < KR (y).

b) An infinite sequence w is computable if and only if the complexity
of solution of its fragments is bounded.
(2.4) o) K (z) %= KR (z) = K (z| 1 (z)).

The proof is obvious.

2, Computable sequences. There is also a less trivial link between
the quantities KR(x) and K(x | 1¢x)).

THEOREM 2.3. (Kolodii, Levin, Loveland, Mishin). For v € Q, the
quantity K((W), | ny is bounded if and only if KR((W),) is bounded.*

PROOCF. In one direction the assertion is obvious: if the sequence
is computable, then there exists a general recursive function F'(n) = ().
We put F2(p, n) = Fi(n); then Kp2((W, | m = I(A) = 0, since FZ(A, n) = () p;
consequently also K((w), l n)<0, or

(2.5) K(yn [ n) < C

Let us prove the converse assertion. Suppose that (2.5) holds. We wish
to prove the existence of a procedure which, for each numeral n, would give
(W), as the nth sign of the sequence ©. We write out in a column all words
p of length not exceeding C and construct the following table:

]‘ 0 1 2 ... n
A
0 ()
1 L (@)n
00 | . (o) '
22 F% {p, n)
((1;)0 ()2
11...1
[——
C

Corresponding to p, the nth column contains F3(p, n) (see (1.6)) if the
function F3 is defined for the pair (p, n). The set of words F3(p, n)
appearrng in the nth column is denoted by A,. Each A, contains not more
than 2¢*! words, and we always have (W), € A,. Let

1= 1im d (4,).

Obviously, the set
U={n:d(A) > 1}

1 However, as Petri has shown, there is no effective method of evaluating
KR({w),) up to a constant that bounds KWy l n), so that the former quantity
can be very large.
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is enumerable and infinite. Here, the definition of ! implies that
d(A,) > 1| for only finitely many numbers n; the largest of these numbers n
will be denoted by m,.

Let the number of sequences & satisfying (2.5) be k. We denote by m,
the smallest number such that all m,-fragments of these k sequences are
distinct. In fact, all columns starting with the m,th must contain at
least k words, namely the fragments of these sequences (these fragments
are distinct). Hence k € 1. Let? m = max(mq, m,).

We select from U an infinite solvable subset U'' (see Theorem 0.5). Let
V=U'N{n: n> mn}; obviously, V is also solvable. Renumber the elements
of V in increasing order of magnitude: V= {n,, n, ...}. The algorithm
solving the ith sequence (in the lexicographic ordering) of our k sequences
acts in the following way: suppose that we wish to define the jth sign of
the ith sequence. We choose the least n, € V such that n, > j, and start
filling in the n,th column (that is, constructing words F3(p, n;), l(p)<O0).
As soon as it turns out that ! words have already been constructed, we
stop: we obtain all words from Anr. The next step: we choose words of

length n, from Anr; the set of these words is denoted by Bnr. Next, we
construct the set 3, ,, similarly, and choose from B, ., words that are
continuations of words from Bnr; the set of these words is denoted by Cp ...
Then, from B, .. 6 we choose words that are continuations of words from

Cn,+, — they form the set G, ,,; Cpn ,, is the set of words from B, . that
are continuations of words from C, ,,, and so on. We stop when exactly k
words occur in the next set C, . We are now sure that all words in C, are

n.~fragments of sequences satisfying (2.5). We choose from the words in Chs
the ith word in size and find its jth sign. This is what was.required.

3. Characteristic sequences of enumerable sets. The complexity of
solution of computable sequences is bounded. It is of interest to investi-
gate how the complexity of solution of those sequences increases when they
have more complicated algorithmic structure (for example, that of the
characteristic sequences of enumerable sets).

THLROREM 2.4, (Barzdin’).

a) For any sequence w with enumerable S,

(2.6) KR ((0)) < 1 (n).
b) There exists a sequence with enumerable S, such that
(2.7 KR ((0)p)>1(n).

PROOF. Let F(x) be a function enumerating the set S, without
repetition (see Theorem 0.4). To restore the word (W), completely it suf-
fices to give the number s, the last value of the function F (in the order
of construction) that does not exceed n. For let FZ(k, i) be obtained in
the following way: we compute the values of F(x) until we obtain the

1 This construction of the algorithm uses the numbers !, %k and m. This con-

struction is not effective, because there is no effective procedure for con-
structing !, k and m (see Footnote on p. 95). We only prove that the required
algorithm exists. (An intultionist might say: “It need not exist ”.) There-
fore, the mere fact of the existence of I, k and m is sufficient for us,
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number k (if F(x) # k¥ x € S, then F?(k, i) is not defined). Next we put
F?(k, i) = 1 if i has already appeared amongst the values of F(x), and
F2(k, i) = 0 otherwise. Then W; = F2?(s, i) for all i < n, hence by (2.1)
KRp2((w) ) = l(s) < I(n). But by (2.2) KR((w),) <X KRp2((w),). Consequently,
(2.6) is true.

b) We put

{1 it G2, i)—0,
P70 if G, 1)~ 0 or is not defined

(here G3 is as in Theorem 2.1). We claim that for such a sequence (S, is
obviously enumerable) (2.7) holds. For, suppose that KR((w),) < l(n) for
some n; then there exists a p < n such that G%(p, 1) = W; for all i £ n.
In particular, since p < n, it follows that G3(p, p) = W, which contra-
dicts the definition of Wps

We quote without proof one result (due to Kanovich) which comnnects the struc-
ture of sequences with enumerable S, with thelr complexity.

The definition of a process and related concepts is givem on p. . We call a
sequence 0, with enumerable Sa universal if for any sequence B with enumerable S/3
there exists a rapldly growing (Wweak tabular) process F such that 8= F(a). We

call a sequence O sufficiently complicated if there exists an unbounded general
recursive function F(n) such that KR((W),) > F(n).

PROPOSITION 2.1. The concepts of universality and sufficient complexity
of a sequence ( with enumerable Sy are equivalent.

COROLLARY 2.1. Every sufficiently complex sequence 0 with enumerab’: Sq4
is universal with respect to reducibility in the sense of Turing.

It is remarkable that in the case of sequences with enumerable S, the
general recursive majorants of complexity (which are really the quantities
of practical interest) show a completely different behaviour to complexity
itself.?

THEOREM 2.5. (Barzdin', Petri). There exists a sequence W with
enumerable S, such that for any general recursive majorant of complexity
® a constant C can be found such that

2.8) © (@) = - -

PROOF. We give a construction of the required sequence. It consists
of pieces written one after another having_lengths that double at each
stage, the length of the ith piece being 2'. The piece with numeral i is
filled out in the following way: consider a partial recursive function F
with numeral k (see Definition 0.2), where %k is the highest power of 2
dividing i (numerals i having the same k form an arithmetic progression
with common difference 2k+1). The ith piece of & is then the first word =x
(in the order of recovery by sorting out) of length 2' for which
Ftxy > (%) = 9%, If there is no such word x (but to check this there is,
in general, no algorithm),then let the ith piece consist only of zeros.
It is easy to see that S, is enumerable.

We say that the ith piece of & is ““defined™ by the kth function.

Let G(x) be a general recursive majorant of complexity. Without loss
of generality we may suppose that for G(x) strict inequality £ (instead

1 For further details about this, see [19].
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of <) holds in Theorem 1.7.% Then that theorem implies that for any 1
there exists a word x of length 2' such that G(yxz) > I(x) = 2% for all
¥, z. Consequently, all pieces that are definable by G are non~trivial.
Let us estimate G((w),). To do this, we investigate the last piece x
lying wholly in (W), that is “definable” by G. The numeral i of this

piece satisfies the inequality i > l(n)k- ok*1 _ 1, where k is the numeral
+1

of G (this inequality follows from 2'*2 > g).

Let y and z be words supplementing x to (W), (so that yxz = (W) p; Ob-
viously, I(y) = 28 =1, 1(2) < 22"). Then G((&)p) = G(yxz) > I(x) = 2% >
S 2[(n)-2k+2 2k+2 . . 2k+2.
> = n/2 . This proves the theorem if C is chosen to be 2 ;
C depends only on G, since k depends only on it (k is the numeral of G).

4, Maximally complex sequences. Solvable and enumerable sets corres-
pond to sets of zero and first rank, respectively, in Kleene’s projective
classification. Examination of sequences with a more complex set S,, for
instance of the second rank, that is, expressible by a two-quantifier pre-
dicate, shows that there are maximally complex sequences among them. (The
complexity of solution of their fragments is asymptotically equal to the
length of these fragments.) This fact will be stated more precisely in
Theorem 4.5 and Corollary 4.1. There it will bea proved that there exists
a two-quantifier sequence for which the complexity of its n-fragments dif-
fers from n by not more than 4l(n). Here we show that we cannot reduce the
quantity 4l(n) successively. Although for any n there is a word x of length
n such that K(x) > n (see the proof of Theorem 1.4b), there is no sequence
for which K((®),) >= n. More than that:

THEOREM 2.6 (Martin-L8f). For any sequence v € () there exist in=-
finitely many numerals n such that?

