
1 August 1980, Volume 209, Number 4456

Quantum Nondemolit
Measureme

Vladimir B. Braginsky, Yuri I. Vorontsov, Kip S. T]

Scientists have understood since the
1920's that the physical laws which gov-
ern atoms, molecules, and elementary
particles are very different from the laws
of everyday experience. The special
laws of the atomic and molecular ",mi-
croworld" are called quantum mechan-
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Summary. Some future gravitational-wave antennas will be cylind
kilograms, whose end-to-end vibrations must be measured so accL
timeter) that they behave quantum mechanically. Moreover, the v
must be measured over and over again without perturbing it (quant
measurement). This contrasts with quantum chemistry, quantum
nuclear, and elementary particle physics, where one usually mak
on an ensemble of identical objects and does not care whether al
perturbed or destroyed by the measurement. This article describes
techniques required for quantum nondemolition measurements and
lying them. Quantum nondemolition measurements may find applic,
science and technology.

ics; those of everyday experience are
classical mechanics. The laws of quan-
tum mechanics were forced on physicists
and chemists in the 1920's as the only
possible way to understand the spectral
properties of the light emitted by atoms
and molecules.
Quantum mechanics tells us that,

whenever a person measures some prop-
erty of an electron (or of any other object
in the microworld), his measurement in-
evitably will disturb the electron in a
somewhat unpredictable way. The more
accurate the measurement, the bigger
and more unpredictable the disturbance.
The disturbance is not due to the per-
son's incompetence; rather, it is an in-
trinsic and inevitable feature of the laws
of quantum mechanics.
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tury: an accurate position measurement
must completely disturb the momentum;
an accurate momentum measurement
must completely disturb the position.
As bizarre as this situation may seem,

it is even more bizarre when studied in
greater depth-as was done theoretically

jOli by Niels Bohr, Werner Heisenberg, John
von Neumann, Wolfgang Pauli, and oth-

bnts ers in the 1920's and 1930's. [See the
textbook of Bohm (1) for details; see (2)
for a detailed illustrative example.] It

horne turns out that the unpredictable distur-
bance is a direct result of the extraction
of information about the particle's posi-
tion or momentum. It matters not how

person measures the information is extracted, nor where it
tron in space with is stored-in a person's brain, on mag-

s measurement in- netic tape, or in some minute change of
.lectron with a to- the state of some other particle. So long
ce. A second mea- as the information exists somewhere in
on's position, im- the universe outside the original particle
t one, will give the (more precisely, "'outside the particle's

wave function"), future measurements
of the particle will reveal that the distur-

Jers of mass -100 bance has occurred. The only way to un-

urately (1 o-19 cen- do the disturbance is to "run the measur-

,ibration amplitude ing apparatus perfectly backward' and
:um nondemolition thereby reinsert all the information back
optics, or atomic, into the particle. Only if no trace of the
es measurements information remains anywhere, not even

ny single object is in the experimenter's brain, can the par-
the new electronic ticle return to its original undisturbed
the theory under- state.
ation elsewhere in The quaptum theory of measurement

(1), which tells us these things and more,
is very widely but not universally accept-
ed by physicists. Einstein never fully ac-

irst one did; but a cepted it (3); Lamb, a Nobel Prize win-
lectron's momen- ner for his experimental work in quan-
letely unexpected tum physics, does not fully accept it (4).

The authors of this article do accept it,
ie momentum is and will presume it to be correct
lly and some defi- throughout this article.
l, that momentum The quantum theory of measurement
ly will disturb the tells us that, if a measurement is some-

an unpredictable what imprecise, then the magnitude of its
momentum mea- disturbance is somewhat but not entirely
result is known in predictable. For example, a very careful
same as just ob- measurement of the east-west position of

measurement is of an electron, with an imprecision Ax, can
know the result in
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be guaranteed to disturb its east-west
momentum by not much more than
Ap = A/(2Ax), where h (8 1.054 x 10-
cm g cm/sec) is Planck's constant. How-
ever, no matter how careful the measure-

ment may be, the momerntum uncer-

tainty afterward will be at least h/(2Ax).
Similarly, a momentum measurement of
precision Ap will leave the position un-

certain by at le-ast Ax = h/(2Ap)-but if
the measurement is very careful, the po-

sition disturbance need not be much
larger than this. The limit AxAp .- /2,
which holds for either type of measure-

ment, is called the Heisenberg uncer-

tainty principle.
The ultimate limits imposed by the un-

certainty principle have been explored in
great detail during the past decade by C.
W. Helstrom, R. L. Stratanovich, J. P.
Gordon, and others. They have devel-
oped a beautiful, mathematical theory of
optimum quantum mechanical measure-

ments (quantum detection and estima-
tion theory) (5). Unfortunately, this the-
ory assumes one can make a precise
measurement of one observable or an-

other, or of some combination of observ-
ables; but it does not spell out how such
precise measurements can be realized
technically-even in principle.

This gap in the theory is being con-

fronted today in the effort to detect cos-

mic gravitational waves (6). Gravity-
wave detectors consist of aluminum (or
sapphire or silicon or niobium) bars,
weighing between 10 kilograms and 10
tons, which are driven into motion by
passing waves of gravity. The motions
are very tiny: for the gravity waves that
theorists predict are bathing the earth,
a displacement 8x 10-19 centimeter
might be typical (6). And this displace-
ment may oscillate, due to oscillations of
the gravity wave, with a period P 10-3
second. To see the details of the gravity
wave, one must thus make repeated
measurements of the bar's position with
precision Ax ' 10-19 cm, and with time
intervals between measurements of
T ; 10-3 second.
For all measurements ever made in the

past on a heavy bar, the effects of quan-

tum mechanics were totally negligible;
the classical mechanics of everyday ex-

perience gave a perfectly adequate de-
scription of the bar's behavior. But one

never before tried to make measure-

ments of such enormous precision as

10-19 cm. If the bar is suspended freely
like a pendulum, as it is in some detec-
tors (6), then over time intervals
T 10-3 second it will behave as though
it were not suspended at all. It will be as

free to move horizontally as the electron
described above-and like the electron it
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will be subject to the laws of quantum
mechanics: an "initial" measurement of
the bar's east-west position with preci-
sion Axi 10-19 cm will inevitably dis-
turb the bar's east-west momentum by
Ap - (h/2Axi), and correspondingly will
disturb its velocity by Av = Aplm 2 (h/
2mAxi), where m is the bar's mass. Dur-
ing the time interval X - 10-3 second be-
tween measurements, the mass will
move away from its initial position by
an amount, AX,m = Av T : (h-/2mAxi),
which is unpredictable because Av is un-
predictable. Putting in numbers (i = 10-3
second, m = 10 tons, Axj = 10-19 cm),
we find Axm 2 5 X 10-`9 cm-which is
somewhat larger than the desired preci-
sion of our sequence of measurements. If
the next measurement reveals a position
changed by as much as 5 x 10-19 cm, we
have no way of knowing whether the
change was due to a passing gravity
wave or to the unpredictable, quantum
mechanical disturbance made by our
first measurement. In effect, our first
measurement plus subsequent free mo-
tion of the bar has "demolished" all pos-
sibility of making a second measurement
of the same precision, Ax - 10-19 cm, as
the first, and of thereby monitoring the
bar and detecting the expected gravity
waves.

