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Abstract. We present a model of (modified) gravity on spacetimes with fractal structure
based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese
Cosmology models. As the action functional for gravity we consider the spectral action
of noncommutative geometry, and we compute its expansion on a space obtained as an
Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information
from the zeta function of the Dirac operator of the spectral triple, we show that the leading
terms in the asymptotic expansion of the spectral action consist of a zeta regularization of
the divergent sum of the leading terms of the spectral actions of the individual spheres in the
packing, which accounts for the contribution of the points 1 and 3 in the dimension spectrum
(as in the case of a 3-sphere). There is an additional term coming from the residue at the
additional point in the real dimension spectrum that corresponds to the packing constant,
as well as a series of fluctuations coming from log-periodic oscillations, created by the points
of the dimension spectrum that are off the real line. These terms detect the fractality of
the residue set of the sphere packing. We show that the presence of fractality influences
the shape of the slow-roll potential for inflation, obtained from the spectral action. We also
discuss the effect of truncating the fractal structure at a certain scale related to the energy
scale in the spectral action.

1. Introduction

1.1. Fractal structures in cosmology. The usual assumptions of isotropy and homogene-
ity of spacetime would require that the matter distribution scales uniformly in space. Large
scale violations of homogeneity were discussed, for instance, in [47], while the idea of a frac-
tal distribution of matter, scaling with a fractal dimension D 6= 3, was suggested in [46].
More recently, a growing literature based on the analysis of redshift catalogs at the level
of galaxies, clusters, and superclusters has collected considerable evidence for the presence
of fractality and multifractality in cosmology. We refer the reader to the survey [53] for a
detailed discussion, see also [28]. While there is no complete agreement on the resulting
dimensionality, partly due to difficulties in the interpretation of redshift data in estimating
co-moving distances, multifractal models in cosmology have been widely studied in recent
years. Cosmological models exhibiting a fractal structure can be constructed, adapting the
original “swiss cheese model” of [47]. The resulting models are usually referred to as Packed
Swiss Cheese Cosmology (PSCC), see [44] for a recent detailed survey. The main idea in the
construction of swiss cheese models of cosmology is to have spacetimes that are locally inho-
mogenous but appear globally isotropic and that satisfy everywhere the Einstein equation.
In the original construction of PSCC models, in a region defined by a standard Friedmann–
Robertson–Walker (FRW) cosmology, several non-overlapping spheres are inscribed, inside
which the mass is contracted to a smaller higher density region, hence creating inhomo-
geneities. The solution inside the ball is patched to the external FRW solution along a
surface with vanishing Weyl curvature tensor (which ensures isotropy is preserved). A swiss
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cheese type model based on the Tolman metric was developed in [49], [50]. In Packed Swiss
Cheese Cosmology models, a configuration of such spheres is chosen so that they are tangent
to each other and arranged into a higher dimensional version of the Apollonian packing of
circles. In a variant of this model, see the discussion in §8 of [44], instead of compressing
the matter inside each spherical region, at each stage of the construction process the matter
is expanded to lie along the spherical shell, so that one ends up with a model of gravity
interacting with matter, supported on the resulting fractal. The point of view we follow
in this paper is similar to the latter: we consider spacetimes that are products of a time
direction and a fractal arrangements of 3-spheres (or of other spherical space forms). We
develop a model of gravity on such Packed Swiss Cheese Cosmology (PSCC) models using
the spectral action as an action functional for gravity.

1.2. Spectral triples. In Noncommutative Geometry, the formalism of spectral triples ex-
tends ordinary Riemannian (and spin) geometry to noncommutative spaces, [16]. This ap-
proach encodes the metric structure in the data of a triple ST = (A,H, D) of an involutive
algebra A (associative, but not necessarily commutative), with a (faithful) representation
π : A → B(H) by bounded operators on a Hilbert space H, and with the additional structure
of a Dirac operator D, namely an unbounded, self-adjoint operator, densely defined on H
with the properties:

(i): (I +D2)−1/2 is a compact operator
(ii): for all a ∈ A, the commutators [D, π(a)] are densely defined and extend to bounded

operators on H.

The metric dimension of a spectral triple is defined as

(1.1) dST := inf{p > 0 | tr((I +D2)−p/2 <∞}.

A spectral triple is said to be finitely summable if dST <∞.

The notion of dimension for a spectral triple is more elaborate than just the metric di-
mension. Indeed, a more refined notion of dimension is given by the dimension spectrum,
ΣST ⊂ C. This is a set of complex numbers, defined as the set of poles of a family of zeta
functions associated to the Dirac operator of the spectral triple. In the case where KerD = 0,
the zeta function of the Dirac operator is given by ζD(s) = Tr(|D|−s). Let δ(T ) = [|D|, T ]
and let B denote the algebra generated by the δm(π(a)) and δm([D, π(a)]), for all a ∈ A,
and m ∈ N. One considers additional zeta functions of the form ζD,a(s) = Tr(a|D|−s), for
arbitrary a ∈ A and ζD,b(s) = Tr(b|D|−s), for arbitrary b ∈ B. The dimension spectrum is
the set of poles of the functions ζD,a(s) and ζD,b(s). It typically includes other points, in
addition to the metric dimension, and may include real non-integer points as well as com-
plex points off the real line. Spectral triples associated to fractals typically have non-integer
and non-real points in their dimension spectrum. In the following, we will use the notation
Σ+
ST := ΣST ∩ R+ for the part of the dimension spectrum contained in the non-negative

real line. Geometrically, the dimension spectrum represents the set of dimensions in which
the space manifests itself, when viewed as a noncommutative space. Even in the case of
an ordinary manifold, the dimension spectrum contains additional points, besides the usual
topological dimension. The non-negative dimension spectrum Σ+

ST , in particular, describes
the dimensions that contribute terms to the action functional for gravity, as we discuss more
in detail in §1.3 below, while the points of the dimension spectrum that lie off the real line
contribute fluctuations in the form of log oscillatory terms, as we will see in §3.1. We say
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that the dimension spectrum is simple if the poles are simple poles. Spectral triples with
simple dimension spectrum are sometimes referred to as “regular”. However, the terminol-
ogy “regular spectral triple” is often used in the literature with a different meaning, related
to “smoothness” properties (see for instance [48]). Thus, in the following we will use the
terminology “simple dimension spectrum” to avoid confusion.

A compact spin Riemannian manifold M can be described by a spectral triple STM =
(C∞(M), L2(M,S), /DM), by taking A = C∞(M), the algebra of smooth functions, H =
L2(M, S) the Hilbert space of square-integrable spinors, and D = /DM the Dirac operator,
which is a self-adjoint square root of the (negative) Laplacian of the manifold. The metric
dimension of STM agrees with the dimension of M , by Weyl’s law for the Dirac spectrum.
One can also recover the geodesic distance on M from STM : for any two points x, y ∈M

dgeo(x, y) = sup{|f(x)− f(y)| | ||[D, π(f)]|| ≤ 1}.

A reconstruction theorem [17] moreover shows that the manifold M itself can be recon-
structed from the data of a commutative spectral triple that satisfies a list of additional
axioms describing properties of the geometry such as orientability, Poincaré duality, etc.
The non-negative dimension spectrum Σ+

STM
consists of non-negative integers less than or

equal to dim(M) (see §2.9 for more details).

1.3. The spectral action as a model for (modified) gravity. The formalism of spectral
triples plays a crucial role in the construction of models of gravity coupled to matter based
on noncommutative geometry. The main ideas underlying the construction of these models
can be summarized as follows:

• The spectral action is a natural action functional for gravity on any (commutative
or noncommutative) space described by a finitely summable spectral triple.
• On an ordinary manifold, the asymptotic expansion of the spectral action recovers

the usual Einstein–Hilbert action of gravity, with additional modified gravity terms
(Weyl conformal gravity, Gauss–Bonnet gravity).
• In the case of an “almost commutative geometry” (locally a product M × F of an

ordinary manifold M and a finite noncommutative space) the model of gravity on
M × F given by the spectral action describes gravity coupled to matter on M , with
the matter content (fermions and bosons) completely determined by the geometry of
the finite noncommutative space F .

We refer the reader to the detailed account of the construction of such models given in
[11] and in Chapter 1 of [19]. For a finitely summable spectral triple, the spectral action
functional [8] is defined as

S(Λ) = Tr(f(D/Λ)) =
∑

λ∈Spec(D)

Mult(λ)f(λ/Λ)

where f is a non-negative even smooth approximation to a cutoff function and Λ is a positive
real number. As Λ grows, more rescaled eigenvalues of the form λ/Λ escape the cutoff of f
and the expression grows.

In the case of a finitely summable spectral triple with dimension spectrum consisting of
simple poles on the positive real line, the spectral action can be expanded asymptotically
for large Λ, [8]. The asymptotic expansion relies on the Mellin transform relation between
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the zeta function of the Dirac operator and the heat kernel. The asymptotic expansion of
the spectral action is then of the form

(1.2) Tr(f(D/Λ)) ∼
∑
β∈Σ+

ST

fβ Λβ

∫
−|D|−β + f(0) ζD(0),

where fβ =
∫∞

0
f(v) vβ−1 dv are the momenta of f , the summation is over the points of the

non-negative dimension spectrum Σ+
ST , and the coefficients are residues of the zeta function,

(1.3)

∫
−|D|−β =

1

2
Ress=β ζD(s),

representing the noncommutative integration in dimension β.

In the case of a 4-dimensional manifold M , one can write the asymptotic expansion in the
form [9]

Tr(f(D/Λ)) ∼ 2Λ4f4a0 + 2Λ2f2a2 + f0a4,

where the fi are momenta of the cutoff function f , with f0 = f(0) and fk =
∫∞

0
f(v) vk−1 dv.

Physically, the coefficients a0, a2 and a4 correspond, respectively, to the cosmological term,
the Einstein–Hilbert term, and the modified gravity terms (Weyl curvature and Gauss–
Bonnet) of the gravity action functional. In the case of an almost-commutative geometry,
the asymptotic expansion of the spectral action delivers additional bosonic terms, including
Yang–Mills terms for the gauge bosons, and kinetic and interaction terms for Higgs bosons,
and (non-minimal) coupling of matter to gravity (with the Higgs conformally coupled to
gravity). The fermionic terms in the action functional for gravity coupled to matter come
from an additional term not included in the spectral action, which accounts for the kinetic
terms of the fermions and the boson-fermion interaction terms, see [11], [19]. For the purpose
of the present paper, we are only interested in the gravitational terms, though couplings to
matter could also be included, by taking a product of the geometries we will be discussing
with a finite noncommutative geometry.

We will see in the next section that, in the case of the Packed Swiss Cheese Cosmology,
the spectral action has new contributions that arise from an additional point in the dimen-
sion spectrum that reflects the fractality of the model, as well as log-periodic oscillations
contributed by the points of the dimension spectrum that are off the real line.

1.4. Summary of results. The main new results in this papers are structured as follows.

In §2.1 we obtain an estimate, in the form of an upper bound, on the exponent of con-
vergence of the zeta function ζL(s) of the length spectrum of an Apollonian packing P of
3-sphere (Proposition 2.2), we describe the spectral triple of P (Definition 2.3), and we com-
pute the zeta function ζDP (s) of the Dirac operator of the spectral triple (Proposition 2.6),
in terms of the zeta function of the unit 3-sphere and the zeta function ζL(s) of the length
spectrum. We discuss the structure of the dimension spectrum (Lemma 2.7).

In §3, we use the results on the zeta function to obtain an expansion of the spectral action
functional. In §3.1 we discuss how the heat kernel expansion, and consequently the expansion
of the spectral action, is altered by the presence of complex points of the dimension spectrum
off the real line. For the case of a fractal geometry with exact self-similarity realized by a
single contraction ratio, we obtain an explicit form of the log-oscillatory terms coming from
the non-real points of the dimension spectrum, in the form of a Fourier series that converges
to a smooth function (Proposition 3.1). In §3.2 we discuss approximations by truncation of
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the Fourier series of the oscillatory terms. We then identify a set of four analytic conditions
on the zeta function ζL(s) of the length spectrum of the Apollonian packing (Definition
3.3), which ensure that the spectral action has an expansion where the oscillatory terms
can be approximated by a series of contributions from length spectra (fractal strings) with
exact self-similarity. The contribution from the real points of the dimension spectrum yields
gravitational terms as in the case of a 3-dimensional geometry, with an additional term
coming from the only real pole of ζL(s) at its exponent of convergence (Proposition 3.5). We
also compute the form of the expansion of the spectral action when taking a geometry that
is a product of the Apollonian arrangement P of 3-spheres with a compactified time axis
(Proposition 3.6).

In §4 we investigate the effect on the spectral action functional of a truncation of the
fractal structure at a certain energy dependent scale. We obtain estimates on the size of the
error term and its dependence on the energy Λ (Propositions 4.4 and 4.6).