K ((0)n) < n—1(n)

PROOF . Among all the words of length n we define a set A, of
“selected” words in the following way (by induction): suppose that we
have defined all selected words in the (n - 1)th row and that the largest
of them is y; then we select 2"~ !(") words in the nth row beginning with
the word following y1 (see Diagram 1). If they are not all in this row,
then we select the remaining family from the beginning of the next row,
and further we begin already to select words from the (n + 2)th row. It
is clear that any sequence has infinitely many selected fragments. (It is
easier to see this fact for oneself rather than to explain it to somebody
else. It follows from the fact that the number of selected words in the
nth row is (as a rule) equal to 2'1("):a41/n and the series 3 1/n diverges.)

1 For this, it is sufficient to increase G(x) by a constant that does not

change its asymptotic behaviour.
In fact, Martin-LG6f has established a more precise fact, which we quote with-
out proof., Let F(n) be a general recursive function. We say that & is F-

— o+
complex 1f K((W),) 2= n-F(n). Then: a) if p) Z'F(") = o, then F-complex

© n=1
sequences do not exist; b) if EI 27 <o, then two-quantifier F-complex
n=
sequences exist, and F-complex sequences form a set of full measure (concerning
the measure L, see p, 100).
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Let x be a selected word of length n. It is obvious that?

K(r)<L1(d {hQO A4)) < l(:ﬁo 2h=1(M)) K n—1(n)

§3. Fffective random processes

This section investigates effective deterministic and non-deterministic
processes (algorithms with random entries) producing sequences. The central
result is the construction of a universal semi-computable measure and the
explanation of its connection with complexity.

i. Definitiohs. The equivalence of measures. DEFINITION 3.1. An
algorithmic process, or simply a process, is defined to be a partial re=
cursive function F that maps words into words so that if F(x) is defined
for the word x and y C x, then F(y) is also defined and I(y) C F(x).

Let © be an infinite sequence. We apply the process F successively to
all fragments of W as long as this is possible (that is, while F is defined).
As a result we obtain fragments of a certain new sequence ™ (possibly fin- '
ite or even empty),? the result of applying the process F to » (so that F
maps ( into Q*). In this case the notation p= F(w) will also be used.

REMARK 3.1. There exists a universal process, that is, a partiakl
recursive function H(i, x) such that H(i, x) for any it is a process and
that for any process F(x) there exists an i such that

(3.1) H (i, 5)=F (x).

H(i, x) can easily be constructed from a universal partial recursive funce
tion U?(i, x) (see Definition 0.2). Without loss of generality we may
assume that

(3.2) H(A, A)—A

(we shall need this later on). We call two processes F and G equivalent if
F(w) = G(w) for any w € .

REMARK 3.2. For any process there exists a primitive recursive
process equivalent to it.

DEFINITION 3.2, We say that a process is applicable to a sequence
®w if the result of its application to ® is an infinite sequence.

REMARK 3.3. Any process on the set of sequences to which it is
applicable is a continuous function (with respect to the natural topology
of the space of infinite binary sequences).®

DEFINITION 3.3, We call a process F weakly tabular or rapidly
growing (rapidly applicable to a sequence W) if there exists a monotone

n
The last inequality follows from the estimate > 2*~'(®) < c.on—Um)
h=0

I1f F((W),) for some n is defined and if all F((W)p), m> n, colncide with
F((W),) or are not defined, then the result will be F((W)p). The empty word is
obtained when F((®),) 1s not defined or is empty for all n.

In this topology () is homoeomorphic to a Cantor perfect set.
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unbounded general recursive function ®(n) such that for any x (for any x
that are fragments of &) and n for which I(x) = n and F(x) is defined, the
length of the word F(x) is not less than ®(n). In this case we say that
the speed of growth (of applicability to w) of F is not less than ®(n).

REMARK 3.4. It is easy to show that a process that is applicable
to all w € (} is general recursive and rapidly growing. Obviously, the con-
verse is also true.

DREFINITION 3.4. Let P be a probability measure on {}. We say that
a process is P-regular if the set of sequences to which it is applicable
has P-measure 1.

In order to give an arbitrary measure on the Borel O=-algebra of sub-
sets of Q it is sufficient to give its values on the sets [,.

DEFINITION 3.5. We call a measure P on (} computable if there
exist general recursive functions F(x, n) and G(x, n) such that the
rational number
(3.3) ap(z, n):é—g;—%’—
approximates the number P {[",} to within an accuracy of 2°7.

REMARK 3.5. Obviously, if P is computable, then op(x, n +1) + 2~ (r*1)
approximates P{I.} to within an accuracy of 2™" in excess. Therefore later
on, without loss of generality, we shall always suppose that dp(x, n) is
already an approximation in excess, and we shall take dp(x, n) - 2°" as an
approximation falling short of P{l"x} with accuracy 277,

We denote by L the uniform measure

(3.4) L{T,) =2-1=,

This measure corresponds to Bernoulli trials with probability p = 1/2. It
is also the Lebesgue measure on the interval [0, 1]. L is obviously com-
putable. ‘

THEOREM 3.1. (Levin), a) For any computable measure P and any P-
regular process F, the measure

(3.5) Q{I'y}=P{U I'n: F (x) =y}
(that is, the measure according to which the results of F are distributed)
is computable.

b) For any computable measure Q there exists an L-regular process F
such that the results of its approximation fo sequences distributed accord-
ing to L are distributed according to Q and such that a process G exists
which is the inverse of F (in the domain of definition of FOG) and is
applicable to all sequences except perhaps the solvable ones or those lying
in intervals of Q-measure zero.

PROOF. a) We must be able to compute Q{Py} with an accuracy of 277,
or to find! ag(y, n). We choose m so that

P {o: L(F ((0)m) > L (3)) > 1 —2- (D

1  We shall not construct an approximation in excess, but an arbitrary approxi-

mation; it is easy to derive an approximation in excess from it (see Remark
3.5).
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(such an m exists because F is P-regular, and it is easy to find m effect-
ively). We take all words x of length m such that y C F(x) and sum the
corresponding measures P{I';} that are computable to within accuracy
g=(n*n*1)  jn other words, we put

(3.6) ag(y, n)= ap(x, m+4n-41).

X W{x)=m, yCF(x)
Then our error | doly, ) ~ Qif'y}l does not exceed
g~ (n*t1) , om, g=(m*nt1) _ 5-n (gince there are at most 2" words x over
which the summation was carried out), as required.
b) We regard binary sequences as real numbers in the interval [0, 1]
(a sequence is the binary expansion of the number corresponding to it).
All cases when this can lead to ambiguity (because the expansion into
such sequences of binary rational numbers is non-~unique) will be discussed
separately. Fig., 3 (where the abscissae
and ordinates are distributed according to
to Q and L, respectively) shows the dis-
tribution function g corresponding to Q.
As is well known, if a random variable &
is uniformly distributed on [0, 1], then o
g"*(&) is distributed according to Q.
Our construction will be based on this 5"
idea. I
I. We construct the process F by in- &
ducing Q from L (in fact, this will be !
the process of calculating g~'; for such !
a calculation to be possible, it is es- /i vy 7 7 7
sential that Q is calculable). Let @ be
a sequence and (d), its n-fragment. With
reference to it we find an approximation (with acecuracy 27") of the numb-
er o with deficiency «, and excess 0. We examine all words y of length n
and ealculate for each of them the measure Q{f'y} with accuracy 272" and
excess (that is, 0o(y, 2n)). We select those words z of length n for which

q

(3.7 S (o (y, 2n) —272) > 1 —an
v=z
(the sum on the left is an approximation to Qi L)J PyE with accuracy 277
y2z

and deficiency) and

(3.8) Doy, 2n) > ap

Y=z

(the sum on the left is an approximation to Qf u Iy 1 with accuracy 277
y< 2

and excess), We choose the longest common fragment of all the selected
words z and take it as the value of F on (0) .