In principle one can circumvent this
problem by making the bar much heavier
than 10 tons (recall that AXm is inversely
proportional to the mass). However, this
is impractical. In principle another solu-
tion is to shorten the time between mea-
surements (recall that Axm is directly
proportional to r). However, this will
weaken the gravitational-wave signal
(8XGW ix for iT 10-3 second) even
more than it reduces the unpredictable
movement of the bar (Axm x T).
The best solution is cleverness: find

some way to make the gravity-wave ef-
fect stronger; this is being done in laser-
interferometer gravity-wave detectors
(6), but only at the price of having to
make 10-16cm measurements of the rela-
tive displacement of two bars as far apart
as several kilometers. Alternatively, find
some way to circumvent the effects of
the Heisenberg uncertainty principle-
that is, some way to prevent the inevi-
table disturbance due to the first mea-
surement, plus subsequent free motion,
from demolishing the possibility of a sec-
ond accurate measurement: a quantum
nondemolition (QND) method.
One QND method which could work

in principle is this: instead of measuring
the position of the 10-ton bar, measure
its momentum with a small enough initial
error, Api - 10-9 g cm/sec, to detect the
expected gravity waves. Thereby inevi-

tably disturb the bar's position by an un-
known amount Ax - 4/2Ap, - 5 x 10-19
cm. Wait a time r-z 10-3 second and
then make another momentum measure-
ment. As the bar moves freely between
the measurements, its momentum re-
mains fixed. The uncertainty Ax in the
bar's position does not by free evolution
produce a new uncertainty ApPm in the
momentum. Consequently the second
measurement can have as good accura-
cy, 10-9 g cm/sec, as the initial measure-
ment; and a momentum change of (a
few) x 10-9 g cm/sec due to a passing
gravity wave can be seen.
Momentum measurements can be

quantum nondemolition, but position
measurements cannot be, for this simple
reason: in its free motion between mea-
surements the bar keeps its momentum
constant, but it changes its position by
an amount 8x = (p/m)i that depends on
the momentum, and that therefore is un-
certain because of measurement-induced
uncertainties of the momentum. We say
that momentum is a QND variable, but
position is not.

Unfortunately, however, it is far eas-
ier to measure position than momentum.
Nobody has yet invented a technically
realizable way of making momentum
measurements with the required preci-
sion.
The problem of inventing a technically

realizable QND measurement scheme
was first posed in 1974 (8). This refer-
ence also formalized the concept of
QND measurements. Subsequent devel-
opments in the theory of QND are due
largely to Unruh (9, 10); Braginsky, Vo-
rontsov, and Khalili (11, 12); Caves,
Thorne, Drever, Zimmermann, and
Sandberg (13-15); and Hollenhorst (16).
All of this work has been theoretical: it
has shown that in principle QND mea-
surement schemes can completely cir-
cumvent the disturbing back-action ef-
fects of one's measurements, and it has
led to several tentative designs for prac-
tical QND measurements in gravity-
wave detectors-designs which do not
involve measuring momentum.

Actual laboratory work on QND mea-
surement schemes is only now beginning
to get under way, and the levels of sensi-
tivity required are so great that we can-
not hope for any laboratory results until
several years from now. Nevertheless, it
is reasonable to expect QND measure-
ments to be a routine part of gravity-
wave technology by the late 1980's.
The purpose of this article is to make

as wide an audience as possible aware of
these developments, so that people can
begin to ask whether the QND idea
might be useful in other areas of science
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and technology. To achieve this purpose
effectively, we feel it necessary to write
the rest of this article at a somewhat
technical level. We hope thereby to con-
vey to physicists, engineers, chemists,
and others familiar with elementary
quantum mechanics and elementary
electronics, a deep enough understand-
ing of the QND idea that they can begin
to think creatively about it themselves.

Resonant-Bar Gravitational-Wave

Antennas

Although the QND idea is explained
most easily, as we have done, in terms of
bars which move freely (free masses),
QND measurements are most needed for
a different type of gravity-wave antenna:
one made of a bar which oscillates me-
chanically in its fundamental mode (bar
mass, m 10 to 10,000 kg; oscillation
frequency, cu/2Tr 500 to 10,000 hertz)
(6). The expected gravity waves should
produce changes of oscillation amplitude
Ax - 10-18 to 10-19 cm, which are less
than or of order the width of the quantum
mechanical wave packet of the oscillator
&xQM = (h/2mcw)112, if the oscillator is in its
ground state or in a coherent (minimal-
wave-packet) state. Here, by contrast
with nuclear, atomic, and elementary-
particle physics, there is only one quan-
tum mechanical system being measured
(the oscillator), rather than an ensemble
of systems; and we must make a continu-
ous sequence of measurements on this
one system.
Such an oscillator will actually behave

quantum mechanically even in the pres-
ence of thermal Brownian motion and at
bar temperatures kT >> hc, so long as
its quality factor Q is sufficiently high-
that is, so long as the fundamental mode
of the bar is coupled sufficiently weakly
to the other, thermalized modes (7). In
particular, when one is making energy
measurements which put the oscillator in
an energy eigenstate, Brownian motion
during one cycle will change the number
of quanta n in the oscillator by less than
unity if (7)

(n + J)kT/Q < hi/4lT (la)

and if one is making amplitude measure-
ments, Brownian motion during the mea-
surement time i will change the ampli-
tude by less than the coherent-state
wave-packet width (hl2mcu)112 if (7)

2kTrIQ <h (lb)

(see Eqs. 40 and 41 below).
In order to monitor the effects of a

weak gravity-wave force on such an os-
cillator, one must use a measurement

1 AUGUST 1980

technique whose back action on the os-
cillator, together with subsequent free
evolution, does not substantially disturb
the probability distributions of the ob-
servables being measured-a QND tech-
nique. In the following sections we shall
describe the theory of such QND mea-
surement techniques as applied to oscil-
lators, to free masses, and more general-
ly to any quantum mechanical system.
Throughout our description we shall try
to give short, elementary proofs of most
of the results quoted. More elegant and
rigorous proofs will be found in the pri-
mary literature. To understand our dis-
cussion, the reader must be familiar with
elementary quantum mechanics and ele-
mentary electronic circuit theory, but
little other specialized knowledge should
be needed.

General Theory of Quantum

Nondemolition Measurements

Consider a system, such as an oscilla-
tor, that has some observable A which
an experimenter wishes to monitor. For
the moment, assume that the system's
only coupling to the external world is
through the experimenter's measuring
apparatus. We define a QND measure-
ment of A as a sequence of precise mea-
surements of A such that the result of
each measurement is completely predict-
able from the result of the first measure-
ment-plus, perhaps, other information
about the initial state of the system. This
definition, and the ramifications which
follow, are a refinement by Caves [in
(15)] of Braginsky and Vorontsov's (8)
original concept of quantum nondemoli-
tion. A similar refinement has been de-
veloped independently by Unruh (10).
Quantum nondemolition measure-

ments are ideal tools for use in the detec-
tion of weak external forces (such as
gravity waves) that act on the system.
One need only perform a QND mon-
itoring of the evolution of A and watch
for deviations from the predicted evolu-
tion.
Most observables cannot, even in

principle, be monitored in a QND way.
In any precise measurement of an ob-
servable A, the back action of the mea-
suring apparatus uncontrollably and un-
predictably kicks all observables C
which fail to commute with A; and then,
in the subsequent free evolution of the
system, the contamination in C may be
fed into A, making the results of future
measurements of A unpredictable. Only
very special observables can be immune
to such feedback contamination; they
are called QND observables [or some-

times generalized QND observables
(15)]. Mathematically, A is a QND ob-
servable if and only if, when the system
is evolving freely in the Heisenberg pic-
ture, A commutes with itself at the dif-
ferent moments of time tj, tk when one
makes one's measurements (10, 15)

[A (tj), A(tk)j = 0 (2)
If this condition is satisfied at all times t3
and tk, then A is called a continuous
QND observable; if it is satisfied only at
special times, then A is a stroboscopic
QND observable. If A is conserved dur-
ing free evolution (dAldt = 0), then it is
guaranteed to satisfy Eq. 2 for all tj, tk
and therefore to be a continuous QND
observable.

In the case of a free particle, the ener-
gy and momentum are conserved and are
continuous QND observables, but the
position is not: x?(t + r) = x?(t) + j5rlm,
so

[xC(t), x(t + r)] = iT/rm (3)
Precise measurements of x perturb p5 un-
controllably, and the contamination in p5
subsequently feeds back into xA as the
particle moves freely.

