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1. INTRODUCTION

1.1 Nature of these lectures

In these lectures I shall review techniques for calculating
gravitational-wave generation. My emphasis will be on the techniques
themselves, on their realms of validity, and on typical applications
of them. Most derivations will be omitted or sketched only briefly,
but I shall give references to places where the derivations can be
found.

I shall presume that the reader is familiar with general
relativity at the level of "track one" of Misner, Thorne, and
Wheeler (1973) -- cited henceforth as "MTW." My sign conventions
and notation will be the same as in MTW.

1.2 Regions of Spacetime Around a Source

One can characterize a source of gravitational waves, semi-
quantitatively, by the following length scales:

L = "Size of source" = radius of region inside which
- ~ | the stress-energy TO8 1is contained |’

- X . . ~ [ 2 x mass of source in
2M= "Gravitational radius of source" = [ s

units where G = ¢ = 1

1/27™ x characteristic wave-

%X = "reduced wavelength =| length of gravitational » (1.2.1)
of waves" waves emitted by source
rIE "inner radius of local wave zone" 2 .
(  (see below).
ry= "outer radius of local wave zone" )

Corresponding to these length scales, one can divide space around a
source into the following regions (See Fig. 1)

Source: r = radius £ L

Strong-field region: r < 10 M if 10 M> L
typically does not exist if L>> 10 M

Weak-field near zope:L<r, 10 M<<r, r<<¥X (1.2.2)

Wave generation region: r< r. (includes source, strong-field
region, and weak-field near zone)

Local wave zone: rlg rs r
Distant wave zone: rog r.
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Figure 1. Regions of spacetime surrounding a source.

SOURCE

Figure 2. The local wave zone (schematic diagram). The smooth curve
depicts the curvature of the background spacetime on which the waves
(rippled curve) propagate. Near the source one cannot necessarily
split the spacetime geometry into background plus waves; but in the
local wave zone one can.
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The "local wave zone'" is the region in which (i) the source's
waves are weak, outgoing ripples on a background spacetime; and
(11) the effects of the background curvature on the wave propagation
are totally negligible (see Fig. 2).

The inner edge of the local wave zone r is the location at
which one or more of the following effects becomes important:
(i) the waves cease to be waves and become near-zone field, i.e.,
r becomes X ; (ii) the gravitational pull of the source produces
a significant redshift, i.e., r becomes + 2M = (Schwarzschild
radius of source); (iii) the background curvature produced by the
source distorts the wave fronts and backscatters the waves, i.e.,
(ra/M)"/2 becomes < X; (iv) the outer limits of the source itself
are encountered, i.e., r becomes £ L = (size of source). Thus,

-

the inner edge of the local wave zone is given by

r. = a x Maximum {X, 2M, (MX2) 1/3

I » L}, 1.2.3)

o = (some suitable number large compared to unity).

The outer edge of the local wave zone r is the location at
which one or more of the following effects becomes important:
(1) a significant phase shift has been produced by the "M/r"
gravitational field of the source, i.e., (M/X) -+ &n(r/r.) is no
longer << w ; (ii) the background curvature due to nearby masses
or due to the external universe perturbs the propagation of the
waves, i.e., r is no longer << = (background radius of curvature).
Thus, the outer edge of the local wave zone is given by

r, = Minimum {rI- exp (X//M), RB/Y}, (1.2.4)

B,y = (some suitable numbers large compared to unity).

Of course, we require that our large numbers o,B,Y, be adjusted
so that the thickness of the local wave zone is very large compared
to the reduced wavelength,

T r. > X. (1.2.5)

0 I

Throughout these lectures I shall confine attention to sources
which possess a local wave zone -- and I shall call such sources
"isolated." It seems likely that every source of gravitational waves
in the Universe today is "isolated." Howaver, in the very early
Universe the background curvature, l/RB » was so large that sources
might not have been isolated.

In complex situations the location of the local wave zone might
not be obvious. Consider, for example, a neutron star passing very
near a super-massive black hole. The tidal pull of the hole sets
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the neutron star into oscillation, and the star's oscillations
produce gravitational waves (Mashoon 1973; Turner 1977). If the
hole is large enough, or if the star 1is far enough from it, there
may exist a local wave zone around the star which does not also
enclose the entire hole. Of greater interest - because more
radiation will be produced - is the case where the star is very
near the hole and the hole is small enough (th 100M@) to produce
large-amplitude oscillations, and perhaps even disrupt the star.
In this case, before the waves can escape the influence of the
star, they get perturbed by the background curvature of the hole.
One must then consider the entire star-hole system as the source,
and construct a local wave zone that surrounds them both.