II. By (3.7) and (3.8), the sets [J[, are intervals containing (for
every n) the g-inverse image of the point a. Hence, if the process F is
applicable to 0, its result will be g~'(®) (we regard Y as the inverse
image of points o € [ o', 0"], see Diagram 3). To prove that F is the re=
quired process we need only show that it is L-regular.
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1) Suppose that o lies in an interval of type [o', 6"] corresponding
to a unique sequence Y of positive measure. If & lies inside [o', ¢"],
since the 27" neighbourhood of [, @,] lies completely inside [o', "
the set of selected words z then consists of the unique word which is an
n-fragment of the required sequence Y. Consequently, the process F is
applicable to &. In general, F may not be applicable to the end-points of
[O', 0”

2) Suppose now that o does not lie in an interval of type (o , "],
Then it follows from (3.7) and (3.8) that Q{UI';}> 0 as n > ®. Hence,
if ¢ is not a point of type p corresponding to an interval of measure
zero, then the intervals (J I, themselves shrink to a single point §,
namely the g-inverse image of o . Therefore the length of the longest
common fragment of the selected words z tends to infinity except, possibly,
when B is a binary rational, because if P = m/2%, then the intervals UT,
can always contain both sequences lying to the left of m/2* and hence
starting with the word m — 1, and sequences lying to the right of m/2%
and hence starting with the word m. In this case, the longest common frag-
ment of all selected words z is of length less than k).

Thus, ¥ can only be inapplicable to sequences of type p, ¢’ and ¢
(see Diagram 3), and also to sequences having binary rational inverse
images., It is clear that the set of such sequences is at most countable.
Hence F is L-regular.

ITI. There is no difficulty in constructing the inverse process: this
is the process of calculating the function g. Here G is inapplicable first-
ly to sequences of type Y having positive measure (such sequences are
easily shown to be computable; we do not prove this here, since in
Corollary 3.1 a more general result will be proved), and secondly (perhaps)
to sequences 3 on which g takes binary rational values ¢ (in analogy to
II (2)). If F is applicable to these binary rational values &, then our
sequences {3 are computable (as F-images of binary rationals). But if F is
inapplicable to 0, then (see 1I) our sequences P are either points of type
Y (this case has already been investigated) or they form a whole interval
[T’ t"] of Q-measure zero, or they themselves are binary rational (conse-
quently computable). The theorem is now completely proved,

2. Semi-computable measures. DEFINITION 3.6. (Levin). A meas-
ure is said to be semi-computable® if the results of applying an arbitrary
(not necessarily regular) process to sequences that are distributed
according to a certain computable measure are distributed according to it.

REMARK 3.6. A semi-computable measure in concentrated on the space
*, because an irregular process can also yield infinite sequences with
positive probability. By T} we understand (throughout this section) the
set of all finite or infinite sequences beginning with the word x.

REMARK 3.7. The results of applying any process to sequences that
are distributed according to an arbitrary semi-computable measure are also
distributed according to a certain semi-computable measure (since the
super-position of two processes is a process), and any semi-computable
measure can be obtained by a certain process from a uniform measure (see
Theorem 3.1b).

'

1 The name “semi-computable” is justified by Theorem 3.2.
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THEOREM 3.2. (Levin). A measure P is semi-computable if and only
if there exist general recursive functions F(x, t) and G(x, t) such that
the function
(3.9 _ Flz 1

) ﬁP (x7 t) — ral (x'_" t)
is monotone increasing in t, and

(3.10) lim By (, 1) = P (I},

PROOF. Let P be a semi-computable measure, Then there exists a pro-
cess I that obtains this measure from a uniform one. We complete it within
t steps on all words y of length not exceeding t. Denoting the result by
Fi(y) (if it has not yet been obtained, then Fi(y) = A), we put

(3.11) Br(x, t)y=L{U Tz F:(y)}.

Conversely, suppose that there exists a function Bp(x, t) satisfying
the conditions of the theorem. We wish to construct a process F that
derives P from a uniform measure. The idea of this construction is simple:
roughly speaking, we have to decompose the interval [(L 1] into non-
intersecting sets of measure P{I;}, and to add the word x when our uni-
formly distributed sequence gets into the corresponding set. Now we carry
out the construction accurately. Obviously, P{I.}> Pil.0} +{P{ %y},
Further, without loss of generality we may assume that
Bp(x, t) > Bp(x0, t) + Bp(xl, t) for all t (whenever this inequality is
not satisfied, we can decrease PBp(x0, t) and Bp(xl, t) proportionally to
the extent that the inequality becomes valid; by doing this, condition
(3.10) is not infringed). It is easy to construct sets in [0, 1] satis-
fying the following conditions: to each pair (x, t) there corresponds a
set, namely the union of finitely many intervals with rational end-points
having Lebesgue measure (p(x, t); here, for words x £ y of the same length
the sets corresponding to (x, t,y and (x, t,) do not intersect for any t,
and t,; if x C y, then for every t the set corresponding to (x, t)
contains that corresponding to (y, t); for t, < t, and every x the set
corresponding to (x, t,) contains that corresponding to (x, t,).

The process F acts thus: with respect to z it constructs our sets for
all pairs (x, t) such that I(x) € I(z) and t < l(z) and it produces the
word x of largest length such that z belongs to the set corresponding to
(x, t) for some t (obviously there is only one such x, because the sets
corresponding to various x are disjoint and x' C x” if 2z’ C z").

3. A universal semi-computable measure. THEOREM 3.3. (Levin).
There exists a universal semi-computable measure R, that is, one satis=
fying the following condition: for any semi-computable measure Q a con-
stant C can be found such that

(3-12) C'R{Fx}>0{rx}

for any x.t

1 In other words, Q is absolutely continuous relative to R, and the Radon=-

Nikodym derivative is bounded by C.
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PROOF. By Remark 3.1 there exists a universal process [I{(i{, x). We
put

(3.13) F (2) = H (71, (2), 715 (2)).

It is easy to show that F(z) is a process (see (3.2)). This process, when
applied to uniformly distributed sequences, induces the required measure.
For suppose that the process G(y) maps a certain set of sequences into [,
Then F(z) maps into 'y the same sequences preceded by the word T, where i
is the numeral of G (that is, F(i, %) = G(x) for all x), and possibly also
some other sequences. Therefore the measure cannot decrease by more than
C times, where we can take C = 2! (V)

REMARK 3.8. There is no analogous result for computable measures:
amongst all computable measures there is no universal one. This fact is
one of the reasons for introducing the concept of a semi-computable
measure.

The measure R (if we disregard the multiplicative constant) is
‘““larger ” than any other measure, and is concentrated on the widest sub-
set of . In mathematical statistics the following problem arises: to
clarify with respect to what measure a given sequence can be obtained
‘““randomly ” . If nothing is known in advance about the properties of the
sequence, then the only (weakest) assertion we can make regarding it is
that it can be obtained randomly with respect to R. Thus, R corresponds
to what we intuitively understand by the words ‘‘a priori probability”.
However, the attempt to apply this concept for the foundation of mathem-
atical statistics comes across difficulties connected with the fact that
R is not computable.

The following fact is of interest:

a) there exists a constant C such that the probability (with respect
to R) of the non-occurrence of the digit 1 after n zeros is not less than
1 1
= Clogn’

b) for any constant C the portion of those n for which the probability
(with respect to R) of the non-occurrence of the digit 1 after n zeros is

larger than %(Jlogglz does not exceed 1/C on any sufficiently large

interval [0, NJ].

Therefore, this probability has order! approximately 1/n.

The proof of this assertion follows easily from (3.14) if we take
into account that the complexity of solution of a word consisting of n
zeros and one 1 does not exceed log,n, and for the majority of such
words it is almost equal to log, n.

We point to an analogy between the construction of complexity and of
a universal semi-computable measure. In fact, these quantities turn out
to have a numerical connection.

1 Observe that this assertion is related only to a universal (a priori) prob-

ability. For example, if it is known that the sun has been rising for 10,000
years, this still does not mean that the probability that tomorrow ip will

not rise is equal to approximately This would be true if our in-

1
3,650, 000"
formation about the sun were exhausted by the fact stated.
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THEOREM 3.4, (Levin).
(3.14) | KR (2)—(—1log, R {T<}) | < 2 log, KR (2.

PROOF. Let KR(x) = i, so that there exists a word p with I(p) = i
such that G3(p, n) = x, for every n < l(x) (here (3 is as in Theorem 2.1).
Then it is easy to construct a process that transforms any sequence
beginning with the word I(p)p into a sequence beginning with the word x:

firstly, it must select 1?53, restore [(p) from i?;ﬁ and then, knowing
I(p), “read” the word p itself; finally, it must start ascribing the
corresponding values G3(p, n) for n=1, 2, ... . If this process is ap-
plied to uniformly distributed sequences, then the induced measure of I,

will not be less than 2-!(I(P)P), Therefore by Theorem 3.3

R{T}>C.2-uiwp),
hence
(3.45)  —log R{I'.} < 1(L(p)p)=1{(p) +1(p) K I{p)+-21(L(p) =
=i+2l(i))=KR(+)-}+21 (KR (z)).