For a harmonic oscillator the position
and momentum satisfy the commutation
relations

[x(t), xA(t + r)] = (ih/mwu) sin cur (4a)

[j(t), p(t + T)] = ihmco sin cr (4b)

These imply that xA and pi are not continu-
ous QND observables. However, if one
makes one's measurements stroboscopi-
cally at times separated by an integral
number of half-periods (T = kTrr/c; sin
cu = 0), then the commutators in Eqs.
4a and 4b vanish. This means that I and
p5 are stroboscopic QND observables
(12, 13). Stroboscopic QND measure-
ments (12, 13) of xA orp drive the oscilla-
tor into a state where xA is known precise-
ly-for example, at moments t = kwr/
andp is known precisely at t = (k + I)v/
c); but at other times A and p are highly
uncertain. For an oscillator the con-
served quantities, which are guaranteed
to be QND observables at any and all
times, include the energy (8) and the real
and imaginary parts of the complex am-
plitude (13)

X1 = xc(t) cos cut - [f)(t)/mc] sin cut (5a)

X2 = x(t) sin cut + [j(t)/mcu] cos cut (5b)

High-precision measurements of X1 or
X2 (whether fully QND or not) are called
back-action-evading measurements (14,
15) because they enable the measured
component of the amplitude (for ex-
ample, X1) to avoid back-action con-
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tamination by the measuring device, at
the price of strongly contaminating the
other component (X2). (The uncertainty
relation

AXLAX2 . ti/2mo (5c)
is enforced by the commutation relations
[X'1, X21 = ih/mW,, which follow from
[x, p] ih.)

Let A be a-QND observable which is
to be monitored by a sequence of perfect
QND measurements at times to, tl, t2,
.... Since A(to) and A(tb) commute
(QND assumption; Heisenberg picture),
one can perform a perfect "state-prepa-
ration measurement" at time to, which
puts the system into a simultaneous ei-
genstate Ipo) of the observables AN0),
A(t1), A(t2), . . . with some (not pre-
viously predictable) eigenvalues A(to),
A(tj), A(t2),.. . . From the results of this
first measurement one can compute the
eigenvalues A(to), A(t1), A(t2), .... Lat-
er, as the system evolves freely, its state
lfo) remains fixed in time, while its ob-
servable A evolves through the values
A(t1), A(t2), .... Subsequent perfect
measurements of A at times tl, t2, * * -

must give the known eigenvalues A(tj),
A(t2) and must leave the state of the sys-
tem kPo) unchanged. If A is a continuous
QND observable, then the QND mea-
surements can be made continuously,
and each measurement can last as long
or as short a time as one wishes. IfA is a
stroboscopic QND observable, then
each measurement must be made very
quickly (stroboscopically) to avoid con-
tamination. Examples will be given be-
low, and further detail will be found in
section IV of (15).
The apparatus used in any measure-

ment consists of a sequence of stages,
through which information flows toward
the experimenter's eyes and brain. Mea-
surement theory asserts that, although
the early stages of the apparatus may be-
have quantum mechanically, the late
stages must be classical. There is no uni-
versally accepted definition of classical.
We shall regard a stage as classical if the
quantum mechanical uncertainties of it
and of subsequent stages have no signifi-
cant influence on the overall accuracy of
the measurement. If the system being
studied interacts directly with a classical
stage, the measurement is called direct.
When, between the system and the first
classical stage, there is a quantum stage
(quantum mechanical readout system,
QRS), the measurement is called indirect
(17). For example, the measurement of
the position of a particle by its black-
ening of a photographic plate is direct.
The measurement of position by the par-
ticle's scattering of light or of an electron
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is indirect. The vast majority of measure-
ments are indirect. In electronic measur-
ing systems the first classical stage is of-
ten the first amplifier.

In deducing quantum limitations on
the sensitivity of a specific measuring
scheme, one must analyze quantum me-
chanically everything that precedes the
first classical stage. The overall accuracy
of the measurement is governed not only
by quantum fluctuations in the quantum
stages, but also by the details of the cou-
plings between those stages and between
them and the measured system. These all
influence the signal which enters the first
classical stage, and that signal ultimately
determines the quantum errors of mea-
surement.

In practice, if not in principle, the re-
duction of the wave function occurs
when the signal enters the first classical
stage. If that signal carries information
not only about the observable A which
interests us, but also about observables
C that fail to commute with A, an exact
measurement is impossible. This is be-
cause any flow of information about C
into the first classical stage will, accord-
ing to the uncertainty principle, be ac-
companied by unpredictable back-action
forces into the quantum stages-back-
action forces which must ultimately con-
taminate all observables that fail to com-
mute with C, including A.
Because of this back action, the mea-

surement error must always exceed an
ultimate quantum limit. We shall derive
that limit under the special assumption
that in the Heisenberg picture A and C
are time-independent-either because
they are constants of the motion such as
X, and X2, or because they are time-
evolving observables [such as x(t) and
M(t)] evaluated at some fixed moment of
time [such as A = x(O), C = p(O)]. We
assume that the "readout observable" of
the last quantum stage, QR, which
couples into the first classical stage, is
expressible as

QR =J(fA +1 ) (6a)
where

[A,C] = 2iyh so AAAC : -yt (6b)

with y a real number. The time evolution
of the readout observable (R is embod-
ied in the function f and/or in the real pa-
rameters a and ,. Typically, a and ,B will
be sinusoidal functions of time, which
are used to code and separate the A and
C signals. We assume that the first clas-
sical stage (usually an amplifier) is equal-
ly sensitive to signals at the A and C fre-
quencies. Then no matter how accurate-
ly the first classical stage monitors (R, it
must give errors in A and C related by

AA = (J/3/)AC, where & and /8 are the
root-mean-square (r.m.s.) values of a
and ,3. These relative errors, combined
with the uncertainty relation (Eq. 6b),
imply the ultimate quantum limit

AA£4- [(A/)yfj]1I2 (6c)
Return now to the general situation

where A and C might be time-dependent.
In order that the instantaneous signal at
time t not contain any contaminant infor-
mation about observables C(t) which fail
to commute with A(t), it is necessary and
sufficient that A(t) commute with that
part of the Hamiltonian ft(t) which de-
scribes the interaction of the system with
the measuring apparatus (1)

[A(t),fH(t)] = 0 (7)
In order that infor, iation about A enter
the measuring ap, tus, ft1 must de-
pend upon A. Usually one achieves
these conditions by direct coupling of A
to some observable M1 of the measuring
apparatus

f, = KAM (8)
In summary, the condition in Eq. 7

guarantees no direct, instantaneous back
action of the measuring apparatus on the
quantity A being measured; and the con-
dition in Eq. 2 guarantees that variables
C which have been contaminated by
back action will not subsequently, by
free evolution (with RI turned off), feed
their contamination into A. Often, how-
ever, HI is turned on for a long time-
even for all time. Then there is danger
that ft1 may catalyze an evolutionary
feeding of C into A. One can be sure this
does not happen if an analysis of the sys-
tem plus measuring apparatus, including
all couplings, reveals that [A(tj),
A(t2)] = 0 for all times t, and t2 at which
signals enter the classical stage. How-
ever, such a full analysis may be prohibi-
tively difficult.

Fortunately, in one common situation
a full analysis is not necessary: Caves
[in (15)] has shown that, if A is a
continuous QND observable and H'I con-
tains no system observables except A,
then the Heisenberg picture evolution
of A with couplings turned on is identical
to its free evolution, and consequently A
is fully isolated from back action-both
direct and indirect. Caves (15) has also
proved "'full isolation of A with la1
turned on" under more general circum-
stances.

Just as f, might catalyze an indirect
feeding of contaminated variables C into
A, so also such feeding might be cata-
lyzed by the coupling of the system to a
classical external force F(t) (for ex-
ample, to a gravitational wave). This
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coupling is embodied in a piece of the
Hamiltonian

ftF = ,Fx (9)
where u- is a coupling constant and x is a
dynamical variable of the system (x is
position in the case of a gravitational-
wave antenna). If A satisfies the self-
commutation condition (Eq. 2) even in
the presence of ftF, then A can remain
free from contamination. If, in addition,
free evolution with 4F turned on causes
an eigenvalue A(t) of A(t) to evolve in
such a way that, from a precise knowl-
edge of A(t), one can deduce F(t), then A
is called a QNDF observable [(15); see
also Unruh (10), where this is denoted
QNDD]. QNDF observables are ideal
tools for monitoring weak, classical
forces.

If, on the other hand, the term 4F in
the Hamiltonian catalyzes an evolution-
ary feeding of contaminated observables
e into A (that is, if [A(tb), A(tk)] # 0 in
the presence of fRF), then although A
may be highly sensitive to the presence
of an external force, one cannot hope to
monitor the details of the force by mea-
surements of A.