The local wave zone acts as a buffer between the wave-
generation region r < r_ and the distant wave zZone r > r,..
The existence of this bu%fer enables one to separate cleanly the
theory of wave generation (applicable for r < r 3 treated in
8§ 2-6 of these lectures) from the theory of wave propagation
(applicable for r > T;; treated in § 7 of these lectures).

1.3 The Gravitational-Wave Field

"In the local wave zone where gravity 1is weak we shall use
coordinate systems (t,x,y,z) = (x%x1,x2,x?) which are centered on
the source and are very nearly Minkowskilan; and we shall sometimes
introduce the corresponding spherical coordinates (t,r,0,¢4) with

X = rsinb cos¢p , y = r gin 9 sing , z = r cos 9. (1.3.1)

The components of the metric then differ only slightly from
Minkowskii form

Byg = Myg* haB, Neg diag(-1,1,1,1), ]hael <<l. (1.3.2)

Throughout these lectures it will be adequate, in the local wave
zone, to treat hyg as a linearized field residing in flat space-
time. If one knows haB in any such coordinate system (i.e. in
any "gauge'), one can compute from it the "gravitational wave
field" (§35.4 of MTW)

TT

hjk =z (P 1/2 p (1.3.3)

jaPabPoi " jkFabPab "
Here Latin indices run from 1 to 3; repeated Latin indices must be
summed even if they are both "down"; and "TT" means "transverse,

traceless part". The projection tensor used in this computation is

= - . =]
ij_ ij njnk 3 nj=x /r. (1.3.4)
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The task of wave-generation theory (§§2-6) is to determine h?T

in the local wave zone. Once that has been done, wave-propagation
theory (§7) can be used to calculate hg{ in the distant wave zone.

1.4, Formalisms for Calculating Wave Generation

To calculate the generation of gravitational waves one must
solve simultaneously the Einstein field equations and the
equations of motion of the source. These equations are so
complicated that one cannot hope to solve them exactly in any
realistic situation. Therefore, one must resort to approximation
schemes.

Several different approximation schemes have been devised
for handling different types of sources. Most of these approxima-
tion schemes have been written in the form of "plug-in-and-grind"
formalisms (i.e., computational algorithms). 1In these lectures
I shall describe the following formalisms:

Weak-field formalisms(§2). These formalisms are valid for
sources with weak internal gravitational fields (L>>2M; sources
without any strong~field region; cf. Fig. 1). Section 2.1 will
present a classification of weak-field formalisms and their realms
of validity; and §§2.2-2.7 will present specific weak-field
formalisms, each with its own realm of validity. A catalogue of
the weak-field formalisms is given in Table 1.

Multipole analysis of the radiation field (§3). The
gravitational waves from any source can be resolved into multipole
fields, and that multipole resolution yields simple formulas for
the energy, linear momentum, and angular momentum carried off by
the waves. Section 3 presents such a multipole analysis, restricted
to the local wave zone. That analysis can be used fruitfully in
conjunction with the wave-generation formulas of §§2,4, and 5.

Slow-motion formalisms (§4). These formalisms are valid for
sources with slow internal motions (L/X <<1). They make use of
near-zone multipole-moment expansions, and consequently they tie
in tightly with the multipole analysis of the radiation field
(§3). The slow-motion formalisms are catalogued in Table 1 along
with the weak-field formalisms.

Small-perturbation formalisms (§5). These formalisms are
applicable to sources consisting of small dynamical perturbations
of a nonradiative "background" system (e.g., small particles falling
into black holes, and small-amplitude pulsations of stars).
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Formalisms for studying systems with strong internal fields and
fast, large-amplitude internal motions (§6). Unfortunately, no
analytic formalisms now exist for studying such systems. However
one can study their evolution and the waves they emit by numerical
solution of the Einstein field equations on a large computer. The
necessary numerical techniques are now under development.

2. TVWEAK-FIELD FORMALISMS
2.1 Classification of Wak-Field Formalisms

Weak ~field formalisms are applicable to systems with weak
internal gravitational fields.

To compute a characteristic dimensionless strength € of the
internal field of a source, one can analyze the source as though
spacetime were flat, using globally Minkowskii coordinates in
which the center-of-mass is at rest. In these coordinates one can
compute € from the retarded integral

00 ot '
_ Maximum over all [T (t lf X L X ) 3,
= n ' - d™x (2.1.1)
relevant” values J IX _ xnl
of the field point ~ ~
(t,xd)
Here T00 is the time-time component of the stress-energy tensor,

and the "relevant" field points are those points at which one
portion of the source interacts with fields produced by other
portions of the source. One need not know & with high precision;
errors as large as a factor 3, say, are perfectly allowable.

For a source consisting of a single coherent body (e.g., a
pulsating star) with mass M and linear size L,

£~ M/L. (2.1.2a)

For a source consisting of several lumps, each with mass m and
size %, separated by distance b >> %,

e~m/b 1if one is interested only in waves generated (2.1.2b)
by relative motions of the lumps;

e~m/% 1if one is interested in waves generated by (2.1.2c)
internal motions of the lumps.