Now let R{I'y} = q. We write® I(g) = [~1log, q]. We estimate the com-
plexity of solution of the word x; for this purpose we show that any sign
of x can be restored with reference to the information given by the triple
of words I(gq), k and i (or, what is the same thing, by the one word

l(q)Zi), where k= 0 or 1 and i < 21(9)*1, Qur algorithm acts in the
following manner: beginning with the word l{(qg) it builds up a tree (see

Diagram 1) of words y such that R{I)} > 2 D=1 (5 do this we have to
compute Bp(y, t) for all large values of t and y, and to attach y to the
tree as soon as Pr(y, t) > 2-1(9)"1 for some t). The word x belongs to
this set. At each stage of the algorithm we select the totality of
‘““maximal ” words in the previously constructed part of the tree, that is,
words that have as yet mo continuation in the previously constructed part
of the tree. It is clear that the number of maximal words does not de-
crease from step to step, remaining less than qUP*L 1y Diagram 4, let
A be the point from which the last *“collateral branching” from x des-
cends (see Diagram 4), which illustrates the spreading of the tree of
words having sufficiently large measure R; a solid line denotes the tree
at that instant when the number of branches at first becomes equal to i
(at this moment, the branching occurs at A); a dotted line depicts the
tree built up as far as all the signs of x have already been solved.)
From then on, the word x goes without branching. To solve x, it suffices
firstly to give k, which is 0 or 1 according as x goes “to the left” or
“to the right” of A, secondly to give some information with reference
to which the algorithm could “find” A. As this information we give the
number i1 of maximal words at that moment when both branches at first
spread out from A (in the previously constructed part of the tree). This
happens precisely when we attach the second branch in the order they are

1 Here square brackets denote the integral part of a real number.
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obtained and the number of maximal words increases by 1 to i. Moreover,
i< oD or 10dy < (@) +1. As a result,
KR () 1T (g) ki) = 20U () +
+1O)=KL2Ug) -+ L(g) X
=X —logs R{T'.} -2 log, (—log, R {T':}).
By (3.15)

2 logy (—logs R {I'}) K 2 log, [K R (x) +
4+ 2U(KR (2))] < 2 logs KR (2),

hence
(3.16) KR (x) K —logs R {Ty}-+21og, KR ();

(3.15) and (3.16) together give (3.14).

It is interesting to note that by the
usual arguments of measure theory it follows
that any (not necessarily semi-computable) measure P is almost completely
concentrated on the set of those w for which 3 C such that for all n

(3.17) P Ty} » C- BA{T w)n}-

Exactly in the same way, for R-almost all sequences the opposite in-
equality holds; if P is absolutely continuous relative to R, then the in-
equality is satisfied for P-almost all sequences. From this it follows
that the fact analogous to Theorem 3.4 holds for any semi-computable
measure P on the fragments of P-almost any sequence (of course, every
sequence having its own constant).

As a corollary to Theorem 3.4 we obtain the well-known theorem of
de Leeuw-Moore-Shannon-Shapiro on probabilistic machines.

COROLLARY 3.1. A sequence & has positive probability with res-
pect to one (and hence also with respect to a universal) semi~computable
measure if and only if W is computable,

PROOF. From (3.14) it follows that the measure R of all fragments
of W is larger than a positive number if and only if the complexity of
their solution is bounded.

. Probabilistic machines. The preceding result of Shannon is sometimes
interpreted as the impossibility of solving by means of probabilistic machines
tasks that are unattainable using deterministic machines. However, the task does
not always consist of constructing a certain concrete unambiguously defined object;
sometimes the task can have many solutions, and we have to construct only one of
them. In such a formulation, obviously, there exist tasks that are unattainable
using deterministic machines, but can be solved by means of machines using tables
of random numbers (for example, the task of constructing a non-computable sequence).

We say that the task of constructing a sequence having the property Il is sol-
solvable by means of a probabilistic machine if the universal measure R of such
sequences is positive. The following propositions show that such tasks can be
solved with arbitrarily large reliability.

PROPOSITION 3.1, (Levin).! Let A C{), R(A) > 0. Then for any €> 0

We note firstly that the construction of this process with respect to £ is not
always effective, and secondly, as N.V. Petri pointed out, that if it is bound-
ed by general recursive processes (and not partial recursive ones) then not
every solvable task can be solved by a rapidly growing process.
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there exists a weakly tabular (rapidly growing) process with speed of growth
I(F(x)) > l(x), a process which on application to sequences distributed according
to the measure L yields sequences in A with probability at least 1 - €,

Obviously, for example, one cannot solve the task of obtaining some maximally
complex sequence by a more rapidly growing process, because under the application
of the process the complexity of words (more precisely, the closely related
quantity [-log,R{I,}]) cannot increase. It turns out that when this argument is
not essential, the process can be accelerated considerably (that is, the result
can be obtained using a smaller number of signs from the tables of random numbers).

PROPOSITION 3.2, (Levin). Let g be an arbitrary general recursive
function, The task of obtaining a sequence from a set A is solvable by means of a
process that grows with speed g(n) if and only if there exists a set B C 4,

R(B) > 0, such that —-logQR{Px} <X n for any sequence W € B, where x = (W) g(n).

We quote without proof some results concerning the possibility of a solution
of standard algorithmic tests by probabilistic machines. The first interesting
result of this character is due to Barzdin’. We call an infinite set of natural
numbers immune if it does not contain any infinite enumerable subset.

PROPOSITION 3.3 (Barzdin'). There exists an immune set (for example,
the complement of the set A in Theorem 1.6) such that the task of obtaining a
sequence that is characteristic for a certain infinite subset of it is solvable
by means of a probabilistic machine.

The proof of this proposition can easily be obtained from Theorem 1.6 and
Corollary 4.1.

An interesting variety of immune sets consists of those sets whose immunity
is governed by a too rapid growth of the function that gives, for each i their
ith element in order of magnitude; such sets are called hyperimmune (more pre-
cisely, a set of natural numbers is called hyperimmune if there is no general
recursive function ¥ such that F(i) > x;, where x; is the ith element of the set
in order of magnitude).

PROPOSITION 3.4, (Agafonov, Levin)., Whatever the (fixed) hyperimmune
set M, the task of obtaining e sequence characteristic for a certain infinite
subset of it is not solvable by means of a probabilistic machine,

However, we have

PROPOSITION 3.5, (Petri), The task of obtaining a sequence having the
property that the set for which it is characteristic is hyperimmune is solvable
by means of a probabilistic machtne.

For further details about probabilistic machines, see [23], [25].

84, Random sequences

y. Definitions. Universal test. The axiomatic construction of prab-
ability theory on the basis of measure theory [26] as a purely mathematical
discipline is logically irreproachable and does not cast doubts in any-
body’ s mind. However, to be able to apply this theory rigorously in prac-
tice its physical interpretation has to be stated clearly. Until recently
there was no satisfactory solution of this problem. Indeed, probabiliy is
usually interpreted by means of the following arguments: ¢ If we perform
many tests, then the ratio of the number of favourable outcomes to the
number of tests performed will always give a number close to, and in the
limit exactly equal to, the probability (or measure) of the event in
question. However, to say ‘‘always” here would be untrue: strictly speak=
ing, this does not always happen, but only with probability 1 (and for
finite series of tests, with probability close to 1). In this way, the
concept of the probability of an arbitrary event is defined through the
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concept of an event that has probability close to (and in the limit equal
to 1), consequently cannot be defined in this manner without an obviously
circular argument.

In 1919 von Mises put forward the following way of eliminating these
difficulties: according to von Mises there are random and non-random
sequences.® From the mathematical point of view, random sequences form a
set of full measure and all without exception satisfy all the laws of
probability theory. It is physically possible to assume that as a result
of an experiment only random sequences appear.

However, the definition of random sequences proposed by von Mises [27]
and later defined more precisely by Wald [28]. Church [29] and Kolmogorov
(31] turned out to be unsatisfactory. For example, the existence was
proved of random sequences, according to von Mises (his so-called
collectives) that do not satisfy the law of the iterated logarithm [30].

In 1965 Martin-L3f, using ideas of Kolmogorov, succeeded in giving a
definition of random sequences free from similar difficulties. Kolmogorov’s
idea was that one should consider as *‘non-random” those sequences in
which one can observe sufficiently many regularities, where a regularity
is defined as any verifiable property of a sequence inherent only in a
narrower class (of sufficiently small measure). If the *guantity of
regularity ” is measured according to this traditional logarithmic scale
(to base 2) of Shannon, then the last phrase is made more precise in the
following way: the measure of the set of sequences containing more than m
bits of regularity cannot exceed 277,

The choice of scale is not essential for the description of the class
of random sequences, and 2™ can be replaced by 1/f(m), where f(m) is an
arbitrary general recursive monotone unbounded function. However, the
choice of scale is a question of the accuracy of measuring the quahtity
of regularities. But even on a more detailed scale the quantity of reg-
ularities could not be measured without obvious arbitrariness, because
the theorem on the existence of a universal test (Theorem 4.1) holds only
in the logarithmic scale to within an additive constant, and the selection
of a less detailed scale would lead to an unjustifiable loss of accuracy.