In the case of an oscillator with posi-
tion xi coupled to the force (for example,
a gravitational-wave detector), X1 and A2
(Eqs. 5) are QNDF observables and thus
can be used for perfect monitoring of the
forces (13, 15). By contrast, the oscilla-
tor's energy, although a QND observ-
able, is not QNDF. As a result, precise
measuremefits of the energy can reveal
the presence of an arbitrarily weak force;
but they cannot determine the strength
of the force with a precision better than a
factor of 3 (13, 10, 15)-unless the force
is so strong that it increases the energy
by an amount large compared to the ini-
tial energy. Examples and proofs will be
sketched later.
When one is using a quantum system

to monitor a classical force F, one can
increase one's sensitivity by increasing
the response of the measured quantity A
to F. In (8) and (18) it is shown that, ifA
is the energy of an oscillator, F produces
a change of A which is larger, the larger
the oscillator's initial energy. Formally,
such a measuring scheme satisfies Un-
ruh's (l0) general condition for the de-
pendence of A's response on the initial
state of the detector (detector-dependent
response, or DDR)

[A, xc] # a C-number (10)

In the case of (8) and (18) A is the detec-
tor's (oscillator's) Hamiltonian, x. is its
position, and [A,x] = -(ihi/m)1. The
larger the initial energy of oscillation, the
larger will be (152), and the larger will be
1 AUGUST 1980

dA/dt. Further details will be given lat-
er.

This completes our sketch of the gen-
eral theory of QND measurements. This
theory will now be applied to various
types of measurements of harmonic os-
cillators, with emphasis on issues rele-
vant to gravitational-wave detection.

Position Measurements

A resonant-bar gravity-wave antenna
is an oscillator with mass m, frequency
w, position xi, and momentum p, which
couples to a gravitational wave (classical
external force F) with a coupling energy
HF= -xF(t). In most experiments the
antenna's position xi is coupled by a
transducer (fl, = Kx4; K coupling
constant) to an electromagnetic circuit
(quantum readout system), which we
shall describe as an oscillator with ca-
pacitance C, inductance L, generalized
coordinate (equal to charge on the ca-
pacitor) q, and generalized momentum
(equal to flux in the inductor) *. More
complicated QRS's can be used; but this
is the typical case. The voltage on the ca-
pacitor, which is proportional to q, is
monitored by an amplifier-the first clas-
sical stage of the measuring system.
Thus 4 is the readout observable QR (see
Eqs. 6).
The coupled antenna, force, and QRS

are governed by the Hamiltonian

152 1

2m 2
^2 ^2

+ + IL + 4+ t2L 2C

fIF = -xF(t) ft1 = Kx4 (1)

for which the Heisenberg evolution
equations are

dx/dt = p/rm

dp/dt = -mc2x + F(t) - K4
d4/dt = *IL
dfr/dt = -4/C - Kx (12)

Because these equations ignore the first
classical stage (amplifier) and its detailed
back action on the QRS, they cannot tell
us the actual sensitivity of the measuring
system. On the other hand, they can tell
us the ultimate quantum mechanical limit
on the sensitivity.

Suppose, as a first case, that the signal
QR = q is fed continuously into the am-
plifier for a time much longer than a
quarter-cycle of the antenna, and that
one's goal is to measure x0, the initial
value of the oscillator's position. During
the measurement xc(t), which feeds # and

thence QR-4, oscillates between x and
Po. [xi(t) = x0 cos cot + (jb0/mcu) sin cwt,
aside from minor modifications due to
the couplings. Note that x0- X1,
Pol/mw A'2; Eqs. 5.] Consequently, the
signal QR entering the amplifier contains
not only x0 but also, unavoidably, 1p5.
Since their relative strengths in the signal
are p0/xo = mco, the measurement deter-
mines them with relative precisions
Apo = mcoAx0. Taking account of the un-
certainty relation AxoApo 2 A/2, we find
(19, 18, 12, 15)

Axo = Apo/mco . (h/2mco)"X2 (13)

(This is a specific example of the general
quantum limit of Eqs. 6.) Such a mea-
surement is called an amplitude-and-
phase measurement because it gives in-
formation about both the amplitude
[xO2 + (pO/mco)2]1/2 and the phase 1/b =
tan-' (po/mcoxo) of the antenna's mo-
tions. An ideal amplitude-and-phase
measurement with the limiting sensitivi-
ty in Eq. 13 drives the antenna into a co-
herent (minimal-wave-packet) state. If
such a measurement (state preparation)
has put the antenna into a coherent state
with (x(t)) = x0 cos ct + (po/mco) sin cwt,
then a classical force F = Fo cos(cwt + p)
acting for a time T >> 2i-/co will leave
the state coherent but change its am-
plitudes by 8x0 = (Fo0r2mc) sin op,
8p0/mco = (FOr/2mco) cos ,o (15). A sub-
sequent ideal amplitude-and-phase mea-
surement can reveal this change if the
force FO exceeds the quantum limit (18)

FO (2/i)(mCh)"2 (14)
No amplitude-and-phase measurement
can do better than this.
An alternative derivation of the quan-

tum limits in Eqs. 13 and 14, due to Gif-
fard (19), takes detailed account of quan-
tum fluctuations in the amplifier and their
back action on the QRS.
The quantum limits in Eqs. 13 and 14

are traceable to the fact that x is not a
continuous QND observable; a continu-
ous measurement of x produces direct
back action on p, which then con-
taminates xi through free evolution. On
the other hand, I is a stroboscopic QND
observable (see Eq. 4a). Consequently,
by stroboscopic measurements (12, 13)
at times t = 0, 7t/&o, 21r/w, . . . one can
monitor x with perfect precision, in prin-
ciple (except for the ridiculous limit from
relativistic quantum theory, Ax 2 ti/mc
- 10-41 cm for m 10 kg). Stroboscopic
measurements can be achieved with the
system of Eq. 11 by pulsing on and off
the transducer's coupling constant K. By
a sequence of perfect stroboscopic mea-
surements one can monitor an arbitrarily
weak force Fo.
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Perfect stroboscopic measurements
require that x be coupled to the QRS for
arbitrarily short time intervals r at t = 0,
7/w, . . . (and also that the QRS transfer
its information to the first classical stage
in a time less than 7/o). If r is finite then
the momentum spread Ap 2 h/2Ax, pro-
duced by a measurement of precision Ax,
causes a mean position spread
(Ax)s, (Ap/m)i- . hr/2mAx during the
next measurement. The resulting r.m.s.
error is (18, 12, 13)

AX > (hr/rM)"2 (15)

The shorter the measurement time r, the
more accurate the measurement can be.

Unfortunately, short measurements
require very strong coupling of the an-
tenna to the QRS in order to surmount
the quantum mechanical zero-point ener-
gy that accompanies the signal through
the QRS and into the amplifier. This is
quantified in (20, 15, 14) for the case of a
mechanical oscillator with transducer
and QRS that feed the amplifier a sinus-
oidal voltage signal

V. = V2 KxIg21Icos lt (16a)

Here fl (assumed >> 1/r) is the signal
frequency, K is the transducer's cou-
pling constant, and g21 is the transfer
function of the QRS. This signal carries
an r.m.s. power Ps = (Kxg2uj)2/4Re(g22),
where Re(g22) is the real part of the out-
put impedance of the QRS. Accom-
panying this signal in the experimental
bandwidth 112T is a fluctuating quantum
mechanical zero-point power Pf, =
2 hfl/2T-half of it at the known phase of
the signal, the other half at the other
phase. This zero-point noise leads to
Ax ; (h/2mco)"2 (1/1,3r)"2, where

W 2Re(9g22fl) (16b)

is a dimensionless coupling constant (21,
20). If one averages over N successive
stroboscopic measurements (total band-
width lI2Nr), then the accuracy im-
proves as M- 12

Ax ; (hl/2mrn))'2 (I /,f3Nor)"12 (17)
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Fig. 1. Scheme for
coupling a mechani-
cal oscillator's (posi-
tion)2 x2 to an elec-
tromagnetic QRS.