Weak-field formalisms are valid only for sources that have
€ << 1.
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All weak-field formalisms have roughly the same structure:
They utilize a single coordinate system {x%} that covers the entire
wave—generation region and local wave zone (r{ r,) and that is as
nearly globally Minkowskiian as possible. In_this coordinate
system they define a "gravitational field" hoB (second-rank
symmetric tenmsor) by

e (R L 8 (2.1.3)

where gO"B are the contravariant components of the metric tensor,
where g = det[lga |I, and where n% are the components of the
Minkowskii metric tensor [diag (-1,1,1,1)}. The formalisms then
consist of field equations by which the stress—-energy tensor

¢ (associated with matter and non-gravitational fields) generates
the gravitational field haB, and equations of motion by which
the gravitational field and internal stresses regulate the time
evolution of the stress-energy tensor.

Thorne and Kovacs (1975; cited henceforth as TK) have
devised a classification scheme for weak-field wave-generation
formalisms--a scheme resembling that by which Havas and Goldberg
(1962) classify "point-mass equation-of-motion formalisms." This
scheme characterizes wave-generation formalisms by two integers
ny and np. These "order indices" tell one the magnitude of
the errors made by the formalism—-i.e., the amount by which the
formalism's predictions should differ from those of exact
general relativity theory:1

n
l(errors in Tuv)/T00!~ € T, (2.1.4a)
n N
|(errors in huv)/hoolwe h (2.1.4b)
For example, a formalism of order (n,, n, ) = (1,1) makes fractional

errors of order ¢ in both the stress-energy tensor and the gravi-
tational field, while a formalism of order (2,1) makes fractional
errors €2 in ™V and € in BMV.

Errors in EUV, when fed into the equation of motion, produce
errors in THV; and similarly, errors in THV, when fed into the field
equations, produce errors in hMV. This feeding process places
constraints on the order indices (n,., nh) of any self-consistent,
weak-field wave-generation formalism:

n, =n or n_=n, - 1. (2.1.5)

INote that all of the [Tuvl are ¢ TOO, and consequently all of the
|EUV| areﬁjﬂxk This fact dictates the form of equatioms (2.1.4).
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Thus, every weak-field formalism has order indices of the form
(n,n-1) or (n,n) for some integer n.

TK devise a scheme for constructing formalisms of any desired
order. They also show that any formalism of order (n,n-1) can
readily be "strengthened" by augmenting onto it a higher-accuracy
field-generation equation. The resulting, augmented formalism will
have order (n,n).

In these lectures I shall not describe the general analysis
of TK; I shall merely present examples of weak-field formalisms of
various orders, and describe the augmentation process which
improves their accuracy.

2.2 Special Relativity: A Formalism of Order (1,0)

Special Relativity is characterized by the equations of motion

THV | 0, (2.2.1)
sV
which are oblivious of all gravitational effects. The largest of

the individual terms that occur in these equations are of order

90/4, (2.2.2)

where { is a characteristic length scale inside the source. By
contrast, the gravitational forces ignored by these equations
of motion are

I,U [0 AY)

V) Mo =00 00 00
avT +T ol ~(hTT/ T e(T/0). (2.2.3)

Comparison of the forces ignored (eq. 2.2.3) with the terms included
(eq. 2.2.2) shows that special relativity makes fractional errors

of order € in the evolution of the stress-energy--and hence
fractional errors of order ¢ in the Stress—energy tensor itself
Evidently, the stress-energy tensor has order index ng = 1.

The gravitational field, by contrast, has order index n =0,
since special relativity is totally_oblivious of gravity and
therefore makes fractional errors ShMV/R00.; 0,

Conclusion: Special relativity (eq. 2.2.1) is a weak~field
formalism of order (1,0).

2.3. Linearized Theory: A Formalism of Order (1,1)

One can obtain Linearized Theory from Special Relativity very
easily: One leaves unchanged the Stress—energy tensor and its
equations of motion
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Tu\’)\) =0, (2.3.1a)

but one_postulates that this stress—energy generates a gravitational
field hMV by the relation

2"V (x) = 16m Jc(x,x')rw(x')dl‘x'. (2.3.1b)
Here d4x' is the special relativistic volume element

1 ] ] L .
a2 ax® ' ax? a3, (2.3.2)

and G(x,x') is the flat-space propagator (Green's function)

1 o_a' B B!
G(x,x')= Zﬁ—-Gret[l/Z(x -x Mx —x )naB], (2.3.3a)
1
Dirac delta function for xain future of x
8 = ' (2.3.3b)
ret 0 for xain past of xa

=HV \V)
[Notice: (1) in the arguments,of hu ,G, and Tu we omit the indices
of'the coordinates x®* and x% 3 also (2) by integrating over time,
x0 » In eq. (2.3.1b) one obtains the expression

W, 0'_0 SR
. T (x =x -|x-x'], x )
Ew(xo,xJ)=4] - = a3k, (2.3.4)

lg-g'l

which is familiar from elementary treatises on Linearized Theory;
e.g., chapter 18 of MTW.]