REMARK 4.1. We stress particularly that by regularities we under-
stand not any rare properties of sequences, but only verifiable ones, that
is, we regard as random those sequences which under any algorithmic test
and in any algorithmic experiment behave as random sequences.

All the preceding arguments lead us to the following definition.

DEFPINITION 4.1. (Martin-L8f). A correct method of proof of P-
regularity (where P is a certain probability measure on {}) or P-test is
defined to be a function F(x) that satisfies the following conditions:

a) it is general recursive;

by form> 0
(4.1) Plo:F(o)>m}<<27™,
where
(4.2) F(w)=sup F ((0)n).

1 We construct the theory in the simplest case, for the space 0 of infinite

binary sequences. However, it can easily be generalized (see the small print
on pp.110-111.



The complexity of finite objects 109

The “quantity ” of regularities found by a test is taken to be the
value of the test. We say that a sequence ® does not withstand a P-test ['
or that the P-test F rejects w, if F(W) =

The meaning of Definition 4.1 a) is ponditioned by Remark 4.1. In
certain papers tests are investigated for which the condition of comput-
ability is replaced by the weaker condition that they can be formulated
in a certain theory. That is, these tests also state regularities that
cannot be detected yet can somehow be described, Condition (4.1) guaran-
tees that the set of sequences rejected by a P-test has P-measure zero.
The converse is also true: for any set of P-measure zero there exists a
not necessarily computable function having property (4.1) which rejects
all sequences from this set.

Tests can be very varied. However, as in the case of measuring com-
plexity with respect to different partial recursive functions, there is a
theorem on the existence of a universal test.

THEOREM 4.1. (Martin-L8f}. For any computable measure P there
exists a P-test ' (called universal) such that for any P-test G a constant
C can be found such that for all w € Q

4.3 G (@) <F (0) -C.

PROOF. We begin by constructing a general recursive function H2(i, x) such
that H?(i,, x) isa P-test for any fixed i, and that for any P-test G there is
an ip such that H2(ig, W) > G(W) =1 for all w € Q. For this purpose we
take a universal partial recursive function U?(i, x) (see Definition 0.2).
For each is we transform it in such a way that it becomes a P-test and,
if U?(is, %) + 1 was already a test, then the suprema over @ € (} of
[?(ip, x) are not changed.

We fix ig. We take all fragments y of the word x and on each fragment
we perform l(x) steps of the algorithm computing U?(io, y); we put
Gy.(is, ¥) equal to the result of applying the algorithm, if the result
has already been obtained, and Gi(io, ¥) = 0 otherwise. Let
G(ig, %) = Slép Gyx(io, y). Obviously, G(ig, x) is general recursive and

yL-vy

for any w € Q

(4.4) U2 (i5, 0) =G (ig, m).

However, G(is, x) cannot satisfy condition (4.1). To satisfy (4.1) we
replace G(in, %) by

(4.5) H2 (i, z)=min{G (iy, z); M (iy, z)},

where M(ia, x) is the minimum number m such that for m + 1 and G(ig, %)
condition (4.1) is not satisfied “with a reserve” on the accuracy of
computation of the measure, that is,

(4.6) M (iy, )= min {m:
y:l(y)=I(x)

G(19, y)=m-1

ap (ys L(z)+m4-2) > 2-mtn}

where it can be verified that m= max G(, y) (the
y(y)=I1(x)

sum in (4.5) approximates P{ | 1—;1 I(y) = 1(x), G(io, ) 2 m + 1} with
surplus and to within 2~ (n*2)y e function H%(io, x) satisfies (4.1) by



110 AK. Zvonkin and L.A. Levin

construction. Further, if G(i,, %) + 1 satisfies (4.1), then

PUT, : Uy) = I(%), G(io, y) > m + 1}g 2-(m*2) (since G(io, v +1em+2

for those y) and, consequently, the inequality in (4.8) cannot hold for

any m, that is, G(io, %) = H?(igy, x). Now H?(i, x) has been constructed.
We shall show that the function

(4.7) F(2)= max [H2(i, z) = (i+1)]

ii(x)
is a universal test. The fact that (4.1) holds for it follows from the
n -
inclusion {z:l (x) =n, F(z)>m} = | {z: L (2)=n, H?(i,2) — (i + 1) » m}
i=1

and that H2(i, x) satisfies (4.1). Pinally, if G(x) is a P-test and i, is
its numeral (see Definition 0.2), then by construction

H?(ig, x) > G(io, x) ~ 1, Hence for words x of length at least iy we have
F(x) > G(ig, x) = (ig + 2), which implies that for all w € Q)

(4.8) F (0) > G (i, ©) = (io+2).

Comparing (4.4) and (4.8) we obtain (4.3).

DEFINITION 4.2. (Martin-L8f). We call a sequence & random with
respect to a measure P if it withstands any P-~test.

With this definition, all random sequences without exception satisfy
all conceivable effectively verifiable laws of probability theory, since
for any such law we can arrange a test that rejects all sequences for
which this law does not hold (in other words, the fact that a law is
violated is a regularity). A law is understood-to mean the assertion that
a certain event occurs with probability 1; examples of laws are the strong
law of large numbers and the law of the iterated logarithm for sequences
of independent trials, the recurrence property of Markov chains, and so on.

REMARK 4.2, According to the theorem just proved, if P is a com-
putable measure, then the randomness of a sequence ¢ is equivalent to the
fact that ®» withstands a universal P-test. Thus, for any computable meas-
ure the non-randomness of a sequence can be established effectively.

REMARK 4.3. 1In what follows it will be convenient for us to use a
“monotone ” universal test, that is, one for which x C y implies that
F(x) € F(y). It is easy to obtain it from the constructed test by putting

(4.9) F' () =max F (x) ).

yCx
In what follows we shall always assume that the universal test is of this
form.

Above we have introduced the concepts of a test of randomness, of a random
sequence, of a universal test (and we have proved a theorem on its existemce for
the case of computable measures) for objects of the simplest type, namely elements
of 0. However, the constructions of Martin-L®f can also be carried out in a more
general case. Let T be a topological space with a countable base of open sets x;
(i=1, 2, ...), and let P be a measure on the O -algebra of Borel subsets of T.

1 Here it is obvious that (4.1) is not violated since

sup £ ((w)n) == sup ¥ ((w)n).
n T



The complexity of finite objects 111

It will be convenient for us to assume that the elements of the base are numbered
in such a way that for any number n of a certain element x of the base we could
effectively find a sequence of numbers larger than n that are the numbers of ele-
ments of the base whose union is x (for example, we could find another number,
larger than n, of x),1 obviously, such a condition is no restriction of generality,
since any enumeration can be altered to an enumeration having this propgrty: re-
place the (old) number : of each element by the (new) number (2i + 1).2

(=1, 2, ...). We say that an element () € T is given if we are given the not
necessarily monotone sequence of all numbers i such that & € x;, A general recur-
sive function F(n) is called a P-test if

(4. 10 Py U In} < 2-m.

n: F(n)y=m

We define the value of the test F at an element &) € T to be

(4:11) F (o= sup F(n);

n: (OExn

the measure P is called computable if for any finite collection of numbers i, and
a number n there is an algorithm computing P{ l/xik} with an accuracy of 277,
k

PROPOSITION 4.1. For any computable measure P there exists a universal
P-test (the definition of a universal P-test is the same).

DEFINITION 4.3, An element & € T is called P-random if F(l) < @ for
any P-test F.

Obviously, for computable measures this is equivalent to the value of a
universal test being finite at .

Thus, the concept of a random object has a very general character. Interesting
examples of this are the concepts of a random vector, a random element of any
function space (of a random process), and so on.

We say that two bases are equivalent if for any number i of an element x of
one base one can effectively obtain a sequence np of numbers of elements of the
other base whose union is x.

PROPOSITION 4.2. The property of an element W € T of being P-randonm
(P is not necessarily computable) is invariant under replacement by an equivalent
base.

REMARK 4.4. If we go over to another enumeration that is non-computably
related to the initial one, then we can obtain an inequivalent base. Here the
class of random elements can be changed. Example: let Y € () be a random sequence;
we renumber the binary words x (they correspond to elements f} of the base) so
that the set R of numerals of the fragments of Y becomes solvable, and their
length remains a computable function of the numeral, Obviously, the test F(n)
that is equal to the length of x if n € R and equal to zero otherwise, rejects Y.
This example shows that the totality of random elements does not depend only on
the topologically homogeneous space () would be either all random or all non-
of a topological homogeneous space €} would be either all random or all non-
random), but also on other structures (for example, connected with the coordinate
system.

2. Proper sequences. THEOREM 4.2. (Levin).

a) For all computable measures P, any P-regular process is applicable
to all Perandom sequences.

by If P is an arbitrary measure (not necessarily computable), F is a
process, Q is the measure induced in F by P, and w is a P-random sequence
to which F is applicable, then its result F(w) is Q-randonm.