In §5 we construct another model of fractal space, which allows for the presence of “cosmic
topology”. This is obtained by taking a Sierpiński fractal arrangement of spherical dodec-
ahedra and then simultaneously closing up all of them via the action of the icosahedral
group, obtaining a fractal arrangement of Poincaré homology spheres (usually referred to as
dodecahedral spaces in the cosmic topology literature). This is a simpler fractal than the
Apollonian sphere packing, since it has exact self-similarity with a single contraction ratio
(2 + φ)−1, where φ is the golden ratio. In this case we can compute more explicitly the
new terms that arise in the expansion of the spectral action, including the oscillatory terms
(Propositions 5.2 and 5.3 and Corollary 5.4).

In §6 we compute the effect of the additional terms in the spectral action expansion on
the shape of the slow-roll potential obtained by perturbing the Dirac operator by a scalar
field (Propositions 6.1 and 6.2).

2. Spectral triples and zeta functions for Packed Swiss Cheese Cosmology

2.1. Apollonian packings of D-dimensional spheres. Higher dimensional generaliza-
tions of the Apollonian packings of circles in the plane, consisting of “packings” of (D− 1)-
dimensional hyperspheres SD−1 inside a D-dimensional space RD, were variously studied,
for instance in [26], [30], [36], [40], [43], [51]. We recall here some useful facts, following [30].

A Descartes configuration in D dimensions consists of D + 2 mutually tangent (D − 1)-
dimensional (hyper)spheres. We write SD−1

a for a sphere of radius a. The curvature c = 1/a
is endowed with positive sign for the orientation of SD−1

a with an outward pointing normal
vector and negative for the opposite orientation. The curvatures of the spheres in a Descartes
configuration satisfy the quadratic Soddy–Gosset relation

(2.1)

(
D+2∑
k=1

1

ak

)2

= D
D+2∑
k=1

(
1

ak

)2

.

This relation can be formulated in matrix terms as ctQDc = 0, with c = (1/a1, . . . , 1/aD+2)
the vector of curvatures, and Qn the quadratic form determined by the matrix

QD = ID+2 −D−1 1D+21tD+2,
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where 1tD+2 = (1, 1, . . . , 1) and ID+2 is the identity matrix. The augmented curvature-center
coordinates of a sphere SD−1

a with center x = (x1, . . . , xD) in RD consist of a (D+ 2)-vector

w = (
‖x‖2 − a2

a
,

1

a
,

1

a
x1, . . . ,

1

a
xD),

where the first coordinate describes the curvature of the sphere obtained from the given one
by inversion in the unit sphere. The reason for the first coordinate is so that one can extend
unambiguously the augmented curvature-center coordinates to include the special case of
degenerate spheres with zero curvature (hyperplanes). Given a Descartes configuration of
spheres, one assigns to it a (D + 2) × (D + 2) matrix W whose j-th row is the vector of
augmented curvature-center coordinates of the j-th sphere in the configuration. The space
MD of all possible Descartes configuration in D dimensions is then identified with the space
of all solutions W to the equation

(2.2) W tQDW =

 0 −4 0
−4 0 0
0 0 2 ID

 .

The space of solutions MD is endowed with a left and a right action of the Lorentz group
O(D + 1, 1).

The D-dimensional Apollonian group GD is the group generated by the (D+ 2)× (D+ 2)
matrices Sj of the form

Sj = ID+2 +
2

D − 1
ej1

t
D+2 −

2D

D − 1
eje

t
j,

with ID+2 the identity, ej the j-th standard coordinate vector, and 1D+2 the vector with all
coordinates equal to one.

It is shown in [30] that in dimension D ≥ 4 the Apollonian group GD is no longer a
discrete subgroup of GL(D + 2,R) and its orbits on MD no longer correspond to sphere
packings. However, the dual Apollonian group G⊥D is a discrete subgroup of GL(D + 2,R),
and the Apollonian packings of (D− 1)-dimensional spheres we will be considering here are
obtained, as in Theorem 4.3 of [30], as orbits of the dual Apollonian group on MD. The
dual Apollonian group G⊥D is generated by reflections S⊥j of the form

(2.3) S⊥j = ID+2 + 2 1D+2e
t
j − 4 eje

t
j,

with ej the j-th unit coordinate vector. The matrix S⊥j implements inversion with respect
to the j-th sphere. The Apollonian packing is obtained by iteratively adding new Descartes
configurations of spheres obtained from an initial one by iteratively applying inversions with
respect to some of the spheres. When D 6= 3 the only relations in the dual Apollonian group
G⊥D are (S⊥j )2 = 1. Thus, the spheres added at the n-th iterative step of the construction of
the Apollonian packing are in correspondence with all the possible reduced sequences

S⊥j1S
⊥
j2
· · ·S⊥jn , jk 6= jk+1, ∀k,

acting on the pointW ∈MD that corresponds to the initial Descartes configuration. Clearly,
there are (D + 2)(D + 1)n−1 such sequences, hence the number of spheres in the n-th level
of the iterative construction is

Nn := #{SD−1
an,k

: fixed n} = (D + 2)(D + 1)n−1.

In the following, we will focus on the case D = 4, of Apollonian packings of 3-spheres.
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2.2. Lengths, packing constant, and zeta function. We proceed as in [12], [13] to
associate a spectral triple to an Apollonian packing PD of (D−1)-spheres in a D-dimensional
space. As above, let

(2.4) LD(PD) = {an,k, n ∈ N, 1 ≤ k ≤ (D + 2)(D + 1)n−1}
be the list (with multiplicities) of the radii an,k of the (D + 2)(D + 1)n−1 spheres SD−1

an,k
that

are added in the n-th stage of the iterative construction of the packing.
The packing constant (or exponent of the packing), σD(PD) of a packing PD of (D − 1)-

spheres is defined as the exponent of convergence of the series∑
n∈N

(D+2)(D+1)n−1∑
k=1

asn,k,

that is,

(2.5)

σD(PD) = sup{s ∈ R∗+ :
∑
n∈N

(D+2)(D+1)n−1∑
k=1

asn,k =∞}

= inf{s ∈ R∗+ :
∑
n∈N

(D+2)(D+1)n−1∑
k=1

asn,k <∞}.

For s > σD(PD), one defines the zeta function ζLD(s) as the sum of the series

(2.6) ζLD(s) =
∑
n∈N

(D+2)(D+1)n−1∑
k=1

asn,k .

The zeta functions ζLD(s), like the more general zeta functions of fractal strings considered
in [37], need not in general have analytic continuation to meromorphic function on the
whole complex plane, but there are a screen S, namely a curve of the form S(t) + it, with
S : R→ (−∞, σD(PD)], and a window W consisting of the region to the right of the screen
curve S in the complex plane, where ζLD(s) has analytic continuation. We refer the reader to
[37] for a more detailed account of screens and windows for zeta functions of fractal strings.

2.3. Packing constant and Hausdorff dimension. The residual set of an Apollonian
circle packing consists of the complement of the union of all the open balls consisting of
the interiors of the circles in the packing. It was shown in [4] that the packing constant σ2,
defined as in (2.5) is equal to the Hausdorff dimension of the residual set of the circle packing.
In the higher dimensional setting the problem of estimating the Hausdorff dimension of the
residual set of a packing of (D − 1)-dimensional spheres is much more involved, but there
are some general estimates, obtained in [38] and [32].

Consider the infimum of the packing constants over all packings PD,

σD = inf
PD

σD(PD).

Assuming all the spheres SD−1
an,k

in the packing are contained in the unit ball BD, and denoting

by BD
an,k

the D-dimensional ball with ∂BD
an,k

= SD−1
an,k

, the residual set of the packing is given
by

R(PD) = BD r ∪n,kBD
an,k

.
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Let dimH(R(PD)) denote the Hausdorff dimension of the residual set and

δD = inf
PD

dimH(R(PD))

the infimum over all packings of the Hausdorff dimensions. The upper entropy dimension
h+(R(PD)) of the residual set R(PD) is defined as

h+(R(PD)) = lim sup
ε→0

− logNε(R(PD))

log ε
,

where for a set X, the number Nε(X) counts the smallest number of sets of diameter less
than 2ε that cover X. The lower entropy dimension is defined similarly, with a liminf instead
of limsup. It is known that the entropy dimension provides an upper bound for the Hausdorff
dimension. Then we have the following estimates ([38] and [32]).

Proposition 2.1. The radii an,k of a packing PD satisfy
∑

n,k a
D
n,k = 1 and

∑
n,k a

D−1
n,k =∞,

hence D − 1 < σD(PD) ≤ D. The infima satisy δD ≤ σD, and for individual packings
dimH(R(PD)) ≤ h+(R(PD)) = σD(PD).

The identity
∑

n,k a
D
n,k = 1 follows from the packing property, namely the requirement that

the residual set R(PD) in the D-dimensional unit ball has zero D-dimensional volume. The
value dimH(PD) is not known exactly. Some estimates are obtained, with various methods,
in [26], [43], [51]. We provide a simple rough estimate in §2.4 below, for the specific case of
3-spheres.

2.4. Dimension estimate. Let P = P4 be an Apollonian packing of 3-dimensional spheres
S3
an,k

. We compute here a rough approximation to the packing constant σ4(P) of the Apol-

lonian packing, defined as in (2.5).

Proposition 2.2. By replacing the collection of radii {an,k} in the n-th level of the Apol-
lonian packing P of 3-spheres with a single value an = Nn/γn, where γn/Nn is the average
curvature in the n-th level, one obtains an approximate estimate of the packing constant,

σ4,av(P) ∼ 3.85193 . . .

Proof. As discussed above, the number of 3-spheres in the n-th level of the packing P is
given by the number of reduced sequences in the generators of the group Gn, namely

(2.7) Nn := #{S3
an,k

: fixed n} = (D + 2)(D + 1)n−1|D=4 = 6 · 5n−1.

Let γn denote the sum of the curvatures of the spheres in the n-th level,

(2.8) γn =
6·5n−1∑
k=1

1

an,k
.

As shown in Theorem 2 of [40], the generating function of the γn = γn(s) is

(2.9) GD=4(u) =
(1− x)(1− 4x)u

1− 22
3
x− 5x2

,

where u = γ0 is the sum of the curvatures of theD+2 = 6 spheres in a Descartes configuration
that gives the level-zero seed of the recursive construction. We obtain from this an estimate
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of the metric dimension by replacing the curvatures 1/an,k with their averages over levels.
We denote the resulting approximation to the dimension by σ4,av(P). This is given by

σ4,av(P) = lim
n→∞

log(6 · 5n−1)

log
(

γn
6·5n−1

) .
We expand (2.9) in a power series. Since the specific value of u does not influence the large
n behavior in the limit above, we look at the values for u = 1, and we obtain

GD=4 =
∞∑
n=1

γn(1)xn,

γn(1) =
(11 +

√
166)n(−64 + 9

√
166) + (11−

√
166)n(64 + 9

√
166)

3n · 10 ·
√

166
.

This then gives σ4,av(P) ∼ 3.85193 . . . as stated. �

2.5. A spectral triple on the Cayley graph of the dual Apollonian group. Let TD
denote the Cayley graph of the dual Apollonian group G⊥D. Since for D 6= 3 the group G⊥D is
generated by the D+2 reflections S⊥j of (2.3), with the only relations of the form (S⊥j )2 = 1,
the Cayley graph TD is an infinite tree with all vertices of valence D+ 2. We endow the tree
TD with the structure of a finitely summable tree, in the sense of §7 of [12], by choosing a
base vertex v0 and endowing all the Nn = (D + 2)(D + 1)n−1 edges at a distance of n steps
from v0 with lengths `(en,k) = an,k, equal to the radii of the spheres in the n-th level of the
sphere packing. Then, as in Theorem 7.10 of [12] one obtains a finitely summable spectral
triple

STTD = (ATD ,HTD ,DTD) = ⊕e∈E(TD)(ATD ,H`(e), D`(e) +
π

2`(e)
I).

The involutive subalgebra ATD of the C∗-algebra C(TD) is determined, as in [12], by the
condition that f ∈ ATD has [DTD , π(f)] densely defined and bounded, where π : C(TD) →
B(HTD) is the representation by bounded operators on the Hilbert space of the triple. The
pairs (H`(e), D`(e)) are constructed as in the “interval spectral triple” of §3 of [12], with
Hα = L2([−α, α], µ) with the normalized Lebesgue measure µ and Dα with eigenvectors the
basis elements em = exp(iπmx/α) with eigenvalue πm/α. The Dirac operator DTD then has
spectrum

Spec(DTD) = {π(2m+ 1)

2`(e)
: e ∈ E(TD), m ∈ Z+}

= {π(2m+ 1)

2an,k
: n ∈ N, 1 ≤ k ≤ (D + 2)(D + 1)n−1, m ∈ Z+}.