Optimization of the measurement time
r in Eqs. 15 and 17 leads to an ultimate
quantum limit for stroboscopic measure-
ments with finite coupling (14, 15, 20):

Toptimal =(,8N(02)
Ax ' (h/Mrco)12(130)-"14

(18a)

(18b)

A coupling as large as 8 = 1 is dif-
ficult to achieve. Therefore, to beat
the amplitude-and-phase quantum limit
(hl/2mr)"', one will probably have to av-
erage over a large number N of measure-
ments.
By a sequence of stroboscopic mea-

surements at the quantum limit of Eq.
18b, one can monitor a classical force
F = Fo cos(wt + sp). If the phase ip is
near ir/2 or 3r/2, then the optimal times
for the stroboscopic measurements are
t = 0, 7r/c, 2ir/w, . . .; the force pro-
duces during N half-cycles Ax =
(7r/2)(NFO/mw2), and the force is mea-
surable if

Fo0 (2/7r)(hrMn3)"'2/3-"4NV-54 (19)

If the phase sp is near 0 or 7r, then the
precision of Eq. 19 is achieved by stro-
boscopic measurements at t = 7r/2w,
3Xr/2x, .... Since the phase of a gravi-
tational wave is not predictable in ad-
vance, two antennas are needed; one to
be monitored at t = 0, -w, . . ., the
other at t = 7r/2co, 37r/20, . . . (12, 13).
The stroboscopic limits of Eqs. 15, 17,

18, and 19 strictly speaking refer to a har-
monic oscillator with only one degree of
freedom. Unfortunately, a resonant-bar
gravitational-wave antenna has many
normal modes which can all be simulta-
neously perturbed by the back action of
each measurement. However, if the
strongly perturbed modes have commen-
surate eigenfrequencies, then strobo-
scopic QND measurements on the fun-
damental mode are also QND for the
other modes (12), and results near the
limits of Eqs. 15 to 18 may be achiev-
able.

Stroboscopic measurements can be
carried out on electromagnetic oscilla-
tors [such as inductance-capacitance
(LC) circuits] as well as on mechanical

oscillators. For example, one could send
a collimated pulse of electrons through
the capacitor so quickly that it spends a
time r << 2,7r/w between the capacitor
plates. The electrons will be deflected by
the electric field of the capacitor, which
is proportional to the oscillator's gener-
alized coordinate q (-charge on plates);
and by measuring the deflection one can
infer q. A stroboscopic sequence of such
measurements can reveal q, in principle,
to an accuracy (hi-IL) 12 = (hCco2r)1/2
(see Eq. 15) and can reveal the corre-
sponding voltage in the capacitor to
AV = (hW/C)"12(cr)12-which is a factor
(w-T)1/2 better than the standard ampli-
tude-and-phase quantum limit.

Energy Measurements

Suppose that one has developed a
method for making accurate measure-
ments of a harmonic oscillator (antenna),
and that an initial " state-preparation"
measurement has put the oscillator into
an eigenstate with energy Eo. A force Fo
cos(cot + sp) acting for time T will change
the oscillator's state. Because the phase
of the initial state is completely in-
determinate, no interference terms show
up in the new state's energy expectation
value (22)

(E) = Eo + W W F02i2/8m (20a)-

However, interference is a dominant ef-
fect in the variance of the new state's en-
ergy (22)

oT(E) = (2EOW)"I2 (20b)

The next measurement is likely to reveal
a changed energy, and thereby tell us
that a force has acted, if o-(E) -hw.
(Here we assume the force to be weak,
W < Eo.) Rewritten in terms of Fo, this
detection criterion is

2 rnwh )1/2Fo;~, 2
f no + '1f

(21)

where no = Eo/hw - 1/2 is the number
of quanta in the initial state. This force-
detection method can be arbitrarily sen-
sitive if no is made arbitrarily large (8,
18). However, because there is no
unique relationship between the mea-
sured energy and Fo [ac(E) >> (E) -E0],
this method cannot tell us the precise
magnitude of Fo. In other words, the en-
ergy is not a QNDF observable (13, 10,
15); see the discussion following Eq. 9.
A perfect energy measurement (per-

fect up to one quantum) is possible only
if (i) the interaction Hamiltonian fi for
the oscillator and QRS involves the os-
cillator energy ftc, and (ii) fI commutes
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with ft0; see Eq. 7 and associated dis-
cussion.

If instead ft, = Kxq, as occurs in most
measuring systems, then the directly
measured quantity is x(t)-or the ampli-
tudes x0 and p0-and the measurement is
of the amplitude-and-phase type with
quantum limits Ax0 = Apo/mwe
(h/2mco) 1/2 (Eq. 13). From the measured
x0 and po one can compute the oscilla-
tor's energy

Eo = p02/2m + m&w2xO2/2 = (no + 1/2)hw
up to an accuracy, for no > 1

AE = poApo/m + mW2xoAxo - no0112hW
(22)

The effect of the force will be discern-
ible if this error is less than cr(E) (Eqs.
20), which implies the same force-
detection criterion (Eq. 14) as we de-
rived from our original amplitude-and-
phase discussion.
One way to achieve an HI which in-

volves flo rather than x-and to there-
by beat the amplitude-and-phase limit
(Eq. 14)-is to make the oscillator's
mass m and spring constant mGt2 depend
weakly on a variable q of the QRS:
m = mJ(I + Kq), mCo2 = mO002(l + Kq)
(10). Then the total Hamiltonian be-
comes

ft fto + S1 + AfQRS

f0 = 2/2m0 + 2 m2x2 (23)

ft, = K,fto
where AfQRS is the Hamiltonian of the
free quantum readout system. Unruh
(10) has given a pedagogical example of
this for an electromagnetic oscillator: the
"'mass" m is an inductance; the "spring
constant" mW2 is 1/(a capacitance); and
the inductor coil and capacitor plates are
attached to a mechanical pivot with an-
gular position q, which varies the induc-
tance and capacitance in the required
manner. One can also vary the induc-
tance and capacitance by letting the me-
chanical QRS move appropriate materi-
als in and out of the inductor and capaci-
tor (11, 13).

For a mechanical oscillator with elec-
tromagnetic QRS there are also several
ways to make the mass and spring con-
stant depend on a QRS variable. In Fig. 1
the oscillator's mass is attached to a
movable capacitor plate of the QRS; the
energy in the capacitor's electric field is

L'= [1 1-(/d)2]q2/2C (24)

where C is the capacitance when x = 0;
and consequently the charge q on the
central plate of the QRS renormalizes
1 AUGUST 1980

the spring constant to m&w2= mOc02-
42/2Cd2. The spring constant can also be
renormalized by the QRS "momentum"
7ir (- flux in inductor) by attaching the
oscillator's mass to a current-carrying
coil that resides between two oppositely
wound coils of the QRS inductor. To re-
normalize the oscillator's mass m one
might attach to it a conducting plate that
resides in the inductor's magnetic field.
The velocity of the plate through the
magnetic field would induce an electric
dipole moment on the plate, which in
turn would couple by its velocity to the
magnetic field, giving an interaction en-
ergy proportional to p2*2 and thence a
mass renormalization.

Unfortunately, these various ideas
have not yet produced a viable design for
clean coupling of a mechanical oscilla-
tor's energy fo to a QRS. On the other
hand, designs without clean coupling can
still yield measurements of fto more ac-
curate than the amplitude-and-phase
quantum limit (no + 1/2)112hW. An ex-
ample is a QRS that couples only to £2,
but that averages £2 over a number of cy-
cles before sending it into the first classi-
cal stage (amplifier) (9, l l). The mea-
surement scheme of Fig. 1 will do this if
the period of the circuit's (QRS) oscilla-
tions is much longer than the period of
the mechanical oscillations. Then the cir-
cuit's capacitance (Eq. 24) and resonant
frequency will be sensitive to the time
average of x2 and thence to fto, with only
small admixtures of sensitivity to the
time-varying part of £2 and thence to the
oscillator's phase q. This is equivalent to
the statement in Eq. 6 that QR =
f(ft0 + o(fto)) with & << 1, which in
turn permits accuracies much better than
AE = (no + 1/2)1121cW. A detailed analy-
sis of this type of scheme is given in (11),
but for an electromagnetic ,oscillator with
a mechanical QRS and with qt=
rather than KV2q2 as in Fig. 1 and Eq. 24.
That analysis reveals a limiting sensitivi-
ty

AE ' (no + )1l(fl/cw)112h (25a)

where E = (no + 1/2)hw is the oscilla-
tor's energy, w is its frequency, fl is the
frequency of the QRS, and l <<«w. The
corresponding limit on the detection of a
classical force Fo cos(wt + p), which
drives changes in the oscillator's energy,
is

Fo 2~ mth (25b)

if &w/f < no + 1/2. If w/fl > no + 1/2,
then the limit on AE in Eq. 25a is re-
placed by 4w, the ultimate precision with

which one can ever measure energy
changes; correspondingly, the force limit
in Eq. 25b is replaced by Eq. 21.