PROOF. a) Let F be a P-regular process that is not applicable to a
sequence Y, so that there exists a number (denoted by k) such that the

!  Omission of this condition would necessitate a more cumbersome definition of

of a test.
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length of F(Y) does not exceed k. This property of our sequence is unique,
because the P-measure of such sequences is zero. Hence it is easy to con-
struct a P-test that rejects all sequences ® such that F(w) has length at
most k. This test acts on the word x as follows: it selects the fragment
(%), of maximum length such that I(F((x),)) < k, then it computes an ap- -
approximation (with excess to within 2'“")) of the measure of those
sequences & for which [(F((W),) < k, and it gives as its value for x the
integral part of the negative of the logarithm of this measure. Obviously,
the value of the test for the words (Y), tends to infinity. The reader can
easily verify that conditions a) and b) of Definition 4.1 are satisfied.

b) Suppose that a Q-test U(x) rejects the sequence p = F(w), and that
G is a general recursive process equivalent to F (see Remark 3.2). Then the
the P-test

(4.12) V (2) =U (G (z))

(conditions a) and b) of Definition 4.1 are easily verified) rejects w,
i.e. w is not P-random.

DEFINITION 4.4. We call a sequence proper if it is random with
respect to a certain computable measure.

All sequences @& with solvable S, are proper. It is easy to show that
an example of an improper sequence is any sequence & whose S, is the
domain of definition of a universal partial recursive function.

THEOREM 4.3. (Levin). Any proper sequence is either computable or
algorithmically equivalent® to a certain L-random sequence.

PROOF. Let Q he a computable measure with respect to which our
proper sequence  is random. We show first of all that & cannot belong to
an interval [T', T”) of Q-measure zero (see Diagram 3). More precisely,
there is not a single Q-random sequence in the whole of [T’, T”]. For
this purpose we construct a Q-test that rejects all sequences from this
interval. Let ¢ be a rational number inside the interval. On the word x of
length n our test takes as its value the largest number m for which

(4.13) S ag (g, 2n) < 2=,

where the sum is taken over all words y of length n lying between the words
x and (0), inclusive. Conditions a) and b) of Definition 4.1 are trivially
verified, and this test is obviously the required one, because for any
sequence B from [T', T"] the Q-measure of all sequences lying between 0.
and B is zero, and the sum on the left-hand side of (4.13) is the approxi-
mation of this measure (with surplus) to within 2°". That is, the sum
tends to zero as n > o and consequently, the value of the test for (B) .
tends to infinity as n -» .

If w is not computable, then, since it does not lie in an interval of
type [T’, t"], the inverse G of the process F, where F induces Q from L
(see Theorem 3.1 b), is applicable to it; we write G(&) = 5. The process
F is applicable to &, since it can only be inapplicable to sequences that
map into binary rational points (and & is not a binary rational, because

1 Two sequences &' and W' are called algorithmically equivalent if there exist
two processes F and G such that F(®W’) = ©” and G(W") = ©’.
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it is non-computable). F is also applicable to sequences of type p which
are the image under g of the whole interval (see Theorem 3.1b and Diagram
3), and w £ [T', T"). Thus, © and 8 are algorithmically equivalent.

It remains to show that & is L-random. Let U be a universal L-test.
Then the Q~test V(x) = U(G(x)) (conditions a) and b) of Definition 4.1 are
easily verified) rejects all sequences for which the G-results are not
L-random; if & is not L-random, V also rejects w, that is, ® is not Q-
random, which contradicts our assumption,

3. A universal test and complexity. As Theorem 4.3 shows, the study
of sequences that are random with respect to an arbitrary computable
measure leads to the study of sequences that are random with respect to
the uniform measure. We call such sequences simply random.

A universal test, if it works on all longer fragments of a sequence,
will eventually discover all regularities occurring in the sequence, How-
ever, insofar as the universality of the test only appears in the limit,
it will only find certain regularities that are concentrated in the initial
fragment of the sequence, when it investigates a longer fragment. Then the
test takes a small value k on a certain word x, and takes a value n> k
on any sufficiently long extension of x. It is clear that in this case all
these n bits of regularity are defined by x itself and are concentrated in
it. We denote by F(x, n) the minimum value of the universal test on words
of length n beginning with x. Letting n tend to infinity, we get the
quantity of all regularities occurring in x:

(4.14) p(x)=lim F (z, n)1)

N>

(according to Remark 4.3, lim F(z, n)==sup F (z, n)). Obviously (by

7->00 n—o0

(4.1)), we always have p(x) < l(x). The quantity Il(x) — p(x), that is, the
number of signs in x minus the number of regularities in it, is very simil-
ar to complexity as regards its own properties (because of the presence of
regularities, these are parasitic signs in the recorded word). It is not
computable (since p(x) is not computable), but it can be estimated from
above with.arbitrary exactness by the function l(x) ~ F(x, n) (see Remark
4.3 and Theorem 1.5 b). The construction of a universal test is similar to
that of an optimal partial recursive function; the portion of words on
which l(x) — p(x) takes values significantly less than l(x) is small, etc.
It turns out that the quantity l(x) - p(x) and K(x) are also numerically
very close.

THEOREM 4.4. (Martin-L8f).

(4.15) [{I(x) —p(2)] — K (z) | < 4L (1 (z)).
PROOF. Let I(x) - p(x) < a, or p(x) > l(x) — a. This means that on

all sufficiently long extensions y of x we have F(y) > I(x) - a, where F
is a universal test. From (4.1) it follows that

1 We would remind the reader that we are only considering those regularities

which can be demonstrated algorithmically. If p(x) < m then there exists an
infinite sequence W € T} in which the universal test discovers at most n
regularities. Since the universal test finds all regularities in the limit,
there are no other regularities in W, which means there are none in x, either.
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L{U Ta:l(z)=1U(x), p(2) 2 1(2) —a} < L{U Ty F (y) > | (x) — a} 2 (x)4a,

and hence the number of words z such that [(2) = l(x) and p(2) > W{2) - a
is at most 2%, and the collection of such z is enumerable without repete
ition (see Theorem 0.4). Thus, to find x it is sufficient to give as
information the numbers [(x), a and m, where m is the number of x (in order
of enumeration) among words z with [(2) = [(x), p(2) > I(z) - a (so that

n £ 2%. This same information can be written in one word: l(x)am. Hence
K (z) < (I (@) am) X 2L (1 () + 21 (@) + L (m) <a + 4L (1 (z))

(because a £ l(2)). This inequality holds for all a» Il(x) - p(x), so that
Kix) X Ux) - p(x) + 41U x)).

Now we prove this inequality in the opposite direction. For this pur-
pose we construct a test selecting the regularity that consists in the
fact that the complexity of a word differs considerably from its length
(this is indeed a regularity, because there are few such words -~ see
Theorem 1.4 b). We take the function F(t, z) approximating the complexity
from above (see (1.16)). Then the required test is the function
(4.16) Gy)= [Jhax =221+ H (), @)l
This function takes values at least m only on those sequences t for which
there exists one i such that K((#);) € i « 2 = 2I(i) - m. By Theorem 1.4Db
it follows that the measure of these sequences does not exceed

00

Vo 9y~ m — - 1 _mey T3 -m

ZZ @ L2 D) =2 T2,
(| i=1

that is, G(y) satisfies (4.1). The fact that G is general recursive is

obvious.

COROLLARY 4.1. For any random sequence® ®
(4.17) K ((0)n) = n —4L(n)

COROLLARY 4.2. A sequence with enumerable S, cannot be random
(with respect to L).

4. An example of a random sequence. For more complex sets S, the
situation is different.

THEOREM 4.5. (Martin-L8f). There exists a random sequence & with
respect to L with a set Su of rank 2 according to Kleene’s classification
(that is, given by an arithmetical predicate with two quantifiers).

PROOF. Let A be the set of words having arbitrarily long extensions
on which the universal test F takes values not exceeding 1. A is non-empty,

As is easy to see from the second part of the proof of Theorem 4.4, 41(n)
can be replaced by 21(n) and, in general, by an arbitrary function F(n)

w
such that the series 3 2°F(" converges computably fast (for example,
n=1
F(n) = 1(n) + 21(1(r)). See also Footnote 2 on p. 98.
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since L{w: F(w) > 2} = 1/4. Obviously, A € A, and if x € A, then either
20 or x1 (or both) belong to A. We define a sequence ® by induction:

*{0 if 0¢4,

@i=11 ir OgA4,

( { (©),0 if (0),0€A4,

D= @l i (@ 0gA (hence (o), 1 A).