The shift π/2`(e) I to the Dirac operator D`(e) is introduced in [12] to avoid a kernel, so
that the zeta function ζDTD (s) = Tr(|DTD |−s) is well defined. The zeta function of the Dirac
operator of the spectral triple STTD is given by

Tr(|DTD |−s) =
2s+1

πs
(1− 2−s) ζ(s) ζLD(s),

where ζ(s) is the Riemann zeta function, see §7.1 of [12]. The exponent of summability of
the spectral triple (the metric dimension) is equal to the packing constant of (2.5),

dSTTD = σD.
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2.6. The spectral triple of a sphere packing. Suppose given an Apollonian packing
PD of (D − 1)-dimensional spheres SD−1

an,k
in RD. We modify the construction above, by

introducing the contribution of the (D − 1)-spheres SD−1
an,k

of the packing, through their

respective spectral triples. We replace the data (H`(en,k), D`(en,k)) of the construction above,
for an edge en,k of length `(en,k) = an,k, with new data of the form (HSD−1

an,k
,DSD−1

an,k
), where

HSD−1
an,k

= L2(SD−1
an,k

,S) is the Hilbert space of square integrable spinors on the (D− 1)-sphere

SD−1
an,k

, and DSD−1
an,k

is the Dirac operator, with spectrum

Spec(DSD−1
an,k

) = {λ`,± = ± a−1
n,k (

D − 1

2
+ `) : ` ∈ Z+}

and multiplicities

Mult(λ`,±) = 2[D−1
2

]

(
`+D

`

)
.

Definition 2.3. The spectral triple of the Apollonian packing

PD = {SD−1
an,k

: n ∈ N, 1 ≤ k ≤ (D + 2)(D + 1)n−1},

is given by

(2.10) (APD ,HPD ,DPD) = ⊕e∈E(TD)(APD ,HSD−1
`(e)

,DSD−1
`(e)

),

where TD the the Cayley graph of G⊥D, as above, with edge lengths `(en,k) = an,k, and the data
(HSD−1

an,k
,DSD−1

an,k
) are defined as above. The involutive subalgebra APD consists of f ∈ C(PD)

with [DPD , π(f)] densely defined and bounded.

The fact that this is indeed a spectral triple follows from the general results of [12] and
[13]. In particular, the spectral action of the Swiss Cheese Cosmology model is obtained by
considering the case of a packing of 3-dimensional spheres,

(2.11) STPSC := (AP4 ,HP4 ,DP4).

In order to compute the spectral action for the spectral triple of a packing of 3-spheres,
we first recall some facts about the spectral action of a single 3-sphere.

2.7. The spectral action on the 3-sphere. We start by recalling some very simple and
well known facts about the round sphere S3 and its spectral action functional. We will need
these in the rest of this section as building blocks to construct the spectral triple and the
spectral action for the Packed Swiss Cheese Cosmology.

The Dirac operator on the 3-sphere S3 with the round metric of unit radius has spectrum
Spec(DS3) = {n+ 1

2
} with spectral multiplicities Mult(n+ 1

2
) = n(n+ 1), hence the spectral

action takes the form

(2.12) SS3(Λ) = Tr(f(DS3/Λ)) =
∑
n∈Z

n(n+ 1)f((n+
1

2
)/Λ).

Lemma 2.4. The zeta function of the Dirac operator is of the form

(2.13) ζDS3 (s) = 2ζ(s− 2,
3

2
)− 1

2
ζ(s,

3

2
),
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where ζ(s, q) is the Hurwitz zeta function. The spectral triple STS3 has simple dimension
spectrum, with Σ+

STS3
= {1, 3}. The asymptotic expansion of the spectral action is corre-

spondingly of the form

(2.14) SS3(Λ) ∼ Λ3f3 −
1

4
Λf1

Proof. The result immediately follows by writing

Tr(|DS3 |−s) =
∑
k≥0

2(k + 1)(k + 2) (k +
3

2
)−s =

∑
k≥0

2(k +
3

2
)−(s−2) − 1

2

∑
k≥0

(k +
3

2
)−s.

The Hurwitz zeta function ζ(s, q) has a simple pole at s = 1 with residue one, hence ζDS3 (s)
has simple poles at s = 1 and s = 3, respectively with residues Ress=1ζDS3 (s) = −1/2 and
Ress=3ζDS3 (s) = 2. Then applying (1.2), one obtains the spectral action expansion. In the
constant term we have ζDS3 (0) = 2ζ(−2, 3/2) − ζ(0, 3/2)/2 = 0, since ζ(−2, 3/2) = −1/4
and ζ(0, 3/2) = −1. �

Corollary 2.5. In the case of a 3-sphere S3
a with the round metric of radius a > 0, the zeta

function is of the form

(2.15) ζD
S3
a
(s) = as(2ζ(s− 2,

3

2
)− 1

2
ζ(s,

3

2
)),

and the asymptotic expansion of the spectral action is given by

(2.16) SS3
a
(Λ) ∼ (Λa)3f3 −

1

4
(Λa)f1.

Proof. The spectrum of the Dirac operator DS3
a

is a scaled copy 1
a
(1

2
+Z) of the spectrum of

DS3
1
, and the multiplicities coincide. Thus, we have

Tr(|DS3
a
|−s) =

∞∑
n=1

2n(n+ 1)

(
n+ 1/2

a

)−s
= 2as

∞∑
n=1

n(n+ 1)(n+ 1/2)−s

= 2as
∞∑
n=1

(n+ 1/2)2(n+ 1/2)−s − as

2

∞∑
n=1

(n+ 1/2)−s

= 2as
∞∑
n=0

(n+ 3/2)−(s−2) − as

2

∞∑
n=0

(n+ 3/2)−s

When <(s) > 3 (the metric dimension of the 3-sphere), this simplifies to (2.15). �

A method for non-perturbative computations of the spectral action functional based on
the Poisson summation formula was developed in [9], for sufficiently regular geometries for
which the Dirac spectrum and the spectral multiplicities are explicitly known. In particular,
the spectral action for the round sphere S3 was computed in [9] using this method. The
computation was generalized to spherical space forms, [54], and to 3-dimensional tori and
Bieberbach manifolds in [41], [42], [45]. The computation of [9] for the 3-sphere can be
summarized quickly as follows. Let f be a rapidly decaying even function. The eigenvalues
of DS3 form an arithmetic progression, and there is a polynomial P (u) = u2 − 1

4
that
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interpolates the spectral multiplicities, Mult(λ) = P (λ). Thus, one can write the spectral
action as

SS3(Λ) =
∑
n∈Z

g(n+
1

2
),

where g(u) = (u2 − 1
4
)f(u/Λ) is also a rapidly decaying function. This is then the sum of

values of a rapidly decaying function on points of a lattice, which can be evaluated using the
Poisson summation formula ∑

n∈Z

g(n+
1

2
) =

∑
n∈Z

(−1)nĝ(n),

where

ĝ(x) =

∫
R
g(u)e−2πixudu =

∫
R
(u2 − 1

4
)f(u/Λ)e−2πixudu

is the Fourier transform

ĝ(x) = Λ3

∫
R
v2f(v)e−2πiΛxvdv − 1

4
Λ

∫
R
f(v)e−2πiΛxvdv,

after substituting u = Λv. Let f̂ (2) denote the Fourier transform of v2f(v), in the first term
above. It is shown in [9] that the sum on the Fourier transformed side can be very accurately
approximated by the term with n = 0, yielding for any k

Tr(f(D/Λ)) = Λ3

∫
R
v2f(v)dv − 1

4
Λ

∫
R
f(v)dv +O(Λ−k).

In the case of the round 3-sphere S3
a of radius a, we have

Tr(f(
DS3

a

Λ
)) = Tr(f(

DS3
1

Λa
)),

and the approximation formula above extends to S3
a, replacing Λ with Λa, so one obtains

(2.17) Tr(f(DS3
a
/Λ)) = (Λa)3

∫
R
v2f(v)dv − 1

4
(Λa)

∫
R
f(v)dv +O((Λa)−K),

for arbitrary K ∈ N, which agrees with the expression (2.16), with the error term as in [9].

2.8. Zeta function of a 3-sphere packing. We focus here on the case of a packing P = P4

of 3-spheres, where at the n-th iterative step in the construction one has 6 · 5n−1 spheres,
with radii an,k with k = 1, . . . , 6 · 5n−1, starting with an initial Descartes configuration of
6 mutually tangent 3-spheres. As above, let L = L4 = {an,k |n ∈ N, k ∈ {1, . . . , 6 · 5n−1}}
be the length spectrum of the radii of all the 3-spheres in the packing. We consider the
associated zeta function (2.6) for D = 4, which we denote simply by ζL(s),

(2.18) ζL(s) :=
∑
n∈N

6·5n−1∑
k=1

asn,k.

Proposition 2.6. Let σ4(P) be the packing constant of an Apollonian packing P of 3-
dimensional spheres, as in (2.5). For s > σ4(P), the zeta function of the Dirac operator DP
of the spectral triple STPSC of (2.11) is given by

(2.19) Tr(|DP |−s) =

(
2ζ(s− 2,

3

2
)− 1

2
ζ(s,

3

2
)

)
ζL(s),
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where ζ(s, q) is the Hurwitz zeta function and ζL(s) is as in (2.18).

Proof. Since 0 /∈ Spec(DS3
a
), DS3

a
is invertible and so is then the Dirac operator DP for the

spectral triple STPSC . The metric dimension is then given by inf{β > 0 | Tr(|DP |−β) <∞},
where the zeta function is given by

Tr(|DP |−s) =
∞∑
n=1

6·5n−1∑
k=1

Tr(|DS3
an,k
|−s).

Each term in this sum can be computed as in (2.15). We can then evaluate the zeta function
of the spectral triple STPSC , using the fact that the contribution of each sphere S3

an,k
is of

the form Tr(|DS3
an,k
|−s) = asn,k(2ζ(s− 2, 3

2
)− 1

2
ζ(s, 3

2
)), and we obtain

Tr(|D|−s) =
∞∑
k=0

Tr(|DS3
an,k
|−s) =

(
2ζ(s− 2,

3

2
)− 1

2
ζ(s,

3

2
)

) ∞∑
k=0

asn,k,

for s > σ, with σ = max{3, 1, σ4(P)} = σ4(P), where σD(PD), as in (2.5), is the packing
constant of PD, the exponent of convergence of the series

∑
asn,k. We know from §2.3 that

3 ≤ σ4 ≤ 4, hence max{3, 1, σ4(P)} = σ4(P). �

2.9. Dimension spectrum. The definition of dimension spectrum we are using in this
paper is the same as in [19]. It is slightly different from other versions in the literature, see
[21] and [33]. In particular, note that the dimension spectrum ΣM for an ordinary smooth
manifold M of dimension n = dimM the dimension spectrum is given by the set ΣM =
Σ+
M = {0, 1, 2, · · · , n}, according to Example 13.8 of [20], or by ΣM = {m ∈ Z : m ≤ n},

according to [18], p.22, and Proposition A.2 of [33]. The leading terms in the asymptotic
expansion of the spectral action, which correspond to the gravitational terms in the action
functional, arise from the points in Σ+

M = ΣM ∩ R+, which are the same in all cases, hence
for our purposes the slight discrepancy between different versions of the notion of dimension
spectrum adopted in the literature does not affect the results.

In the following, we will focus on analyzing the poles in R∗+ and off the real line of the
zeta function ζDP (s) = Tr(|DP |−s). While these poles certainly contribute points to the
dimension spectrum, there may, in principle, be additional poles coming from other zeta
functions ζb,DP (s) = Tr(b|DP |−s), for algebra elements b ∈ B not equal to the identity. In
the case of smooth manifolds, it is known (see for instance Proposition A.2 of [33]) that
these zeta functions do not contribute additional poles. While there is no general result for
arbitrary spectral triple, in the case of the spectral triple of a fractal geometry it is often
suggested that the subalgebra of “smooth functions” should consist of functions that are
supported on finitely many levels of the fractal construction (for example, in the case of a
Cantor set, that would mean locally constant functions). If the fractal is built out of pieces
that are smooth manifolds (as in the case of a sphere packing) then one should also require
that the functions are smooth on each smooth component. While this choice of smooth
subalgebra does not necessarily have, in general, the same good analytic properties as the
algebra of smooth functions on a smooth manifold, it is a natural choice in this setting. In
this case, the fact that the additional zeta functions ζb,DP (s) do not contribute new poles
can then be reduced to the known case of manifolds. When we discuss perturbations of the
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Dirac operator by a scalar field, to obtain a slow-roll potential for inflationary models, we
will assume that the scalar fields also live in this smooth subalgebra.

The result of Proposition 2.6 then shows that the dimension spectrum of the spectral triple
STPSC is given by the following set.

Lemma 2.7. The dimension spectrum ΣPSC of the spectral triple STPSC consists of the
union of the dimension spectrum of the 3-sphere, a single other real point σ4(P), and a
countable collection of points off the real line, lying in the windowW where ζL(s) has analytic
continuation.

In general it is difficult to characterize precisely the position of the poles that are off the
real line, except in the case of self-similar fractals. We will discuss how to obtain some
control on the contributions of these points to the expansion of the spectral action in the
following section.