In measurements of the time average
of x2 and thence fto, it is not essential
that the interaction Hamiltonian ft, in-
volve £2. Instead ftl can be proportional
to £, and then the internal workings of
the QRS can produce the average of x2 at
the entrance to the first classical stage.

Back-Action-Evading
Measurements ofX1

The QNDF observable X1 = x cos wt
- (ilmw) sin wt (real part of complex
amplitude; Eq. 5), like the position x, has
a continuous spectrum of eigenvalues;
and in principle it can be measured arbi-
trarily quickly and accurately (13, 15).
Suppose that an initial state-preparation
measurement at t = 0 has put the oscilla-
tor into an eigenstate Ito) of X1(0) with
eigenvalue eo. A classical force F(t) [to-
tal Hamiltonian H = Ho - iF(t)] will
change X1 as seen in the Heisenberg pic-
ture

k1(t) = Xl(0) [F(t')/mc] sin wt'dt'

(26)

In the Heisenberg picture the oscillator's
state remains fixed in time at Ifo), but
this is an eigenstate of X1(t) with eigen-
value

e(t) = o- [F(t')/mc] sin wt'dt'

(27a)

Subsequent perfect measurements of X1
must yield this eigenvalue and will reveal
the full details of its evolution. It evolves
in exactly the same manner as X1 would
evolve for a classical oscillator (13, 15).
One pays the price, in these measure-

ments, of not knowing anything about
the imaginary part of the complex ampli-
tude X2 (Eq. Sc). However, if one has a
second oscillator coupled to the same
force F(t), one can measure the imagi-
nary part t2 of its complex amplitude,
giving up all information about the real
part ki. One's measurements must give
the eigenvalue

71(t) = 7o + [F(t')/mw] cos wt'dt'

(27b)

which evolves in exactly the same man-
ner as the X2 or Y2 of a classical oscilla-
tor. From the output of either oscillator,
or better from the two outputs, one can
deduce all details of the evolution of F(t),
no matter how weak F(t) may be (13, 15).
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Fig. 2. Scheme for
stroboscopic or con-
tinuous back-action-
evading measure--
ments of a mechani- -:

schemewas devised ....:
independently in 1978 i-
by V. B. Braginsky m2
and by R. W. P..DDee-
ver, but has n.ot pre- 7777777777/
viously been pub-
lished.

Thus X1 and iC2 are QNDF observables.
A perfect measurement ofXl. (or 2)

requires (i) that the interaction Hamil-
tonian fh depend on X'1 and (ii) that fi,
commute with Xl1 (Eq. 7 and associated
discussion). The simplest example is

ft1 = KX1q = Kxq cos cot
- (K/mnc)p q sin cot (28)

A coupling of this type can be
achieved, for a mechanical oscillator, by
using a capacitive position transducer
with sinusoidally modulated coupling
constant (Th = Kxq cos cot), followed by
an inductive momentum transducer with
modulated coupling constant [H,=
- (KImc)p54 sin cot]. The two transducers
together produce a voltage output

V = dBaft1a
= Kx~cos cot -(Kimc)j sin cot
= KA'1 (29)

which drives an electromagnetic circuit,
the QRS, in which the charge q flows
(15). While capacitive position trans-
ducers and inductive velocity trans-
ducers are easy to construct, inductive
momentum transducers are not. The mo-
mentum and velocity of the oscillator are
related by

xT = a(Hn + Ha)/rp

= p/rn - (KImca)q sin oft (30a)

which means that the classical Lagrangi-
an L = px - (HO+ H1) for oscillator
plus transducers is

L=lmx2 -m2Ki x2-Kxq cos cot +

(K/co)iq sin ot +2Km(K sin cot/mco)2q2

(30b)

The first two terms represent the oscilla-
tor, the third is the capacitive position
transducer, the fourth is an inductive ve-
locity transducer (wire, physically at-
tached to oscillator, moves through ex-
ternal magnetic field), and the last is a

negative capacitor in the QRS circuit.
Thus, an inductive momentum trans-
ducer is equivalent to an inductive veloc-
ity transducer (easy to construct) plus a
negative capacitor (hard) (15). Although
negative capacitors are not standard
electronic components, they can be con-
structed in principle, and in principle
they can be noise-free (15).
For an electromagnetic oscillator with

mechanical QRS, one can achieve the
desired fIl = KA'1q using a capacitive
transducer for the oscillator's position xi
(--charge in oscillator's capacitor) and
an inductive transducer for its momen-
tum p (- flux in oscillator's inductor).
The momentum transducer turns out to
involve a standard mechanical current
transducer (current x) plus a negative
spring in the QRS (15). In principle nega-
tive springs can be noise-free (15).
The sinusoidal modulations required

in the transducers must be regulated by
an external, classical clock, which has
the same frequency c as one's oscillator.
One cannot use the oscillator itself as the
clock because in extracting the required
oscillatory information from the oscilla-
tor one will produce an unacceptably
large back action on Xl. However, be-
fore the experiment begins one can
check the frequency of the clock against
that of the oscillator. In principle they
can be made to agree perfectly, and in
principle the clock can be made fully
classical so its outputs are real numbers,
cos ct and sin ct, rather than operators
(10, 15). In practice, frequency drifts and
quantum features of the clock need not
cause serious experimental problems
(15, 20).
A perfect measurement of A1, which

lasts a finite time i, requires infinitely
strong coupling in the transducers
(K -m 00) in order to give a signal that
overwhelms zero-point noise in the
QRS. If one has only finite coupling,
then the zero-point noise accompanying
the signal gives rise to a limit (Eqs. 16
and 17withx - X1andNT - )(13-15)

AX1 t (I/2mc) 12(f3ci)-1/2 (31)
554

Here (3 is the dimensionless coupling
constant (Eqs. 16). Thus, whereas stro-
boscopic measurements with limited
coupling can beat the amplitude-and-
phase limit by a factor of only ((3co)"4
(Eq. 18b with N = co/ir), continuous
back-action-evading measurements of X1
can beat it by (/3c) -112. Stroboscopic
measurements are worse because of
their smaller duty cycle.

In the realistic case of weak coupling,
( < 1, one must average over many cy-
cles (f»>> 1/1,8) in order to sub-
stantially beat the amplitude-and-phase
limit. In this case one can make use of a
trick analogous to measuring the energy
by coupling to x2 and averaging: one can
perform a "single-transducer, back-ac-
tion-evading measurement" (13-15) by
coupling to

x cos cot cos fQt = - (I1 + X1 cos 2ct2

+ I2 sin 2ct) cos flt (32)

(that is, HI = 2Kxq& cos ct cos fQ) and
then sending the signal through a filter
(the QRS) with band pass at frequency
Ql >> c and bandwidth Af = 1/2T*
<<co/2. The filter will "average the X2
signal away" until its amplitude has fall-
en by 1/2coT* relative to that of the X1
signal. Since the initial r.m.s. X2 signal
strength is I/V'2 that of the X1, this cor-
responds to OR = f(X1 + A'/2V2coT*)
in Eq. 6a, which together with the uncer-
tainty relation in Eq. 5c and the argu-
ment of Eqs. 6 tells us that (20)

AX1 ; (I/2mco)1/2 (2/2cT*)-1/2 (33)

This is the error in X1 due to back action
from measurement of X2. The additional
error due to zero-point noise accom-
panying the X1 signal into the amplifier is
(Eqs. 16 and 17 with x-X1 and
NT -- i) (14, 15, 20)

AX1 ; (t/2mco) 12 (3cof)-112 (34)
Here 1/2i is the bandwidth of the experi-
ment (it is the larger of the QRS averag-
ing time r*, and the averaging time in
subsequent electronics). The ultimate
quantum limit on the sensitivity is Eq. 33
if 8 > 2V'2*/, and Eq. 34 if
< 2V'r*/I. Note that Eq. 34 is the

same limit (to within factors of order
unity) as in the case of exact coupling to
X = x cos ct - (filmco) sin Cot. Thus,
when (3< 2V'1r*/ and i»>> 1, one
can abandon the momentum transducer
without any serious loss of accuracy.