Clearly ® is random, since F() £ 1, We show that © is of rank 2. To
do this we have to construct a solvable predicate R(n, k, z) such that the
predicate

Pn)y~VEk3zR(n,k, z)

characterizes S,. To construct R(n, k, z) we note that (&), is the small-
est word of length n belonging to A. Therefore the required predicate
R(n, k, z) is satisfied by definition if

1) 2z =~ xul, where x, u, ! are words satisfying the following condi~
tions:

2} I(x) = n; the last digit of x is 1;

3) x Cu, F(n) <1, where F is the universal test;

4) I > n and for all pairs of words y, v of lengths n and I, respect=
ively, and such that y C v and y C x, we have F(v) > 1.

Theorem 4.5 and Corollary 4.1 make more precise the assertion on the
existence of maximally complex sequences of rank 2 that was stated on
p. . DOf course, the fact that the sequence characterizes a predicate
with two quantifiers can be regarded as a regularity. However, it is quite
impossible to detect this regularity, and in all algorithmic experiments
this sequence is indistinguishable from the remaining mass of random
sequences.

§5. The concept of the quantity of information

1. Definition and simplest properties. The complexity K(x) intuitive-
ly represents the quantity of information necessary for the recovery of a
text x. Conditional complexity K(x ’y) intuitively represents the quantity
of information that it is necessary to add to the information contained in
the text y, in order to restore the text x. The difference between these
quantities is naturally called the quantity of information in y about x.

DEFINITION 5.1. (Kolmogorov). The gquantity of information in y
about x is

(5.1) I(y:x)=K(zx)—K (z]y).
REMARK 5.1,

(5.2) I(x:y) ¥ 0,

{5.3) [T (z:2)—K(3)| 0.

PROOF . We prove (5.2). Let F(p, x) = F(p) (see (1.9)). If
F&(poy = y and K(y) = l(po), then since F?(po, %) = y,
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K(ylz) X Kex(y]a)=K(y).

We now prove (5.3). Let F?(p, %) = x. Then also F?(A, x) = x, hence
K(xl xy < Kp2(x Ix) = [(A) = 0. Noting that I(x: %) = K(x) = K(x |x) we
obtain the required result.

The following theorem establishes the link between the definitions of
quantity of information due to Kolmogorov and to Shannon (more precisely,
between the complexity of a word in the sense of Kolmogorov and the
entropy of frequency distribution in the sense of shannon). It turns out
that Shannon’s entropy is simply the coefficient of the linear part of
one of the partial complexities.

THEOREM 5.1. (Kolmogorov). Let r be a number and suppose that a
word x of length i.r consists of i words of length r, where the kth word
of length r occurs in x with the frequency qp (k=1, 2, ..., 2N). Then

(5.4) K (@) < i (H (n) (i),
where

27‘
(5.5) H () = ——ka qr log, qp

and

“(i)zcr—lg—ﬂ) npu i —s oo .

In the general case, a closer link between entropy and complexity can-
not be established. This is indeed natural, since entropy is adapted for
studying texts having no regularities other than frequency regularities,
that is, for sequences of results independent of the tests. In this
special case, we can establish a complete link between the quantities in
question (this is done in Theorem 5.3). '

PROOF OF THEOREM 5.1. Let x be the mth word in order of mag-
nitude consisting of i words of length r that occur s, times in it, res-

2’/‘
pectively (Qk::j%Ly 23 sk==i) . To find x it is sufficient to give as the
R=1

information about it the words m, s;, ..., S,re All this information can

be written in a single word: p = 5y S2.0. S,rim.

Suppose that the function F'(p) obtains from this word the word x.
Then K(x) X 21(s1) + ... + 2l(s,,) + l(m). We note that m cannot exceed
the number of words satisfying the conditions imposed on x, so that

i!

Si! 821,.!

m< Furthermore, s, < i. Hence

(5.6) K (2) < 2740 (1) + 1 (——) :
2"

On
Using Stirling’ s formula n!=1"2an (fi)neizn where l@nl <1, to
e r

estimate m we obtain (5.4).

2. The commutativity of information. The classical Shannon quantity
of information in one random variable about another satisfies the condi-
tion of commutativity, that is, J( &: n) = J(Nn: &). Generally speaking,



The complexity of finite objects 117

there is no exact equation for the Kolmogorov quantity of information in
one text about another.

EXAMPLE 5,1. By Remark 1.1 for any l, there exists a word x of
length lo such that K(x | l(x)) > U(x) - 1.

By Theorem 1.4b there exist arbitrarily large lo such that K(lo) >
> l(ls) -~ 1. For such a chosen pair of words x and lg (I(x) = lp) we have

(5.7) T(a:l) =K (ly—K (I 2) 3= L (L),
(5.8) I(l:2)=K (2)—K (2| 1) < lo—ly = 0.

Thus, in certain cases the difference between I(x: y) and I(y: x) can
be of order of the logarithm of the complexities of the words in question.
However, as Levin and Kolmogorov have shown independently, this order is
limited for it and, consequently, if one neglects quantities that are
infinitely small in comparison with the information contained in both
words, then I(x: y) is commutative all the same.

THEOREM 5.2. (Kolmogorov, Levin).?

a) [ (@:p)—1 (y:2)| < 120 (K (am)),
B [ I(z:y)— K (»)+K (y) — K (29)]] < 121(K (zy)).
PROOF. a) We only prove the inequality in one direction:

(5.9) I(z:y) = 1 (y:2)—120(K (zp)).

The reverse inequality follows from it if by interchanging x and y.

We construct two auxiliary functions. Suppose that the partial recur-
sive function F*(n, b, ¢, %) enumerates without repetition words y such
that K(y) < b, K(x ’ v¥) € ¢. The existence of such a function follows from
Theorem 0.4 and Theorem 1.6 (taking into account Remark 1.3). We denote
by j the number of such y (;j depends non-computably on x, b, c). Then F*
is defined for all n £ j and only for them. Consequently, the predicate
II(b, ¢, d x) asserting that the number j defined above exceeds 2d s
obviously equivalent to the assertion that F4(2d, b, ¢, x) is defined,
and hence is partial recursive. By analogy with F* there exists a function
G®(m, a, b, c, d) that enumerates without repetition all words x such that
K(x) < a, TI(b, ¢, d, x).We denote by i the number of these words x (i
depends non-computably on a, b, ¢, d). Obviously, G%(m, a, b, ¢, d) is
defined for all m £ : and only for them.

Let us proceed with the proof. Let x and y be words with K(x) = q,
Ky = b, K(x l ¥) = c. Then I(y: x) = a—c. Further, as was defined above,
j is the number of words y’ such that K(y') < band K(x|y") < ¢ (j de-
pends on %, b, ¢), and i is the number of words x' such that K(x') € a

and the corresponding number j' > 2l(j), 1t is easy to see that i.90()
does not exceed the number of pairs (xz’, y') such that K(y') < b,
Kix' ly') < ¢, which in its turn does not exceed ab*e*2 yence

(5.10) L)+ L)< be.

By making more accurate estimates, we can improve them slightly. For example,
121(K(xy)) can be replaced by (5 + €)I(K(xy))., It is not known whether the
estimate can be reduced to I{K(xy)).
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Since the word y is given as the value of F*(n, b, ¢, x) for some n< j,
we see that

(5.11) K (y]2) < L(ben) < 20(b)+2L(c) + L (j).

Further, since the word x is given as the value G%(m, a, b, ¢, d) for
d= 1{(j) and some m < i, we have

(5.12)  a= K (z) < l(abedm) < 21 (@) + 2Ub) + 21 (c) + 2L (d) + 1 (i).

Prom (5.10) - (5.12) and also from the fact that each of the quantities
Itay, U(bBY, l(c), U(d) = L(I(j)) does not exceed I(K(xy)), it follows
easily that K(y ‘13 <X b+ c~a+12l(K(xy)). This implies (5.9).

b) Obviously, K(xxy) <X K(xy); this implies, by part a) of this theorem,
that

|1 (xy @) — I (z:2y) | < 120 (K (2p)),
that is,
| K (zy) — K (xy | ) — K (2) + K (x| 2y) | < 120 (K @),
or
| [K (2y) —K () —K ()] + K () —K (2y|») —K (=

zy)| < 121 (K (zy)),

from which we obtain assertion b) of Theorem 5.2 noting that K(x l]&)‘><0
and | K(7y | )y - Kty | »| Xo.