3. Spectral Action for Packed Swiss Cheese Cosmology

In this section we use the results of the previous section on the zeta function of the Dirac
operator on the Packed Swiss Cheese Cosmology in order to study how the spectral action
is affected by the presence of fractality. In particular, under some restrictive assumptions
on the analytic properties of the zeta function ζL(s) of the Apollonian packing, and using
the relation between the heat kernel and the zeta function and results on the asymptotic
expansion of the heat kernel, we will obtain an expansion of the spectral action that contains
the familiar gravitational terms of a 3-dimensional sphere, but also has additional terms
determined by the residue of the zeta function at the packing constant, and a Fourier series
of additional oscillatory terms coming from fluctuations produced by the presence of poles
of the zeta function located off the real line.

3.1. Zeta function, heat kernel, and spectral action on fractals. An asymptotic ex-
pansion for the spectral action, in the sense of [8], is known to exist (see Theorem 1.145 of
[19]) whenever there is a small-time asymptotic expansion for the heat kernel of the corre-
sponding Dirac operator. In the case of an ordinary manifold, or an almost-commutative
geometry, the heat kernel expansion is known by classical results on pseudo-differential oper-
ators. For more general spaces, like fractal geometries, there are no analogous theorems that
hold with the same level of generality, although several results on the heat kernel expansion
on fractals are available, see for instance the detailed survey given in [22]. For some general
results about Laplacians on fractals and heat kernels we also refer the reader to [34], [52].

Specifically in relation to the asymptotic expansion of the spectral action, cases where the
zeta function has poles off the real line, which contribute log-oscillatory terms to the spectral
action, were studied in [23] and [24].

The main new feature that arises in the case of fractal geometries is, as we have seen in
the previous section, the presence of poles of the zeta function that are off the real line. In
the case of the geometry of the Apollonian packings of 3-spheres we consider in this paper,
those poles correspond to the poles off the real line of the zeta function ζL(s) of the length
spectrum L = L(P) of the packing.

As discussed in §1–3 of [37], for general zeta functions of fractal strings L the distribution
of the non-real poles can be very complicated. In the best possible case, which corresponds
to fractals with a self-similar structure where the contraction ratios are all integer powers of a
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fixed scale 0 < r < 1 (lattice case) the non-real poles lie, periodically spaced, on finitely many
vertical lines. In cases with self-similar structure, but where the contraction ratios do not
satisfy the lattice condition (non-lattice case), the poles off the real line have a quasi-periodic
behavior and are approximated by a sequence of lattice strings.

In the case of a length spectrum with exact self-similarity realized by a single contraction
ratio r, the poles off the real line lie on the vertical line with <(s) = σ, which is the Hausdorff
dimension, and with periodic spacings of length 2π

log(1/r)
, namely s = σ + 2πim

log(1/r)
with m ∈ Z.

We will discuss in §5.1 an example of this kind, which is relevant to our cosmological models.
In such cases with exact self-similarity, it is known (see §4 of [22]) that the contribution of
the off-real poles to the heat-kernel asymptotic consists of a series of log-oscillatory terms.
We have the following model case for this situation.

Proposition 3.1. Let X be a fractal geometry with a Dirac operator DX of the associated
spectral triple with the following property: the eigenvalues of |DX | grow exponentially like bn,
for some b > 1, and the spectral multiplicities also grow exponentially like an for some a > 1.
Then the spectral action SX(Λ) = Tr(f(DX/Λ)) has an expansion for large Λ of the form

(3.1) SX(Λ) ∼ Λσ
∑
m∈Z

Λ
2πim
log b fsm

where sm = σ + 2πim
log b

and σ = log a
log b

. The coefficients fsm are given by integrals

fsm =
1

log b

∫ ∞
0

f(u)usm−1du.

For sufficiently rapidly decaying test functions f(u), the Fourier series
∑

m Λ
2πim
log b fsm con-

verges uniformly to a smooth function fσ(θ) of the circle variable θ = log Λ
log b

modulo 2πZ.

Proof. The zeta function has the form ζDX (s) =
∑

n a
nb−sn = (1−ab−s)−1, with simple poles

at s = log a
log b

+ 2πim
log b

, and with exponent of convergence σ = log a
log b

. The trace of the heat kernel

has the “exponential form”

(3.2) Tr(e−tD
2

) =
∑
n

ane−tb
2n

for some constants a, b. Then it is known (see §4.2 of [22]) that one has a small-time
asymptotics of the form

(3.3) Tr(e−tD
2

) ∼ t−
log a
2 log b

2 log b

∑
m∈Z

Γ(
log a

2 log b
+
πim

log b
) exp(−πim

log b
log t)

=
1

2 log b

∑
m

Γ(sm/2) t−sm/2.

Indeed, through the Mellin transform relation between the heat kernel and the zeta function

|DX |−s =
1

Γ(s/2)

∫ ∞
0

e−tD
2
X t

s
2
−1 dt,

this corresponds to

ζDX (s) = Tr(|DX |−s) =
∑
m

Γ(sm/2)

Γ(s/2) · (s− sm) · log b
+ holomorphic
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with poles at s = sm = σ + 2πim
log b

with residue 1/ log b. To obtain then an expansion for

the spectral action, one proceeds as in Theorem 1.145 of [19]. One considers a test function

written as Laplace transform as k(u) =
∫∞

0
e−xuh(x)dx, so that k(tD2

X) =
∫∞

0
e−xtD

2
Xh(x)dx.

Using the expansion (3.3) one then has

k(tD2
X) ∼

∑
m

Γ(sm/2)

2 log b
t−sm/2

∫ ∞
0

x−sm/2h(x)dx.

Since <(sm) = σ > 0, we can write x−sm/2 as Mellin transform

x−sm/2 =
1

Γ(sm/2)

∫ ∞
0

e−xv v
sm
2
−1 dv,

hence we obtain

Tr(k(tD2
X)) ∼

∑
m

Ress=smζDX (s) t−sm/2
∫ ∞

0

k(v)v
sm
2
−1dv.

Then taking f(u) = k(u2) we obtain∫ ∞
0

k(v)v
sm
2
−1dv = 2

∫ ∞
0

f(u)usm−1du.

We then set t = Λ−2 to obtain the form of the spectral action and the expansion

SX(Λ) ∼ Λσ
∑
m∈Z

Λ
2πim
log b (

∫ ∞
0

f(u)usm−1du) Ress=smζDX (s),

which gives (3.1). Using the relation between Mellin and Fourier transform, we can rewrite
the coefficients

fsm =
1

log b

∫ ∞
0

f(u)uσ e−2πim log u
log b

du

u
=

∫
R
F (λ)e−2πimλdλ = 2πF̂ (−2πm),

where λ = log u
log b

and F (λ) = f(bλ)bλσ, and F̂ (ξ) = (2π)−1
∫
R F (λ)eiξλdλ is the Fourier

transform. Provided the test function f is sufficiently rapidly decaying, the function F (λ) is
also a rapidly decaying function (at λ→ +∞ because of the behavior of f and at λ→ −∞
because of the term bλσ). Then the Fourier transform F̂ (ξ) is also rapidly decaying, hence

the Fourier series
∑

m Λ
2πim
log b fsm =

∑
m fsme

2πimθ converges to a smooth function fσ(θ). �

More generally, in the case of exact self-similarity realized by a set of contraction ratios
{r1, . . . , rm}, the zeta function ζL(s) has a denominator of the form 1−

∑
j r
−s
j . The exponent

of convergence is the self-similarity dimension given by the real number σ satisfying the self-
similarity equation

∑m
j=1 r

−σ
j = 1. If the scaling factors rj satisfy the lattice condition,

namely if the subgroup
∏m

j=1 r
Z
j ⊂ R∗+ is discrete, then (see Theorem 2.17 of [37]) the

complex poles lie on finitely many vertical lines with <(s) ≤ σ, and are periodically spaced
with period 2π/ log(r−1), where r is the multiplicative generator of the scaling group, with
rj = rnj for some integers nj. In this lattice case, assuming all the poles are simple and there
are no cancellations from a numerator of ζL(s), one still obtains an asymptotic expansion
of the form (3.3) with one log oscillatory series for each of the finitely many vertical lines
containing the complex poles of ζL(s).

In the case with exact self-similarity realized by a set of contraction ratios {r1, . . . , rm}
that do not satisfy the lattice condition, it is no longer true that the complex poles lie on
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finitely many vertical lines. It is known (Theorem 2.17 of [37]) that in this case there are
no other poles on the line <(s) = σ except the real pole s = σ, but there is a sequence
of complex poles approaching the vertical line <(s) = σ from the left. Moreover, all the
complex poles are contained in a vertical strip σ0 ≤ <(s) ≤ σ, for some σ0 ∈ R. Moreover,
in this general non-lattice case, the complex poles can be approximated by the poles of an
infinite family of lattice cases, with increasingly large oscillation periods (see §3 of [37]),
which in turn correspond to an infinite family of Fourier series of log-oscillatory terms.

Remark 3.2. In the case of the D = 2 Apollonian circle packings, there are known results
that characterize the presence of self-similarity, [15]: these packings correspond to quadratic
irrationalities, via a continued fractions argument. However, analogous results for the higher
dimensional Apollonian packings, characterizing the presence of exact self-similarity,s are
not presently known.

3.2. Approximations and expansion. In more general situations, even for nice cases of
fractal geometries with exact self-similarity, we do not have such explicit control over the
oscillatory terms as in the case of Proposition 3.1, where one has a single scale factor for
self-similarity. In particular, in cases of self-similar geometries that do not satisfy the lattice
conditions, the oscillatory terms can only be described via a sequence of approximations.
Thus, we need to introduce some choices of approximations in the description of the log-
oscillatory contributions to the spectral action coming from the poles of the zeta function
that are off the real line.

A first, very rough approximation, which we will occasionally use in the following, consists
of replacing the smooth function fσ(θ) in the expansion SX(Λ) ∼ Λσ fσ(θ(Λ)) of Proposition
3.1 with its average value on the circle. This corresponds to selecting only the zero order
Fourier coefficient

1

2π

∫ 2π

0

fσ(θ)dθ = fσ =
1

log(b)

∫ ∞
0

f(u)uσ−1du = Ress=σζDX (s) ·
∫ ∞

0

f(u)uσ−1du.

This corresponds to only counting the contribution of the pole s = σ on the real line and
neglecting the contributions of the poles that lie off the real line.

In a similar way, one can decide to approximate the function fσ(θ(Λ)) by truncating the
Fourier series at a higher order. In the case of a fractal geometry with the non-lattice
property, where there is an infinite sequence of lattice approximations (§3 of [37]) to the
off-real poles of the zeta function, these give rise to terms with increasingly long oscillation
periods in the expansion of the spectral action. One can then choose to truncate the Fourier
series at some fixed size M = m/ log b, so that oscillatory series with longer oscillation
periods get truncated earlier and contribute less to the approximation.

Note that truncating the Fourier series in the spectral action expansion at some size
M = m/ log b can also be seen as truncating the series of oscillatory terms in the heat kernel
expansion (3.3). The size of these terms is determined by the size of the value of the Gamma
function Γ( log a

2 log b
+ πim

log b
). The Gamma function decays exponentially fast along the vertical

line <(s) = log a
2 log b

, hence these oscillatory terms in the heat kernel expansion become rapidly

very small in comparison to the contribution of the m = 0 term.

In all of these cases, when we introduce approximations to the oscillatory terms, the
approximation we obtain for the spectral action is no longer really an “asymptotic expansion”
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in the sense of [31]. The usual meaning of asymptotic expansion implies that the function
can be approximated around some value of the argument (or a limit value) up to arbitrary
high order. For the purpose of building gravitational models, it will suffice to obtain an
expansion of the spectral action up to order Λ0 (including the oscillatory terms), and some
sufficiently good approximation in cases where the oscillatory terms cannot be fully computed
explicitly. For this reason, in the following we will simply use the terminology “expansion” of
the spectral action, rather than insisting on the stronger properties of a genuine asymptotic
expansion.

3.3. Some analytic assumptions. As we pointed out in Remark 3.2, unlike the Apollonian
circles case, in dimension D = 4 we do not have a characterization of the presence of exact
self-similarity in the sphere packing. However, in order to obtain a reasonably behaved
model, with respect to the properties of the zeta function and the spectral action functional,
we restrict our attention to a subset of all the possible Apollonian packing, identified by a
set of requirements on the properties of the associated zeta function ζL(s).

Definition 3.3. A packing P of 3-dimensional spheres is analytic if it satisfies the following
properties:

(1) The zeta function ζL(s) of the packing P has analytic continuation to a meromorphic
function on a region of the complex plane that contains the non-negative real axis.

(2) The analytic continuation ζL(s) has only one pole on the non-negative real axis,
located at s = σ4(P).

(3) The poles of ζL(s) are simple.
(4) There is a family Ln, n ∈ N, of self-similar fractal strings with the lattice prop-

erty, and with increasingly large periods, such that the complex poles of ζL(s) are
approximated by the complex poles of ζLn(s).