This type of single-transducer, time-
averaged, back-action-evading measure-
ment of Xl appears today to be the most
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viable technique for beating the ampli-
tude-and-phase limit (Eq. 14) in gravita-
tional-wave detection. In place of Eq. 14
one wilt face the limiting measurable
force

Fo ; (2/i)(mcoh)"l2
x Max [(po)-112, (2F20T*)-1/2] (35)

Thermal Noise in the Oscillator

and Amplifier

The quantum limits derived above are
not achievable in the laboratory today
because thermal noise exceeds quantum
mechanical noise.

Ignore for the moment thermal
(Nyquist) noise in the oscillator. Then if
the resistors in the QRS are cooled suffi-
ciently, the dominant nonquantum noise
will be that in the amplifier (first classical
stage). The amplifier, which we assume
to be linear, can be characterized by its
power gain G and its noise temperature
T,. The QRS feeds the amplifier a signal
at frequency f = fl/2r, to which the am-
plifier adds a noise power per unit band-
width

dPn = h_
df exp(hfl/kTn)- I (36)

Here k is Boltzmann's constant. If the in-
coming signal has power P,, then the am-
plified signal and noise have power (23)

GPs+ (G exp(Q/l/kT,) - 1 2 Af

(37)

Here Af is the bandwidth, and the hif/2
is a zero-point energy that accompanies
the signal throughout its trek through the
amplifier and other electronics, but does
not get amplified (23). The quantum lim-
its of previous sections of this article are
attributable to this zero-point energy. In
the presence of a real linear amplifier,
with nonnegligible noise temperature
Tn >> hf/k and large gain G >> 1, the
signal power P, must fight not (hfl/2)Af,
but rather

hf 1/hQ
Iexp(/lf/kTn) - 1 G2) f

kTUAf (38)
(see Eq. 37). Consequently, it is reason-
able to expect that the amplifier noise
will modify our quantum limits (Eqs. 6c,
13-15, 17-19, 21, 22, 25, 31, and 33-35)
by replacing hi with (12)

2kTn2k (39)

1 AUGUST 1980

These modified quantum limits are some-
times called amplifier limits. It will never
be possible, even in principle, to reduce
these amplifier limits below the corre-
sponding quantum limits (19, 24, 25).
The best linear amplifiers that have

been built are parametric amplifiers and
maser amplifiers, which operate at mi-
crowave frequencies and have (kn/fl)
as small as - lO. With such amplifiers
one can only hope to get within a factor
20 or d/20 of our quantum limits
(h -* 20hi). And even to achieve this one
must design a QRS which upconverts the
oscillator's signal frequency (kilohertz in
the gravitational-wave case) to the mi-
crowave (gigahertz) region.
Any physical oscillator (such as the

fundamental mode of a gravitational-
wave bar antenna) is weakly coupled to a
thermal bath of dynamical systems
(sound waves in the bar). This coupling
produces a frictional damping of large-
amplitude motions, and it also produces
a thermal-buffeting random walk of the
oscillator's amplitude (Nyquist noise).
The r.m.s. random-walk change of the
oscillator's amplitude during time X is

(AXO)Nyq = (APO/mo)NYq
= (AX1) Nyq = (AX2)Nyq
- (kT/mW2)112(WfI/Q)112 (40)

Here T is the temperature of the thermal
bath (the bar's temperature), and Q is the
oscillator's quality factor (number of
radians of oscillation required for fric-
tional damping of large-amplitude oscil-
lations by a factor e in energy). The cor-
responding r.m.s. energy change is

(,&E)NsYQ Q(Eokl) 12((Of/Q)112 (41)
These Nyquist noises must not exceed
the amplifier limits (quantum limits with
A -- 2kTn/lf) if one is to achieve the am-
plifier limits in real experiments. Some
numbers will be given below.

Prospects for Stroboscopic Measurements

One possible scheme for stroboscopic
measurements of a mechanical oscillator
(gravitational-wave antenna with mass
m= 10 kg and frequency w = 3 x 104
sec-1) is shown schematically in Fig. 2.
The mass of the oscillator is physically
attached to the central, movable plate of
a capacitor (capacitance between outer
plates = C), which plays the role of
transducer. The capacitor resides in the
QRS-a high-frequency LC circuit
[frequency f = (LC)112 - 1010 sec-1],
which has small losses [amplitude damp-
ing time T = 2(RCfI2)-' << 0.1/w] and

which is driven at its resonant frequency
fQ by an external generator. In practice
this circuit would be a microwave cavity
(26). At the measurement times wt = 0,
7r, 27r, . . . the generator is turned on for
a time r/2 and then turned off, and in an
additional time r/2 the excitations in the
circuit die out. During the brief on-time
r, the amplifier sees a voltage signal
V, = (Vo/d) lrxX cos fQt, where Vo/d is
the amplitude of the oscillating electric
field between the capacitor plates. The
experimenter averages the amplitude of
this signal (with alternating sign) over N
measurements to determine the position
x of the oscillator.

It is straightforward to analyze the
noise performance of this system by
standard circuit theory. Alternatively,
one can invoke the general formulas of
Eqs. 15 to 19 for stroboscopic measure-
ment schemes. Assuming that the resis-
tor's physical temperature is less than
the amplifier's noise temperature Tn - 10
K, the amplifier noise dominates and in
Eq. 18b we must replace h -+ 2kTn/1f.
Assuming that the amplifier is properly
impedance-matched to the circuit, the
measurement will achieve the limiting
precision (Eq. 18b)

AJCz ( 2kTn/f )1/2 (42)

Comparison of the voltage signal with
Eq. 16a reveals that K1g21L =

(Vo/\F2d)(dIr); scrutiny of Fig. 2 reveals
that the QRS output impedance, as seen
by the amplifier, is g22 = 2X/C; con-
sequently the dimensionless coupling
constant of Eq. 16b is 3 =
(VJ/d)2CflT/(4mw2). Combining this
with the required pulse time r
(J3Nco2)-112 (Eq. 18a), we find

f3N = [(Vo/d)2CNfl f3
4=03 (43)

To avoid voltage breakdown in the ca-
pacitor, its electric field amplitude
should not exceed (V/d) - 106 volt/cm.
Assuming other reasonable parameters
C= 1 pf, fl 1010 sec-', N= 1000,
T,, 10 K, m 10 kg, and cu 3 x 104
sec-1, we find

,8N 20 Ax==1 x 10-17cm (44)

Thus this system can achieve a sensitivi-
ty that is a factor (20)1/4 2.1 below the
amplitude-and-phase amplifier limit; but
this is still an order of magnitude worse
than the amplitude-and-phase quantum
limit (ft/2mw)"12 - 1 x 10-18 cm.
Nyquist noise in the antenna (Eq. 40

with wi = 7wN) will be less than the mea-
surement precision Ax 1 x 10-17 cm if
the antenna is cooled to 4 K and has a
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quality factor Q - 4 x 109. This is com-
parable to the best mechanical Q that has
been achieved (27) for a sapphire crystal
at 4 K.