3. Independent trials. The connection with the (probabilistic
definition of information. Now we can finally explain the connection
between the probabilistic and algorithmic definitions of quantity of in-
formation. We recall the former in a form convenient for us (see [39]).
If & is a random variable taking a finite set of values x; with probabil-
ities g, then we put

(0-13) ][(g)::"'z,‘hIOgZQL

Let £ and W be two random variables with finite sets of values defined on
the same probability space. Then the quantity of information in & about v
is equal to

(5.14) JE:)=HE+H)—HE ),

where (£, W) is a random vector. If £ and W are random variables with
values in €} (see, however, small print on pp. 110-111), then we put

(9.15) J(E ) =1mJ ((E)n; (Y)n)
n—>roc
(note that here lim coincides with sup). Suppose that we have two such
n- oM n

random variables, jointly distributed according to the measure Q (not
necessarily computable). We consider the sequence of independent random
vectors (&, W' (i =1, 2, ...), each of which is distributed according

to Q. These conditions (independence and identity of distribution accord-
ing to Q) uniquely define the joint distribution P of the vectors (&, w).
We call a sequence of pairs of infinite binary sequences (0, P)' a
sequence of independent trials of the random variables & and W random with
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respect to P. We denote by o} and Bi the words (oY), (¢%, ... (a%), and
(BYn (B?p «.. (BY), respectively. ,
THEOREM 5.3. (Kolmogorov). If (a, P)' is a sequence of independent
trials of the random variables & and v, then
. . [(ail :Bil
(5.16) lim lim 2P0 g (&),

Nn->00 {->00

PROOF. The assertion of the theorem follows from the equation

. T (o : Bl
(5.17) tim 2B ()., ().
To prove it we note that (5.8) implies
T (ah 1 By A (ah)
i

= lim -
t

i—s00

lim

i—>oc0

-ty igpi

4 gim 2By K (onbr)
>0 U i—oo L

By definition,

J((E)n: (w)n) =H ((E)n) +H ((lp)n) —H ((©)n, (lp)n)

Hence it is clear that the assertion of the theorem is equivalent to the
following,

Let B;, f,, ... be a sequence of independent identically distributed
random variables taking as values binary words of length r with prob-
ability 9y k< 27, and let Y be a binary sequence partitioned into words

of length r, which is random with respect to the measure corresponding to
the distribution of 8,, 8,, ... . Then

_ . K,
(5.18) lim ————— = I (q,).

i
We prove (5.18). Let x be a word of length i.r consisting of i words of
21’
length r occurring in it s, times, respectively (kﬁllsk = 1). The set of
numbers Si, ..., S,r is called the set of frequencies of x. We denote by
h(x) the logarithm of the quantity of words having the same set of fre-
quencies as x, that is,

hr) =1 (57 ) -

&

Our sequence Y is random with respect to the measure for independent
trials and in each trial the results are obtained with fixed probabilities
qp- Using the strong law of large numbers it is easy to construct, for any
£>0, k<27, a test rejecting all sequences that have infinitely many
fragments in which sp/1 differs from g, by more than €. Since Y is random
and, consequently, withstands these tests, the limits of sp/i for its
fragments are exactly equal to gp. From this and Stirling's formula it
follows that for the fragments of v,

tim Wi ((VZ"’") — H (q1).

1~ 00

We show that
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h (('Y)i - r) —K ((Y)i~ r)

[4

lim =0,

From Theorem 1.3 we have K(x |5, eos 8,r) X h(x), hence
K(x)=$ h(x) + 2r+1. I¢i) (r is fixed); consequently
By ) — KAy )

lim > 0.
S L

It remains to prove that
k(). — K (),

(5.19) hm l(('Y)l.;) l ((Y)'L-r) <\0'
i—o0

For this purpose we note that since the random variables Gj are independent
and identically distributed, all words with the same set of frequencies
S1s -«+ S,r are equally probable (their probability being equal to

qfi .o qi%r), By Remark 1.1 it follows that the quantity of words x with
a fixed set of frequencies s;, ... s, such that K(x) < h(x) ~ m does not

exceed 2" Consequently, the measure of the set of sequences that start

with such words does not exceed 2°™, The measure of the set of sequences
that start with a word having the set of frequencies sy, ..., s,r and
satisfying the condition

(5.20) K@) <h(x)y—2™1@)—m (i=s1+ ...+ 85),

-(2rtiy(i
does not exceed 2 (2" 11(‘)+m). The measure of the set of sequences
having any fragment satisfying condition (5.20) does not exceed

2 2_(2T+1l(sl+---+32r)+m)<2_m.

(S1y «-vs s,)r)
Therefore, the test that gives for « the supremum of the quantity
h(x) —- 2" 1(1(x)) — K(x) on all its fragments, satisfies (4.1). It is
not difficult to construct its algorithm (this is done as in the second
part of the proof of Theorem 4.4). Obviously, this test rejects all
sequences that do not satisfy (5.19), and since Y is random, it withstands
this test. Hence (5.19) holds as required.

Theorem 5.3 does not only hold for the case of independent trials, Schwartz
has raised the question whether a similar fact occurs for arbitrary ergodic
stationary processes. A positive answer to this question is given by the follow-
ing proposition.

PROPOSITION 5.1, (Levin)., Let{&;} (i=1, 2, ...) be any ergodic

stationary random process with values &; € ()}, P a measure on its trajectories
we® given by this process, and H its entropy: We denote by (X.;;(h)) the word

(EDVnEdn vov Bidpe Then for P-almost all ©
K (ak (@)
i

lim h}n H.
nN—>oo 1—0o
The requirement of ergodicity is not essential here. The only difference is that
in the case of a non-ergodic process, the limit under discussion is not a constant
H, but a function f(®) that is measurable with respect to the O <dalgebra of in-
variant sets of trajectories. It is easy to describe this function. Each invariant

1 Por the definition of entropy of an arbitrary stationary random process, see

(40].



The complexity of finite objects 121

set of trajectories A, P(4) > 0, can be regarded as an original stationary random
process (distributed according to the corresponding conditional probabilities).

We denote by h(A) the entropy of this process, It is easy to see that the function
P(AY.h(A) is additive, Then it has a Radon-Nikodym derivative which is measurable
with respect to the O-algebra of invariant sets, This is the required function
f(W).

Index of terms and notation

A priori probability 104 -, result of applying p. to
Code 88 W 99
Complexity 88 —~, speed of applicability
-, with respect to F* 88 of p. tow 100
-, conditional 88 ~, universal 99
- -, with respect to F* 88 -, weak tabular 99
-, of solution 94 -es, equivalence of 99
-, with respect to G° 94 Quantity, of information in
Enumeration of S* 87 one random variable
Fragment (n-fragment) 85 about another 118
Function, enumerating a set 87 ~ ~, 1n one word about ‘
~— , without repetition 87 another 115
-, general recursive 86 -, of operations 87
-, optimal 88, 89, 94 Sequence, characteristic for
~, partial recursive 86 for a set 85
—, primitive recursive 86 -, computable 88
-, universal partial re- -, not withstanding a test 109
cursive 86 -, proper 112
Length, of a word 84 -, random (P-random) 110, 111, 113
Majorant, of complexity 93 -, sufficiently complicated o7
Measure, computable 100 -, universal 97
-, semi=computable 102 -5, algorithmic equivalence of 112
-, uniform 100 Set, enumerable 8"
-, universal semi- -, hyperimmune 107
computable 103 -, immune 107
Numeral, of a function with -, simple 92
respect to [m*? 87 -, solvable 88
—, of an n-tuple of numbers 87 Task, solvable by means of
Predicate, general recur=- a probabilistic machine 106
sive 86 Test (P-test) 108, 110
-, partial recursive 86 -, rejecting & 109
-, primitive recursive 86 ~, universal 109
Programme 88 Word 84
Process 99 op(x, n) 100
-, applicable to w 99 Bp(x, t) 103
-, growth of 100 % 85
-, rapidly applicable to & 100 d(A) 84
—~, rapidly growing 99 Fé 88
-, regular (P-regular) 100 F3 89
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G3 94 KR( %) 94 pntt 87
H(t, x) 92 KRp2(2) 94 Q 85
H(E) 118 A 84 o 85
I(x: 9 115 I(x) 84 Ej 84
J(&:in) 118 ™ (2) 84 c 85
Kr1(2) 88 To(2) 84 < 85
K(%) 89 R 103 = 85
Kz |y 89 S 84 = 85
Kra(z|y) 89 Se 85

Guide to the literature

The literature is referred to by section. The papers [5], [6]. [ll]. [34] and
texthooks [1], [37] seem especially useful to us for the relevant sections,

Preliminary remarks: [1 -[4]

81 : 5] -[10]

§2 . [11)- 22]. (23]

§3 : 8}, 23 -[25}

§4 : 6], (7], [10], (o2}, [26]-(36] (the articies [27]-[32] are

concerned with the concept of von_Mises collective).
§5 : (5]-[7), [37]-[41] (the articles (37]-[40] are concerned

with the classical concept of information).

In our paper we do not touch on questions connected with estimating the
number of steps of an algorithm and the necessary size of memory, nor those con-
nected with other aspects of the complexity of calculation. The reader who is
interested in these questions can turn to the papers [42], [43] (where he will
also find more references).

Our bibliography does not pretend to completeness. However, we have tried to
include in it the principal publications supplementing the contents of our article,
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