In terms of screens and windows, as in [37], the first condition above consists of the
property that the screen function S : R→ (−∞, σ4(P)] satisfies S(0) < 0.

In the last condition, the period of a self-similar fractal string Ln with the lattice property
is the length πn := 2π

− log rn
with the property that all the poles of ζLn(s) off the real line lie

on finitely may vertical lines <(s) = σj with periodic spacing by 2π
− log rn

. The approximation

condition means that, for all ε > 0, there exists an n ∈ N an R = R(ε, n) > 0, such that,
within a vertical region of size at most R, the complex poles of ζL(s) are within distance ε
of the poles of ζLn(s). For more details see §3.4.1 of [37] and see Figure 3.6 of [37] for an
explicit example of such an approximation.

3.4. Heuristics of analytic assumptions. At present, we do not have a characterization of
the locus of packings satisfying the constraints listed in Definition 3.3 (for example, in terms
of a geometric locus in the configuration space MD of Descartes configurations). We can,
however, provide some heuristic explanation for the geometric meaning of the requirement
that the zeta function ζLD(s) of the length spectrum LD = {an,k} of an Apollonian packing
PD of (D − 1)-dimensional spheres satisfies these properties.

Consider the possibility that a sphere packing has exact self-similarity. This would mean
that there is a finite set {r1, . . . , rm} of scaling ratios, with the property that, for all n, k,
the radii an,k ∈ R∗+ of the packing belong to the subgroup

∏m
j=1 r

Z
j ⊂ R∗+. This subgroup

will, in general, be dense in R∗+ (non-lattice case). In such cases, for the zeta function of
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(2.19), the factor ζL(s) would have analytic continuation to a meromorphic function on all
of C (see Theorem 2.4 of [37]), hence the first condition of Definition 3.3 would certainly
be satisfied. Moreover, in such a case, the second condition would be satisfied by Theorem
2.17 of [37]. The third condition would be satisfied, at least in the general case (again by
Theorem 2.17 of [37]). The last condition is obvious in the lattice case, and is a consequence
of the approximation result of §3 of [37] in the non-lattice case. In the non-lattice self-similar
case, the self-similar strings Ln with the lattice conditions are constructed using Diophantine
approximation (Lemma 3.16 and Theorem 3.18 of [37]).

Thus, one should think of the conditions of Definition 3.3 as a generalization of the good
conditions satisfied by the zeta function of a fractal with exact self-similarity. One can expect
that they may be fulfilled by especially regular (especially symmetric) choices of Descartes
configuration, although we leave a more precise mathematical investigation of this question
to future work.

3.5. Spectral action expansion. For the rest of this section we make the assumptions
that the packing P of 3-dimensional spheres we are considering satisfies the three conditions
listed above.

Under the assumptions of Definition 3.3, the result of Lemma 2.7 on the dimension spec-
trum ΣSTPSC can be refined to the following form.

Proposition 3.4. For a packing P of 3-spheres satisfying the properties of Definition 3.3, the
non-negative dimension spectrum of the spectral triple of the Packed Swiss Cheese Cosmology
consists of the points

(3.4) Σ+
STPSC

= {1, 3, σ4(P)},
with the metric dimension of the spectral triple is dPSC = σ4(P). The spectral triple has
simple dimension spectrum, which, in addition to the points of Σ+

STPSC
on the real line con-

tains a countable family of points off the real line, contained in a horizontally bounded strip
σmin ≤ <(s) ≤ σ4(P), approximated by the non-real poles of a family Ln of self-similar
fractal strings with the lattice property and with increasingly large oscillation periods.

Proof. Under the assumptions that the zeta function ζL(s) has analytic continuation to a
window including the positive real axis, we see that the zeta function ζDP (s) = Tr(|DP |−s)
of the Dirac operator of the spectral triple STPSC also has analytic continuation to a mero-
morphic function in the same region. Moreover, the assumption that the points {1, 3} are
not poles of ζL(s) ensures that ζDP (s) has simple poles at these points. It also has a simple
pole at s = σ4(P) and at all the poles off the real line by the third assumption. Thus, the
spectral triple has simple dimension spectrum and the non-negative part of the dimension
spectrum is given by (3.4). The last property about the poles off the real line follows from
the last property of Definition 3.3 and Theorem 2.17 of [37]. �

Proposition 3.5. Let P be a packing for which the assumptions listed above hold. Then the
expansion of the spectral action for the spectral triple STPSC(P) is of the form

(3.5) Tr(f(DP/Λ)) ∼ Λ3 ζL(3) f3−Λ
1

4
ζL(1) f1+Λσ (ζ(σ−2,

3

2
)− 1

4
ζ(σ,

3

2
))Rσ fσ+SoscP (Λ),

where σ = σ4(P) the packing constant, Rσ = Ress=σζL(s) the residue of the zeta function
of the fractal string L = L(P), and fβ =

∫∞
0
vβ−1f(v)dv, the momenta of the test function,

and SoscP (Λ) is an oscillatory term involving the contributions of the points of the dimension
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spectrum that are off the real line. For R > 0, let SoscP (Λ)≤R be the truncation of the
oscillatory terms that only counts the contribution of the off-real poles with |=(s)| ≤ M .
Then the oscillatory term SoscP (Λ) can be approximated by a sequence

(3.6) SoscP (Λ)≤R ∼
Nn∑
j=0

Λσn,j fσn,j(θn(Λ)),

where n→∞ as R→∞, and where σn,j = <(sn,j,m), for

{sn,j,m = σn,j + i(αn,j +
2πm

log bn
)}j=0,...,Nn,m∈Z

the set of non-real poles of the zeta functions ζLn(s), with σmin ≤ σn,j ≤ σ and periods
2π/ log bn → ∞ and n → ∞. The fσn,j(θn(Λ)) are smooth functions of the circle variable

θn = log λ
log bn

, with Fourier expansion fσn,j(θn) =
∑

m fsn,me
2πimθn with

fsn,j,m = (ζ(sn,j,m − 2,
3

2
)− 1

4
ζ(sn,j,m,

3

2
)) Ress=sn,j,mζLn(s)

∫ ∞
0

f(u)usn,j,m−1 du.

Proof. Under the three assumptions listed above on the zeta function ζL(s), the residues at
the points s = 1 and s = 3 of the dimension spectrum are given, respectively, by

Ress=1ζDP (s) =
−1

2
Ress=1ζ(s,

3

2
) · ζL(s) = −1

2
ζL(1)

Ress=3ζDP (s) = 2Ress=3ζ(s− 2,
3

2
) · ζL(s) = 2 ζL(3).

Thus, the terms in the expansion of the spectral action

Tr(f(DP/Λ)) ∼
∑

β∈Σ+
STPSC

fβΛβ

∫
−|DP |−β,

with
∫
−|DP |−β the residues, as in (1.3), are given by

Tr(f(DP/Λ)) ∼ Λ3 ζL(3)

∫ ∞
0

v2f(v) dv

− Λ
1

4
ζL(1)

∫ ∞
0

f(v) dv

+ Λσ (ζ(σ − 2,
3

2
)− 1

4
ζ(σ,

3

2
)) Ress=σζL(s)

∫ ∞
0

vσ−1f(v) dv,

where σ = σ4(P). The approximate form of the oscillatory term is derived from the last
property of Definition 3.3 and from the form of the oscillatory terms of Proposition 3.1. In
the case of a self-similar string Ln with the lattice property, the poles of ζLn(s) off the real
line consist of a finite union of sequences of the form sn,j,m = σn,j + i(αn,j + 2πm

log bn
, with

the same period 2πim
log bn

and with αn,0 = 0 and αn,j 6= 0 for j > 0, and with σn,0 = σn the

self-similarity dimension, as shown in Theorem 2.17 of [37]. The terms in the expansion of
the spectral action that correspond to these poles are then approximated, for large n, by a
finite sum of terms as in Proposition 3.1. �
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For the purpose of this paper we will not give a more detailed analysis of the convergence of
the approximation by the sequence

∑
j Λσn,j fσn,j(θn(Λ)). A more precise analytic discussion

of the nature of the approximation in (3.6) will require a more detailed understanding of
self-similar structures in higher-dimensional Apollonian sphere packings than is presently
available, and will need to be addressed elsewhere. In terms of the expansion of the spectral
action we are going to use in explicit gravitational models, we will truncate the series of
oscillatory terms as discussed in §3.2.

3.6. Zeta regularization. The expression (3.5) for the spectral action of the sphere packing
should be regarded as a “zeta regularized” form of the divergent series

SP(Λ) =
∞∑
k=0

SS3
ak

(Λ)

that adds the contributions coming from the spectral actions of the individual spheres in the
packing. Indeed, since the spectral action of an individual sphere is of the form

(3.7) SS3
an,k

(Λ) = Λ3 a3
n,k f3 −

1

4
Λ an,k f1 +O((Λan,k)

−K),

and both points 1 and 3 are smaller than the exponent of convergence σ4(P) of the series∑
n,k a

s
n,k, the series

(3.8) Λ3f3

∑
n,k

a3
n,k −

1

4
Λf1

∑
n,k

an,k

is divergent and requires a suitable regularization. The spectral action (3.5) can be inter-
preted as such a regularization. Notice also that the error term O((Λan,k)

−K) is very small
for a fixed radius an,k and for sufficiently large Λ, but when the radii an,k vary over the set
L(P) of lengths of the packing P it becomes large for any given Λ, so that (3.7) cannot be
extended directly to the whole packing. The term

(3.9) Λ3f3 ζL(3)− 1

4
Λf1 ζL(1)

in (3.5) is just a classical form of zeta regularization of the series (3.8), with the divergent∑
a3
n,k replaced by ζL(3) and the divergent

∑
an,k replaced by ζL(1). The additional term

in (3.5), which depends on the residue of ζL(s) at s = σ4(P) detects the presence of a fractal
structure in the geometry. We discuss these issues further in §4 below.

3.7. Packed Swiss Cheese Spacetime spectral action. In the previous subsection we
computed the expansion of the spectral action for an Apollonian packing of 3-spheres, under
some assumptions on the behavior of the associated zeta function. Here we consider an
associated (Euclidean) spacetime model. This generalizes to the case of a packing of spheres
the simpler case of a single sphere S3, where the associated spacetime is just R × S3, with
the Euclidean time line R compactified to a circle S1 of size β. We generalize the form of
the spectral action of S1

β × S3
a, by replacing the 3-sphere S3

a with a packing P of 3-spheres

S3
an,k

, and using the results in the previous section.
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Proposition 3.6. Let P be a packing of 3-spheres satisfying the three conditions of Definition
3.3. Consider the product geometry S1

β × P of P with a circle of size β. Then the spectral
action has expansion with leading terms of the form
(3.10)

SS1
β×P(Λ) ∼ 2β

(
Λ4 ζL(3) h3 − Λ2 1

4
ζL(1) h1 + Λσ+1

(
ζ(σ − 2,

3

2
)− 1

4
ζ(σ,

3

2
)

)
Rσ hσ

)
+SS1

β×P(Λ)osc

where σ = σ4(P) is the packing constant (2.5), Rσ is the residue of ζL(s) at s = σ, and

(3.11) h3 := π

∫ ∞
0

h(ρ2)ρ3dρ, h1 := 2π

∫ ∞
0

h(ρ2)ρdρ.

(3.12) hσ = 2

∫ ∞
0

h(ρ2)ρσdρ.

The oscillatory contributions from poles off the real line are approximated by a sequence

(3.13) SS1
β×P(Λ)osc≤R ∼

Nn∑
j=0

Λσn,j+1gσn,j(θn(Λ)),

with n → ∞ when R → ∞, where σn,j = <(sn,j,m), with sn,j,m the non-real poles of ζLn(s)
and gσn,j(θn(Λ)) smooth functions with Fourier coefficients

(ζ(sn,j,m − 2,
3

2
)− 1

4
ζ(sn,j,m,

3

2
))Ress=sn,j,mζLn(s) hsn,j,m ,

with hsn,j,m defined as in (3.12).