Prospects for Single-Transducer

Back-Action-Evading Measurements

The configuration of Fig. 2 can also be
used in a single-transducer, back-action-
evading measurement of X1. In this case
the circuit's amplitude damping time
2(RCfl2)-1 becomes the averaging time
* f the QRS filter (previously it was the
stroboscopic pulse length), and we re-
quire T >> 1/ (previously it was
<< 1/co). Instead of being pulsed, the
generator's modulating voltage has the
steady-state form Vm = U0 sin Qtt sin cot,
which produces an electric field (Vo/d)
cos Ql cos cot in the capacitors (V0 =
Uofl/2w). That electric field, interacting
with the motions x = X1 cos cot + X2 sin
ct of the mechanical oscillator, produces
a signal voltage

V = (Vo/d)(flr*/2) [X1 sin flt
+ (2Tr*)-1X, sin flt sin 2ct
- (2cT*)-1X2 sin flt cos 2cot] (45)

at the output of the QRS. Amplification
of this signal produces information about
X1 and X2 with relative accuracies
AX1 = (2/2Co)T*)1 AX2.
Assuming that the resistor noise is

negligible compared to amplifier noise
(which it will be if the physical temper-
ature of the resistors is somewhat less
than the noise temperature Tn = 10 K of
the amplifier), we can compute the noise
performance of this system from Eqs.
16, 33, and 34 with h -A 2kTQ/fl. The best
quality factor that has been achieved (26)
for a superconducting microwave reso-
nator (our QRS circuit) with a narrow ca-
pacitive gap is Q, = flT*/2 - 107, corre-
sponding to T* 10- second. Conse-
quently back-action forces (Eq. 33) limit
the sensitivity to

A kTX/fl 1/2
12

AX1- ( mco ) (2V2 )112
2 x 10-18 cm (46)

a factor 9 below the amplitude-and-phase
amplifier limit and approximately twice
the amplitude-and-phase quantum limit.
(Here we use Tn = 10 K, fl = 1010 sec-1,
m = 10 kg, and co = 3 x 104 sec-1 as be-
fore.) In order that Nyquist noise in the
mechanical oscillator (Eq. 40) not ex-
ceed this sensitivity, the averaging time
must not exceed i 0.01 sec. (Here we
use the same oscillator temperature and
Q as before, T = 4 K and Q = 4 x 109.)
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To achieve the limit in Eq. 46 we also
require a coupling constant 8 = 2V2Tr*/f

- 0.3 (Eq. 34). To compute /3, first de-
rive Kjg21I = (Vo/d)(f1T*I2VN) from Eqs.
16a and 45 with x -- X1; then evaluate
the impedance seen by the amplifier in
Fig. 2 at the X1 signal frequency
Ql = (LC)-112, g22 = 2r*/C; then eval-
uate Eq. 16b

13 = (Vo/d)2CflT*/(16mco2) (47)
The required 18 of 0.3 can be achieved
with the same electric field in the capaci-
tive gap as we used before: Vo/d = 1 x
106 V/cm.
This example and that of the last sec-

tion confirm that it is easier to achieve a
given level of sensitivity by continuous,
single-sensor, back-action evasion than
by stroboscopic techniques. However,
along the route toward realization of
such experiments there remain a series
of difficult experimental problems-not
least of which is the frequency stability
of the clock that regulates the voltage
generator.

On the Limiting Frequency Stability
of a Generator

Although current technology can
achieve the frequency stability required
by the above examples, it is of longer
term interest to know ultimate quantum
mechanical limits on the stabilities of
clocks.
At present the world's most stable

clocks are the superconducting cavity
stabilized oscillator (SCSO) (28) and the
hydrogen maser (29). Both involve self-
excited electromagnetic oscillations in-
side a cavity. In the SCSO the clock fre-
quency Ql is regulated by the cavity's
normal mode, and a change Al of a typi-
cal dimension I of the cavity will produce
a frequency change

Ai/fi Al/I (48)

In the maser, if the electromagnetic qual-
ity factory Qe of the cavity (Teflon
bubble) exceeds Qfl x (mean time hy-
drogen atoms spend in cavity) -la,
then Eq. 48 will be true. Otherwise,
Al/fl/ (Al/l)(Qe/Qa), and the limit de-
rived below is correspondingly modified.
A quantum limit on the frequency sta-

bility of any electromagnetic oscillator
satisfying Eq. 48 is derived in (30). The
source of the limit is quantum fluctua-
tions in the deformation of the cavity
walls by electromagnetic stresses. Since
the stresses in the electromagnetic field
are equal to its energy density Hel
(with fe the Hamiltonian of the electro-
magnetic oscillator), the force on the

walls is tie/l, and this deforms the walls
by 81 = f16/1k, where k is the mechanical
spring constant of the walls. The electro-
magnetic field is in a thermalized coher-
ent state with no quanta, which possesses
quantum fluctuations AHe ' n0112hfl;
consequently, Al : no1/2ifl/kl, which
leads to frequency fluctuations (Eq. 48)

(49)
This electromagnetic back-action limit
must be contrasted with the limiting pre-
cision for measurements of Ql during an
averaging time i: AfiAP/r, where
A- no-12 is the quantum uncertainty in
the phase of the oscillator's coherent
state

(50)

(Townes-Schawlow limit). These two
limits lead to an optimal number of quan-
ta no and an ultimate quantum limit

(51)
)2h 1/2

Ql
-

VklT

For a cavity with wall thickness com-
parable to cavity dimensions l, or for a
"cavity" made by coating the outside of
a dielectric crystal with superconducting
material (31), the spring constant k is re-
lated to the Young's modulus EM of the
cavity walls by k EMV/12, where V is
the cavity volume. Then

AQQ>(h/EmVf)1/2 (51')
In practice EM 5 1013 dyne/cm2, V 1
cm3, so ACi/fi - 10-20 (X/ sec)-12. This
limit is achievable in principle, but cur-
rent technology is far from it.
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Several significant global climatic and
tectonic events affected the evolution of
Arctic oceanic climates during late Ce-
nozoic time. The terminal Miocene tem-
perature decline, culminating in the ma-
jor expansion of the Antarctic ice sheet,
and the concomitant worldwide lowering

about 3.5 million years ago (7, 8). These
events coincided approximately with the
emergence of the Isthmus of Panama,
completed about 3 million years ago (9),
which resulted in a salinity contrast be-
tween salty North Atlantic and some-
what fresher North Pacific surface wa-

Summary. Faunal and lithologic evidence is used to reconstruct paleoceanographic
events over the last 4.5 million years. The inception of perennial sea-ice cover is dated
at about 0.7 million years.

of sea level that resulted in the isolation
of the Mediterranean Sea about 5 million
years ago (1) may have been synchro-
nous with the onset of glaciation at high
latitudes in the Northern Hemisphere.
At that time, the Bering land bridge com-
pletely isolated the Arctic from the Pacif-
ic Ocean (2-5), and because circulation
in the world ocean was primarily latitudi-
nal, there was probably little interchange
between Atlantic and Arctic waters (6).
The sudden appearance of a flood of

Pacific mollusks in Iceland indicates that
the Bering land bridge was breached
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ters (10) and in the reorientation of oce-
anic circulation to a more vigorous
south-north current. The Gulf Stream as
we know it today may have evolved at
about this time (6): The overall con-
sequence of these events was the per-
sistent influx into the western part of the
Arctic Ocean basin of low-salinity North
Pacific water through the Bering Strait
(11) and the influx of a much larger vol-
ume of salty Atlantic water into the east-
ern part of the Arctic basin by way of the
Norwegian Sea (10).

This change in oceanic circulation led
to intensified atmospheric circulation.
Increased transport of moist air over an
open and relatively warm North Atlantic
Ocean to adjoining subpolar highlands

evidently resulted in the episodic devel-
opment of local ice sheets large enough
to lower sea level as much as 40 meters
as early as 3.4 million years ago (12). The
situation is somewhat analogous to the
abortive high-latitude glaciation record-
ed about 115,000 years ago during an
early phase of the last glaciation (Wis-
consin/Wurm) (13). Continental ice
sheets at least two-thirds as large as
those of the late Pleistocene developed
about 2.4 million years ago, shortly after
the beginning of the Matuyama reversed
epoch (12, 14). Latitudinal temperature
gradients increased gradually, and by
late Pliocene time the modern marine
faunal provinces were established (15).

Sedimentary Record in the Arctic Basin

The continuous sedimentary record
representing roughly the last 4.5 million
years is preserved in deep-sea cores
raised from bathymetric highs by the La-
mont-Doherty Geological Observatory
(LDGO) from ice platforms drifting over
the central part of the Arctic basin (Fig.
1 and Table 1). Despite certain ambi-
guities, the radiometric dates (16) and
magnetic stratigraphy (17) of these cores
together with biostratigraphic and lith-
ologic correlations (18-20) provide con-
trol points for the time framework of this
Pliocene and Pleistocene sequence (Fig.
2). Three major climatic regimens, here
represented by three stratigraphic units,
can be recognized within this time inter-
val. Rates of sedimentation were very
low (1 to 3 millimeters per 1000 years) in
all three units.
The oldest unit (unit III) comprises sed-

iments deposited between approximately
4.5 and 2.5 million years ago and consists
of fairly well sorted red clays containing
manganese and micronodules. The botry-
oidal micronodules, which constitute up
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