Proof. As observed in Lemma 2 of [9], the spectral action for S1
β×S3

a, with the Dirac operator

DS1
β×S3

a
=

(
0 DS3

a
⊗ 1 + i⊗DS1

β

DS3
a
⊗ 1− i⊗DS1

β
0

)
is of the form

(3.14) Tr(h(D2
S1
β×S3

a
/Λ)) ∼ 2βΛTr(κ(D2

S3
a
/Λ)),

for a test function h(x), and with the test function κ on the right-hand-side satisfying
κ(x2) =

∫
R h(x2 + y2)dy. It then follows that the expansion of the spectral action on S1

β×S3
a

is given by (see Theorem 3 of [9])

Tr(h(D2
S1
β×S3

a
/Λ)) ∼ 2 β

(
Λ4 a3 h3 −

1

4
Λ2 a h1

)
,

with the notation of (3.11). We now consider a similar situation, with the product geometry
S1
β × S3

a replaced by S1
β × P , where P is a packing of 3-spheres satisfying the conditions of

Definition 3.3. The Dirac operator of the product geometry is again of the form

DS1
β×P =

(
0 DP ⊗ 1 + i⊗DS1

β

DP ⊗ 1− i⊗DS1
β

0

)
,



SPECTRAL ACTION MODELS OF GRAVITY ON PACKED SWISS CHEESE COSMOLOGY 23

where DP is the Dirac operator of the spectral triple STPSC described in Definition 2.3. The
same argument as in Lemma 2 of [9] shows that, as in (3.14)

Tr(h(D2
S1
β×P

/Λ)) ∼ 2βΛTr(κ(D2
P/Λ)),

with the test functions h and κ as above. Using the result of Proposition 3.5 we then obtain,
as above, the expression (3.10), with hσ given by

hσ =

∫
R+×R

xσ−1 h(x2 + y2) dx dy =

∫ ∞
0

h(ρ2)ρσdρ

∫ π/2

−π/2
cos(θ) dθ = 2

∫ ∞
0

h(ρ2)ρσdρ.

The structure of the oscillatory terms is obtained as in the previous Proposition. �

In cosmological models based on the spectral action (see [41], [42]), the parameter β is
an artifact introduced by the choice of a compactification of the Euclidean time coordinate
along a circle of size β. As discussed in §3.1 of [42], the parameter β can be interpreted as
an inverse temperature and related to the temperature of the cosmological horizon.

4. Fractality scale truncation

A realistic model of fractal structures in cosmology will necessarily involve a choice of
scale at which fractality is cut off: while the universe may involve a fractal structure at the
scale of galaxy superclusters and clusters, it does not appear fractal at our scales, hence
the self-similarity property is expected to break down at some level. In a gravity model
based on the spectral action, which already naturally involves a dependence on an energy
scale Λ, it is natural to assume that the scale at which fractality breaks down will be in
some way dependent on Λ. In the construction of the spectral triple of the PSCC model,
discussed in §2.6 above, we obtained a spectral action functional as a suitable kind of “zeta
regularization” of the divergent series

∞∑
n=0

Nn∑
k=1

SS3
an,k

(Λ),

where the sum is over all the 3-spheres in the packing P , with an,k their radii, and with
Nn = 6 ·5n−1, the number of spheres in the n-th level of the packing construction. Indeed, as
we have seen in the previous section, the spectral action SP(Λ) involves a zeta regularization
of the above series, given by(

Λ3f3

∑
n,k

a3
n,k −

1

4
Λf1

∑
n,k

an,k

)reg

= Λ3f3 ζL(3)− 1

4
Λf1 ζL(1)

and an additional term

Λσ (ζ(σ − 2,
3

2
)− 1

4
ζ(σ,

3

2
))Rσ fσ

involving the residue Rσ = Ress=σζL(s) at σ = σ4(P), which describes the fractality of the
Apollonian packing.
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4.1. Sphere counting function. In a model where fractality is truncated at a certain scale,
one only considers the sphere packing P only up to a certain size. This requires estimating
the number

(4.1) Nα(P) = #{S3
an,k
∈ P : an,k ≥ α}

of spheres in the given packing whose radii are of size at least α. In the case of Apollonian
packings of circles and of 2-spheres it is known, by a result of [5], that the Hausdorff dimension
of the residual set of the packing is equal to

dimH(R(P)) = lim
α→0
− logNα(P)

logα
,

so that, for α→ 0, one hasNα(P) ∼ α− dimH(R(P))+o(1), see also [3]. It was proved in [35] that,
in fact, one has the stronger result Nα(P) ∼ cPα

− dimH(R(P)). A general heuristic argument
for the existence of a power law governing the behavior of the sphere counting function for
sphere packings in arbitrary dimension is given in [1]. Let δ(P) denote the exponent of the
power law, so that, for α→ 0

(4.2) Nα(P) ∼ α−δ(P)+o(1).

In fact, the result of [5] shows, in the case of an Apollonian packing of circles, that δ(P) is
equal to the packing constant σ2(P), which combined with the result of [4] then gives the
identification with the Hausdorff dimension. The general argument of §2 of [5] is independent
of the dimension an it shows that, in general, one has the estimate

(4.3) lim sup
α→0

− logNα(PD)

logα
= σD(P).

Thus, if the sequence has a limit, then the limit has to be the packing constant σD(P).

4.2. Spectral triple with truncation of fractality scale. Thus, in a cosmological model
where fractality is truncated at a certain size α, one would consider a spectral triple of the
form

(APα ,
⊕

n,k : an,k≥α

HS3
an,k

,
⊕

n,k : an,k≥α

DS3
an,k

),

where Pα ⊂ P is the part of the packing that includes only those spheres S3
an,k

with an,k ≥ α,

and APα ⊂ C(Pα) that satisfies the bounded commutator condition with the Dirac operator.
Correspondingly, in this case, which involves only finitely many spheres, the spectral action
would be of the form

(4.4) SPα(Λ) =
∑

n,k : an,k≥α

SS3
an,k

(Λ).

Lemma 4.1. Let P be a packing of 3-spheres satisfying the properties of Definition 3.3, and
with the property that the function F (α) = − log(Nα(P))/ log(α) has a limit for α → 0.
Then the spectral action SPα(Λ) diverges at least like α−(σ4(P)−1)+o(1), when α→ 0.

Proof. Each sphere contributes to the spectral action a term of the form

(4.5) Λ3f3

∑
n,k

a3
n,k −

1

4
Λf1

∑
n,k

an,k +O((Λan,k)
−K).
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Using the power law (4.2) for α→ 0 we estimate∑
n,k

a3
n,k ≥ α3−δ(P)+o(1) and

∑
n,k

an,k ≥ α1−δ(P)+o(1).

By (4.3) and the hypothesis on the existence of the limit, we know that δ(P) = σ4(P), which
we know satisfies σ4(P) > 3, so that the exponents above are negative. Thus, for a fixed Λ
and for α→ 0, the sum ∑

n,k : an,k≥α

(
Λ3f3

∑
n,k

a3
n,k −

1

4
Λf1

∑
n,k

an,k

)
diverges at least like the dominant term α−(δ(P)−1)+o(1). �

4.3. Truncation estimates on the spectral action. One then expects that there will be
a good approximation to the spectral action SPα(Λ) of the PSCC obtained by truncating
fractality at a certain Λ-dependent scale. We discuss here possible choices of a function
α = α(Λ) that retain the property of having a good control on the error term of the spectral
action SPα(Λ)

(Λ). We first recall how one obtains explicit estimates for the error term in

(2.17) of the spectral action on a 3-sphere, for a particular class of test functions, following
the argument of Corollary 4 of [9].

Lemma 4.2. In the case of a cutoff function of the form f(x) = P (πx2)e−πx
2
, where P is a

polynomial of degree d, the error term ε(Λa) in the spectral action

SS3
a
(Λ) = (Λa)3

∫
R
v2f(v)dv − 1

4
(Λa)

∫
R
f(v)dv + ε(Λa)

satisfies the estimate

(4.6) |ε(Λa)| ≤ (Λa)3(5 + 7d+ d2)CQe
−π

2
(Λa)2

,

whenever Λa ≥
√

(d+ 1)(1 + log(d+ 1)) and Λa ≥ 1. The coefficient CQ to be the sum of

the absolute values of the coefficients of the polynomial Q, with f̂(x) = Q(πx2)e−πx
2
.

Proof. As in Corollary 4 of [9], we have f̂ (2)(x) = (x2Z1(πx2) + Z2(πx2))e−πx
2
, where Z1 =

−Q + 2Q′ − Q′′, and Z2 = 1
2π

(Q − Q′), while generally xke−x/2 ≤ 1, for x ≥ 3k(1 + log k).
For n 6= 0 one then has

f̂(nΛa) = Q(π(nΛa)2)e−
π
2

(nΛa)2 · e−
π
2

(nΛa)2 ≤ CQe
−π

2
(nΛa)2

,

because, by hypothesis, π(nΛa)2 ≥ 3d(1 + log d). Since the decay is more rapid than simply
exponential, we can see that

2
∞∑
n=1

e−
π
2

(nΛa)2 ≤ 2e−
π
2

(Λa)2

+ 2
∞∑
n=4

e−
π
2
n(Λa)2 ≤ 2e−

π
2

(Λa)2

+ 2
e−

3π
2

(Λa)2

−1 + e
π
2

(Λa)2

≤ 2e−
π
2

(Λa)2

+ 2
e−

π
2

(Λa)2
/23

−1 + 4.8
≤ 2.023e−

π
2

(Λa)2

,

where we used the assumption that Λa ≥ 1. Thus, we have∑
n 6=0

f̂(nΛa) ≤ 2.023CQe
−π

2
(Λa)2
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Similarly, for f̂ (2) we get∑
n6=0

f̂ (2)(nΛa) ≤ 2.023(2 + 3d+
1

π
d2)CQe

−π
2

(Λa)2

.

By looking at the series for the spectral action after applying the Poisson summation formula,
we see that the above terms contribute to the error as

|ε(Λa)| ≤ (Λa)32.023(2 + 3d+
1

π
d2)CQe

−π
2

(Λa)2

+
2.023

4
ΛaCQe

−π
2

(Λa)2

,

which can then be estimated from above as in (4.6). �

We can then adapt the error estimates of Lemma 4.2 to the PSCC model, by performing
a truncation on the fractality scale, dependent on the energy scale Λ.

Remark 4.3. Under the assumption that an,k ≥ α, the error term in (4.5) is at most
O((Λα)−K). Thus, it is natural to consider a model where the cutoff of fractality should
happen at a scale α related to Λ by the property that α(Λ) · Λ grows like a positive power
of Λ, so that one maintains a good control on the error term for large Λ.

Proposition 4.4. Consider a truncated packing Pα of 3-spheres S3
an,k

with an,k ≥ α, where

α = α(Λ) = Λ−1+γ for some 0 < γ < 1. Then the spectral action, computed using a test

function of the form f(x) = P (πx2)e−πx
2

with P a polynomial of degree d, satisfies

SPΛ−1+γ (Λ) =

 ∑
an,k≥Λ−1+γ

a3
n,k

Λ3f3 −
1

4

 ∑
an,k≥Λ−1+γ

an,k

Λf1 + ε(Λ)

where the error term satisfies

|ε(Λ)| ≤ Λ3+σ(1−γ)a3
max(5 + 7d+ d2)CQe

−π
2

Λ2γ

,

where amax = max{an,k} is the largest radius in the packing P, and σ is the packing constant.

Proof. The estimate follows immediately from the previous Lemma, since we have

|ε(Λ)| ≤
∑

an,k≥Λ−1+γ

Λ3a3
n,k(5 + 7d+ d2)CQe

−π
2

(Λan,k)2

≤ NΛ−1+γ (P)Λ3a3
max(5 + 7d+ d2)CQe

−π
2

Λ2γ

= Λ3+σ(1−γ)a3
max(5 + 7d+ d2)CQe

−π
2

Λ2γ

.

�

We consider a further possible way of truncating the spectral action, for spheres with
smaller radii and the behavior of the error term. We start with the following error term
estimate, for a single sphere.

Lemma 4.5. For a test function of the form f(x) = P (πx2)e−πx
2
, for some polynomial P

of degree d, and for MΛa the truncation scale, consider the truncated sum for the spectral
action,

SS3
a,M

(Λ) =
∑

λ<MΛa

Mult(λ) f(
λ

Λa
) =

∑
λ<MΛa

(λ2 − 1

4
)f(

λ

Λa
).

Let N = inf{n ∈ 1
2

+ Z | n ≥ max{MΛa, 3
2
}}. Then, assuming that

Λa ≥
√

(d+ 1)(1 + log(d+ 1)) and Λa ≥ 1,
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the error term satisfies

|ε(Λa)| = 2
∑
λ≥N

(λ2 − 1

4
) f

(
λ

Λa

)
≤ 2

π
(Λa)2(1 +

2

π
(Λa)2)CP e

−π
2
M2

.

Proof. Since u2− 1
4

is a strictly positive quantity when evaluated at the integers, its absolute
value is always less than u2. Furthermore, all terms in the series are positive, so that we
can work with u2 instead of u2 − 1

4
and our conclusions will remain valid. As in Lemma

4.2, we use the fact that xke−
x
2 ≤ 1, for all x ≥ 3k(1 + log k). Then, as long as x ≥√

(d+ 1)(1 + log(d+ 1)), we know that x2f(x) ≤ 1
π
CP e

−π
2
x2

.
Let our point of truncation be MΛa, so that our sum is over u < MΛa. Let N be as in

the statement. Then we have

|ε(Λa)| = 2
∑
λ≥N

(λ2 − 1

4
) f

(
λ

Λa

)
≤ 2

∑
λ≥N

(Λa)2

(
λ

Λa

)2

f

(
λ

Λa

)

≤ 2
∑
λ≥N

(Λa)2 1

π
CP e

−π
2 ( λ

Λa)
2

≤ 2

π
(Λa)2CP

∞∑
v=0

e
−π

2
1

(Λa)2
(N2+v)

=
2

π
(Λa)2CP e

−π
2 ( N

Λa)
2

· 1

1− e−
π
2

1
(Λa)2

≤ 2

π
(Λa)2CP e

−π
2
M2 · 1

1− e−
π
2

1
(Λa)2

.

Now we check that (1− e−
π
2

1
(Λa)2 )−1 < 1 + 2

π
(Λa)2. Define g(x) = 1

1−e−1/x . In the case x ≥ 1,
we have

e−1/x =
∞∑
n=0

(−1)nx−n

n!
= 1− x−1 +

1

2
x−2 −

∞∑
n=2

(
x1−2n

(2n− 1)!
− x−2n

(2n)!

)

= 1− x−1 +
1

2
x−2 −

∞∑
n=2

(
x− 1

2n

)
x−2n

(2n− 1)!
≤ 1− x−1 +

1

2
x−2,

since every term in the third sum is positive. In the case 0 < x < 1, substituting u = 1/x,
with u > 1, we have

g(x) =
1

1− e−u
=

1

1− e−u
1 + 2e−u

1 + 2e−u
=

1 + 2e−u

1 + (e−u − 2e−2u)
≤ 1 + 2e−u.

Compare this with 1 + 1/u: the term 2e−u decreases faster than 1/u, and 2e−1 < 1, so for
all u > 1, we have 1 + 2e−u < 1/u. Thus, for all 0 < x < 1 we have g(x) ≤ 1 + x. Together,
these two cases give the desired inequality

(1− e−
π
2

1
(Λa)2 )−1 < 1 +

2

π
(Λa)2,

which then gives the stated estimate for the error term |ε(Λa)|. �

For a given scale M , we consider a summation as above, of the form∑
3

2M
<Λan,k<M

dMΛan,ke−1∑
λ= 3

2

2(λ2 − 1

4
) f

(
λ

Λak

)
.

We are interested now in the case of smaller spheres, with an,k < α, where α = α(Λ) was a
previously chosen cutoff. Thus, we relate the scale M to Λ accordingly, by assuming that
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M = M(Λ) = α(Λ)Λ = Λγ. This, in turn, gives the lower bound 3
2M

= 3
2
Λ−γ, which means

that we are considering spheres with an,k ≥ α̃(Λ) = 3
2
Λ−(1+γ).

Proposition 4.6. For α(Λ) = Λ−1+γ and α̃(Λ) = 3
2
Λ−(1+γ), and for sufficiently large Λ, we

have

SPα̃(Λ)
(Λ) =

∑
3
2

Λ−γ<Λan,k<Λγ

dΛ1+γan,ke−1∑
λ= 3

2

2(λ2 − 1

4
) f

(
λ

Λak

)
+ ε(Λ)

where

|ε(Λ)| ≤
(

3

2

)σ
2

π
CPΛ2γ+(1+γ)σe−

π
2

Λ2γ

.

Proof. For large Λ we can estimate the number Nα̃(Λ)(P) of spheres with an,k ≥ α̃(Λ), with

α̃(Λ)−σ =
(

3
2

)σ
Λ(1+γ)σ, where σ = σ4(P) is the packing constant. For each sphere in the

summation, we can apply the error term estimate of the previous lemma, with Λan,k ≤ Λγ

and we obtain

|ε(Λ)| ≤
(

3

2

)σ
Λ(1+γ)σ 2

π
CPΛ2γ(1 +

2

π
Λ2γ)e−

π
2

Λ2γ

.

�

We can view the estimate of the error term of this sum as a way to estimate the effect of
changing the cutoff scale from α(Λ) = Λ−1+γ to α̃(Λ) = 3

2
Λ−(1+γ).

5. Related fractal models

5.1. Fractal dodecahedra and cosmic topology. In [7], [41], [42], cosmological models
based on the spectral action functional of gravity are constructed for (compactified, Eu-
clidean) spacetimes of the form S1 × Y where Y is either a spherical space form or a flat
Bieberbach manifold, and it is shown that the spectral action detects the different cosmic
topologies through the shape of an associated slow-roll inflation potential. In particular, it
is shown in [7], [41], [54] that the spectral action for a spherical space form Y = S3/Γ is
given by

SY (Λ) =
1

#Γ
SS3(Λ),

independently of the spin structure (even though the Dirac spectrum itself changes for dif-
ferent spin structures). Of particular interest for cosmic topology is the case where Y is
the Poincaré homology 3-sphere (dodecahedral space), which is regarded as one of the most
promising candidates for a non-simply connected cosmic topology, [14], [39].

We consider here a different possible model with fractal structure, where the building
blocks are spherical dodecahedra, folded up to form Poincaré homology spheres, arranged
in a fractal configuration that generalizes the Sierpinski fractal to dodecahedral geometry.
Other similar construction can be done using other solids, and adapted to the other spherical
space form candidates for cosmic topologies. These fractals are much simpler in structure
than the Apollonian sphere packing described in the previous section, as the successive levels
of the construction are all obtained by repeatedly applying the same uniform contraction
factor. This makes the computation of the Hausdorff dimension immediate, as well as its
identification with the exponent of convergence of the relevant zeta function. Moreover, it



SPECTRAL ACTION MODELS OF GRAVITY ON PACKED SWISS CHEESE COSMOLOGY 29

is also immediately clear that an analytic continuation exists to a meromorphic function on
the entire complex plane, hence all the properties can be checked more easily.

More precisely, let Ya = S3
a/I120 be the quotient of a round 3-sphere of radius a by the

isometric action of the icosahedral group I120. The choice of a fundamental domain, given by
a spherical dodecahedron, and the action of the group I120 determine a tiling of S3

a consisting
of 120 dodecahedra. The quotient 3-manifold Ya is a Poincaré homology sphere, of volume
V ol(Ya) = V ol(S3

a/I120) = π2

60
a3.

Consider now the following well known construction of a Sierpinski type fractal based on
the dodecahedron. Starting with an initial (solid) regular dodecahedron, one replaces it with
20 new regular dodecahedra, contained inside the volume bounded by the initial one, each
placed in the corner corresponding to one of the 20 vertices of the original dodecahedron.
Each of the new dodecahedra is a copy of the original one scaled by a factor of (2 + φ)−1

where φ is the golden ratio. One keeps iterating this procedure on each of the dodecahedra
in the new configuration. Let PY,n be the union of dodecahedra obtained at the n-th step
of the construction, where we simultaneously perform the identification of faces, in each
dodecahedron, according to the action of I120, so that each is folded up into a Poincaré
homology 3-sphere. Let PY denote the resulting limit, which in the set theoretic sense is
given by the intersection PY = ∩n≥1PY,n. The following fact then follows immediately.

Lemma 5.1. The Hausdorff dimension of the resulting set is

(5.1) dimH PY =
log(20)

log(2 + φ)
= 2.3296...

This is equal to the exponent of convergence of the series

ζL(PY )(s) =
∑
n≥0

20n(2 + φ)−ns,

which has analytic continuation to a meromorphic function on C,

ζL(PY )(s) =
1

1− 20(2 + φ)−s

with simple poles at the points

(5.2) sm =
log(20)

log(2 + φ)
+

2πim

log(2 + φ)
, with m ∈ Z,

all with the same residue

(5.3) Ress=smζL(PY )(s) =
1

log(2 + φ)
.

We then construct a spectral triple for the configuration PY using the same procedure as
in [12]. Let (C(Ya),HYa , DYa) is the spectral triple of Ya with HYa = L2(Ya,S) the square
integrable spinors and DYa the Dirac operator. See [41], [54] for a more detailed discussion
of these data.

Proposition 5.2. The spectral triple

(APY ,HPY ,DPY ) = (APY ,⊕nHYan ,⊕nDYan ),
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with APY ⊂ C(PY ) satisfying the bounded commutator condition, and with an = a(2 + φ)−n,
has zeta function

(5.4) ζDPY (s) =
as

120

(
2ζ(s− 2,

3

2
)− 1

2
ζ(s,

3

2
)

)
ζL(PY )(s).

The positive part of the dimension spectrum is Σ+ = {1, σ, 3}, with σ = dimH(PY ), while
the full dimension spectrum Σ also contains the points (5.2) off the real line. The metric
dimension of the spectral triple is 3.

Proof. The spectrum of the Dirac operator on the Poincaré homology sphere Ya, with the
correct multiplicities, can be computed explicitly using the method of [2] of generating func-
tions, see [54]. In the case of the trivial spin structure, it is shown in [54] that one can separate
the spectrum into 60 arithmetic progressions {3

2
+ k + 60j} with multiplicities interpolated

by 60 explicit polynomials Pk(
3
2

+ k + 60j) = Mult(3
2

+ k + 60j), which satisfy

59∑
k=0

Pk(u) =
1

2
u2 − 1

8
.

This implies that

SYa(Λ) =
59∑
k=0

∑
j∈Z

Pk(
3

2
+ k + 60j)f(

3
2

+ k + 60j

Λ
) =

1

120
SS3

a
(Λ)

and that

ζDYa (s) =
59∑
k=0

∑
j∈Z

Pk(
3

2
+ k + 60j)

∣∣∣∣32 + k + 60j

∣∣∣∣−s =
1

120
ζD

S3
a
(s),

hence (5.4) then follows as in Proposition 2.6. �

Using the same technique that we used in the previous construction, we can then compute
the leading terms in the expansion of the spectral action. In this case we have a completely
explicit description of the poles off the real line, so we also obtain a more explicit description
of the log oscillatory corrections to the spectral action, which in this model behaves exactly
as in the case of Proposition 3.1.

Proposition 5.3. Let PY be the fractal arrangement described above, to which we assign a
spectral triple as in Proposition 5.2. The contribution to the expansion of the spectral action
Tr(f(DPY /Λ)) coming from the points of the dimension spectrum that lie on the positive real
line is given by

(5.5) (Λa)3 ζL(PY )(3)

120
f3 − Λa

ζL(PY )(1)

120
f1 + (Λa)σ

ζ(σ − 2, 3
2
)− 1

4
ζ(σ, 3

2
)

120 log(2 + φ)
fσ,

where σ = dimH(PY ), while the contribution to the expansion of the spectral action coming
from the non-real points of the dimension spectrum is given by a Fourier series

Λσ
∑
m 6=0

Λ
2πim

log(2+φ)
ζ(sm − 2, 3

2
)− 1

4
ζ(sm,

3
2
)

120 log(2 + φ)
fsm ,
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with

fsm =

∫ ∞
0

f(u)usm−1 du.

The series converges absolutely to a smooth function of the angular variable θ = log Λ
log(2+φ)

mod

2πZ.

Proof. The argument is exactly as in Proposition 3.5, where we now have 2 < σ < 3 and the
residue Rσ (as well as those at the poles off the real line) is given by

Rσ = Ress=σζL(PY )(s) =
1

log(2 + φ)
.

The complex poles sm of ζL(s) lie within the region of absolute convergence of the series
defining the Hurwitz zeta function, hence the size of the terms |ζ(sm − 2, 3

2
)− 1

4
ζ(sm,

3
2
)| is

controlled by a term |ζ(σ − 2, 3
2
)| + 1

4
|ζ(σ, 3

2
)|. The convergence of the Fourier series above

is then controlled by the convergence of
∑

m Λ
2πim

log(2+φ)fsm , which converges absolutely to a
smooth function of the periodic angle variable θ, as shown in Proposition 3.1. �

Corollary 5.4. Consider a (Euclidean, compactified) spacetime model of the form S1
β ×PY ,

with PY the fractal arrangement as above, and with β the size of the compactification. Then
the contribution to the expansion of the spectral action SS1

β×PY (Λ) coming from real points

of the dimension spectrum is given by

(5.6) 2β

(
Λ4a

3ζL(PY )(3)

120
h3 − Λ2aζL(PY )(1)

120
h1 + Λσ+1a

σ(ζ(σ − 2, 3
2
)− 1

4
ζ(σ, 3

2
))

120 log(2 + φ)
hσ

)
,

with σ = dimH(PY ) and h1, h3, hσ as in (3.11) and (3.12). The contribution to the points of
the dimension spectrum that are off the real line is a Fourier series

Λσ+1 2βaσ

120 log(2 + φ)

∑
m 6=0

(Λa)
2πim

log(2+φ) (ζ(sm − 2,
3

2
)− 1

4
ζ(sm,

3

2
))hsm ,

where the coefficients hsm are given by

hsm = 2

∫ ∞
0

h(ρ2)ρsmdρ.

The series converges to a smooth function of θ = log Λ
log(2+φ)

mod 2π.

Proof. The result follows exactly as in Proposition 3.6. �

6. Slow roll inflation in fractal universes

In the case of a compactified Euclidean spacetime of the form S1
β × S3

a, it was shown in

[9] that perturbations of the Dirac operator by a scalar field D2 7→ D2 + φ2 produce, in
the calculation of the spectral action, a potential V (φ) for the scalar field, obtained as a
combination of functions V(φ2/Λ2) and W(φ2/Λ2) with

Tr(h((D2 + φ2)/Λ2))) ∼ πΛ4βa3

∫ ∞
0

uh(u)du− π

2
Λ2βa

∫ ∞
0

h(u)du

+πΛ4βa3 V(φ2/Λ2) +
1

2
Λ2βaW(φ2/Λ2),
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where the functions are of the form

V(x) =

∫ ∞
0

u(h(u+ x)− h(u))du, W(x) =

∫ x

0

h(u)du.

In [9] it was first observed that the potential obtained in this way has the typical shape
of the slow-roll inflation potentials. Whether one can accommodate a satisfactory inflaton
model within the spectral action paradigm is still debated. It was first proposed that the
Higgs field might play the role of inflaton field, but the possibility of a Higgs based inflation
scenario in the noncommutative geometry model was ruled out as incompatible with the
measured value of the top quark mass in [6], based on constraints coming from the CMB
data. In the noncommutative geometry models of gravity coupled to matter, the Higgs sector
arises as inner fluctuation of the Dirac operator in the non-commutative fiber directions of
an almost-commutative geometry. By contrast, even in the pure gravity case, where there
is no finite non-commutative geometry, one can introduce a scalar perturbation of the Dirac
operator of the kind described above, see the discussion in §1.4 of [7].

It was observed in [41], [42] and [7], where the construction is generalized for spherical
space forms and Bieberbach manifolds, that the shape of the resulting slow-roll inflation
potential V (φ) distinguishes between (almost all of) the different possible topologies and
determines detectable signatures of the cosmic topology in the slow-roll parameters (which
in turn determine spectral index and tensor-to-scalar ratio) and in the form of the power
spectra for the scalar and tensor fluctuations. The result is similar in the case of the spherical
space forms Ya = S3

a/Γ, with V (φ) replaced by (#Γ)−1V (φ), see [7], [41]. In this section
we discuss how the inflation potential changes in the case of S1

β × P , where P is either an
Apollonian packing or 3-spheres or a configuration based on the fractal dodecahedron and
the Poincaré homology sphere. In particular, we show that, in models of inflation based
on the spectral action functional, the shape of the inflation potential changes depending
on the fractal structure, hence the potential detect measurable effects of the presence and
the type of fractal structure. In particular, it follows that, in a model of gravity based on
the spectral action, the presence of fractality in the spacetime structure leaves a detectable
signature in quantities, like the slow-roll parameters and the power spectra for the scalar
and tensor fluctuations, that are in principle measurable in the CMB, modulo the problem
of determining the unknown parameter β of the model, already discussed in [41], [42].

We perturb the Dirac operator D of a packing P of 3-spheres by a scalar field φ. Corre-
spondingly the spectral action is modifies by terms that determine a potential for the scalar
field. We discuss the effect of the real points of the dimension spectrum (Proposition 6.1)
and of the fluctuations coming from the points off the real line (Proposition 6.2) on the shape
of the potential.

Proposition 6.1. Let P be either a packing of 3-spheres satisfying the three conditions of
Definition 3.3, or a configuration of Poincaré homology 3-spheres arranged according to the
fractal dodecahedron construction of §5.1. Consider the product geometry S1

β × P of P with
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a circle of size β. Then the spectral action satisfies

(6.1)

Tr(h((D2 + φ2)/Λ2))) ∼ 2β
(
Λ4 ζL(3) h3 − Λ2 1

4
ζL(1) h1

)
+2βΛσ+1

(
ζ(σ − 2, 3

2
)− 1

4
ζ(σ, 3

2
)
)
Rσ hσ

+πΛ4βζL(3)V(φ2/Λ2) + π
2
Λ2βζL(1)W(φ2/Λ2)

+4βΛσ+1
(
ζ(σ − 2, 3

2
)− 1

4
ζ(σ, 3

2
)
)
Rσ Uσ(φ2/Λ2)

+SoscD,φ(Λ),

where the last term collects the fluctuations coming from the log-oscillatory terms contributed
by the poles of the zeta functions that are off the real line, described in Proposition 6.2 below.
The potentials V, W, and Uσ are, respectively, given by

(6.2) V(x) =

∫ ∞
0

u(h(u+ x)− h(u))du, W(x) =

∫ x

0

h(u)du,

(6.3) Uσ(x) =

∫ ∞
0

u(σ−1)/2(h(u+ x)− h(u))du,

where σ = σ4(P) is the packing constant (2.5), Rσ is the residue of ζL(s) at s = σ, and h1,
h3, hσ are as in (3.11), (3.12).

Proof. The argument follows directly from Proposition 3.6, along the lines of Theorem 7 of
[9]. We have ∫ ∞

0

h(ρ2)ρ3dρ =
1

2

∫ ∞
0

uh(u)du,

which gives rise to the term ∫ ∞
0

u(h(u+ x)− h(u))du

in the V part of the potential; similarly, we have∫ ∞
0

h(ρ2)ρdρ =
1

2

∫ ∞
0

h(u)du,

which gives the term ∫ x

0

h(u)du

in the W part of the potential, and the term∫ ∞
0

h(ρ2)ρσdρ =
1

2

∫ ∞
0

u
σ−1

2 h(u)du,

which gives the term ∫ ∞
0

u
σ−1

2 (h(u+ x)− h(u))du

in the Uσ part of the potential. �
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Proposition 6.2. Under the assumptions of Definition 3.3, the fluctuation terms SoscD,φ(Λ)
are of the form SoscD,φ(Λ) = SS1

β×P(Λ)osc + Uosc
σ (φ), where SS1

β×P(Λ)osc is as in (3.13). Let

Uosc
σ (φ)≤R be the approximation to Uosc

σ (φ) that only counts the contribution of non-real poles
with |=(s)| ≤ R. The oscillatory term Uosc

σ (φ)≤R is approximated by a sequence
(6.4)

4β
Nn∑
j=1

Λσn,j+1
∑
m

Λi(αn,j+
2πm

log bn
)(ζ(sn,j,m − 2,

3

2
)− 1

4
ζ(sn,j,m,

3

2
)) Res

s=sn,j,m
ζLn(s)Usn,j,m(φ2/Λ2),

where n→∞ and R→∞, with

Usn,j,m(x) =

∫ ∞
0

u(sn,j,m−1)/2(h(u+ x)− h(u))du,

and where sn,j,m = σn,j + i(αn,j + 2πm
log bn

) are the complex zeros of the series of self-similar

strings Ln with the lattice property approximating the complex poles of ζL(P)(s).

Proof. The result is obtained as in Proposition 6.1, using the results of Proposition 3.6. �

The slow-roll inflation potential V (φ) is obtained from the combination of functions V ,
W , U that appears in the expansion of the spectral action above.

Corollary 6.3. The function

πΛ4βζL(3)V(φ2/Λ2) +
π

2
Λ2βζL(1)W(φ2/Λ2)

+4βΛσ+1

(
ζ(σ − 2,

3

2
)− 1

4
ζ(σ,

3

2
)

)
Rσ Uσ(φ2/Λ2) + Uosc

σ (φ)

depends explicitly on the presence of fractality, through the coefficients ζL(3), ζL(1), the
residue Rσ, the packing constant σ, and the oscillatory fluctuations.

Corollary 6.4. In the case of the fractal arrangement PY of dodecahedral spaces considered
in the previous section, the form of the fluctuations in the inflation potential is simpler and
given by the Fourier series

Uosc
σ (φ) =

4βΛσ+1

log(2 + φ)

∑
m

(
ζ(σ +

2πim

log(2 + φ)
− 2,

3

2
)− 1

4
ζ(σ +

2πim

log(2 + φ)
,
3

2
)

)
Usm(

φ2

Λ2
),

with

Usm(x) =

∫ ∞
0

u(σ+ 2πim
log(2+φ)

−1)/2(h(u+ x)− h(u)) du.

Proof. This follows directly from the results of the previous section, by proceeding as in the
proof of Proposition 6.1. �

7. Conclusions and further questions

7.1. Conclusions. In this paper we considered a model of gravity based on the spectral ac-
tion functional. This is known to recover, via its asymptotic expansion, the usual Einstein-
Hilbert action with cosmological term, along with modified gravity terms (conformal and
Gauss–Bonnet gravity). We considered simple models of (Euclidean, compactified) space-
times of the form S1

β × P , where β is the size of the S1-compactification and P is a fractal
configuration built out of 3-spheres (Apollonian packings) or of other spherical space forms
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(Sierpinski fractals). We evaluated the leading terms of the expansion of the spectral action,
using information on the zeta function of the Dirac operator of a spectral triple, and we
compared them, respectively, with the corresponding terms in the simpler case of S1

β × S3
a

(spatial sections given by a single sphere of radius a) or S1
β ×Y where Y is a spherical space

form, in particular the Poincaré homology sphere (dodecahedral space). We regard the case
of S1

β × P , where P is an Apollonian packing of 3-spheres or a configuration obtained from
a Sierpiński fractal dodecahedron, as a model of possible presence of fractality in spacetime
geometry: a version of Packed Swiss Cheese Cosmology models. We showed that the result-
ing leading terms of the expansion of the spectral action for S1

β ×P differ from those of the

ordinary S1
β × S3 (or S1

β × Y ) case in the following ways:

• The term 2Λ4βa3h3− 1
2
Λ2βah1, respectively corresponding to the cosmological and the

Einstein–Hilbert term, are replaced by terms of the form 2Λ4βζL(3)h3− 1
2
Λ2βζL(1)h1,

which can be seen as a zeta regularization of the divergent series of the 3-sphere terms
summed over the packing.
• There is an additional term in the gravity action functional of the form

Λσ+1

(
ζ(σ − 2,

3

2
)− 1

4
ζ(σ,

3

2
)

)
Rσhσ,

where ζ(s, x) is the Hurwitz zeta function and σ is the packing constant of P , with
Rσ the residue at σ of the zeta function ζL(s) of the fractal-packing. For a fractal
dodecahedron σ is the Hausdorff dimension, while for an Apollonian packing it is
conjecturally the Hausdorff dimension of the residual set. In both cases this term
detects modifications to the gravity action functional due to the presence of a fractal
structure.
• This additional term is further corrected by a Fourier series of log-oscillatory fluc-

tuations, coming from the presence of points of the dimension spectrum off the real
line (another purely fractal phenomenon).
• The perturbation D2 7→ D2 +φ2 of the Dirac operator determines a slow-roll inflation

potential V (φ) for the field φ. The shape of the potential detects the presence of
fractality through the coefficients ζL(3), ζL(1), the packing constant σ, and the residue
at σ of ζL(s), and oscillatory fluctuations.

7.2. Further questions. There are a number of questions, both mathematical and physical,
that arise in relation to improving the model of gravity, based on the spectral action, on
cosmologies exhibiting fractality. On the mathematical side, as we have seen, one needs a
better understanding of the properties of higher-dimensional Apollonian packings, especially
with respect to characterizing the presence of exact self-similarity, extending results like [15]
beyond the 2-dimensional case of circle packings.

From the physics viewpoint, the logic we followed in this paper is along the lines of sev-
eral other recent results, where one considers a classical model of (Euclidean, compactified)
spacetime and computes what the expansion of the spectral action looks like, either with the
full infinite series of the asymptotic expansion, or at least with the leading terms up to order
Λ0, see for instance [9], [10], [25], [27], [54]. Under this perspective, one can consider the
classical Packed Swiss Cheese Cosmologies. These originate in a spacetime model introduced
in the late ’60s in [47] as a prototype model of isotropic but non-homogeneous spacetimes
(as opposed to, for instance, the Bianchi IX examples of homogeneous non-isotropic spaces).
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In other words, the original construction of the Packed Swiss Cheese Cosmology is dictated
by imposing certain kind of regularity requirements on the geometry. These classical models
have then been tested as possible models of fractal and multifractal structures in spacetime.
Here we investigate how the spectral action functional, seen as our choice of action functional
of gravity, behaves on this specific classical geometry. A first important question in this di-
rection, which would make the model more realistic (closer to the original construction of
[47]) would be to start from a (Euclidean, compactified) Robertson–Walker spacetime and
carve out balls, so as to obtain a residual Apollonian sphere packing, rather than adopting
the simplified model we considered here of a product P × S1. In terms of computations of
the spectral action, this would mean adapting the computation for the Roberston–Walker
metric of [10] to the resulting fractal packing, rather than (as we did here) adapting the
computations of [9] for S3 to the case of the Apollonian packings of 3-spheres, or the fractal
dodecahedral packing of Poincaré homology spheres. A second question would be to adopt
a different viewpoint and derive spacetime models (possibly with some form of fractal struc-
tures or of noncommutativity) from a least action principle applied to the spectral action
functional. More explicitly, the question would be whether such a variational principle can
be reinterpreted in terms of classical theory as a modified gravity model, with an effective
stress-energy tensor (as for instance in the case of f(R)-modified gravity).
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