The linearized gravitational field (2.3.1b) is a fairly good
§pgroximation tg the exact general relativistic gravitational field,
h* E—[(—g)l/zgc’" -naB]. It makes fractional errors of order €.
Hence, Linearized Theory has a gravitational order index np, = 1,
which is one order "better" thamn Special Relativity; but its
stress-energy order index is the same as that of Special Relativity,
nT = 1. The total order of Linearized Theory is (nT, nh) =(1,1).

To within the accuracy of Linearized Theory the metric

i i - h o
perturbation hu\) 8 the trace-reversal of ™

- O
- 2. L]
hy, (2.3.5a)

huv = huv - l/2nuv h; h
(Indices in Linearized Theory are raised and lowered with n )
Since hy, and hy,y differ only by a trace, the gravitation¥Y-wave
field in the local wave zone is (cf. eq. 1.3.3)

IT _ =TT _ = =
hyp = By = P PR /2P (P b ). (2.3.5b)
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The fractional errors in this gravitational-wave field are

=TT =TT =00
Sh, sh h
(fractional errors in h§§)§ ik L Ak
HTT 1’-100 ETT
Ik jk
(2.3.6)
€ €
=TT ,--00 =TT -1
[hjk/h | ]hjk/Mr |

Here Eoov-(Newtonian potential) « M/r 1is the largest of the
components of the gravitational field; cf. equation (2.1.4b) and
footnote 1.

The "rules" for using Linearized Theory to calculate gravi-
tational-wave generation are as follows: (1) Express the specilal
relativistic stress-energy tensor THVY in terms of the non-
gravitational variables of the specific system being analyzed.
(2) Solve the special-relativistic equations of motion (2.3.1a)
to determine the evolution of the stress-energy tenmsor. (3) Evaluate
the integral (2.3.1b) to determine the first-order gravitational
field hHY 1n the local wave zone. (4) Project out the gravi-
tational-wave field h}ﬁ using equation (2.3.5b). (5) Check,
using equation (2.3.6); that the errors in the wave field are
acceptably small.

This set of rules shows very clearly the sense in which
"Linearized Theory is the theory of order (1,1) obtained by
augmenting onto Special Relativity [theory of order (1,0)] field
generation equations'; cf. next to last paragraph of § 2.1. 1In
particular, when working in Linearized Theory one at first (Rules
1l and 2 ) pretends that one is in Special Relativity. Only when
one starts evaluating the radiation field (Rules 3 and 4) and its
errors (Rule 5) does one depart from Special Relativity.

Recently Press (1977) has transformed the gravitational-wave
field (2.3.4) and (2.3.5) of Linearized Theory into the form

2
AT o 2 3d 3 TT
P r {dtz f Tog*#0pp* pq p g rec®y’ i ¢ x} ' (2.3.72)

Here "ret" means "evaluated at the retarded time'

[Too)rer = Too(t=]x—x"], x") (2.3.7b)
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and n is the unit radial vector pointing from the source toward
the digtant observer,

np E xp/r . (2-3-7C)

Press's expression (2.3,7a) is particularly useful for systems in
which ITO-I <<Tqq and IT.k| << Too since then it involves only

the seconﬁ moment of theJretardeg energy distribution, T .
Similar expressions are encountered in the ''quadrupole-moment
formalism" (eqs. 2.6.4 and 2.6.5 below). However there one requires
that the source be confined deep within its own near zone (''slow-
motion assumption'"), whereas Press's expression requires no such
constraint. '

Press's expression, appropriately modified, has wider validity
than just Linearized Theory: Whenever one has a formalism in which
the local-wave-zone field h"Y can be written as: :

v, 0 4 fuv 3, . (LAY
h™ (x ,§) z IT retd x', with T ,U—O' (2.3.8)

then (as Press emphasizes) expression (2.3.7a) is valid with

TV  replaced by THY --whatever that animal may be. The weak-field
formalisms classified by TK (§2.1 above) all have this property;
cf.81II of TK.

2.3.1. A Valid Application of Linearized Theory

Linearized Theory is applicable whenever one can ignore self-
gravitational forces inside the source -- i.e., whenever fractional
errors

|5Tuv/Too|~ € ~(internal gravitational potential)
_TT ~TT (2.3.9)
|8h, /b .| -~ €
i34 _TT ,-00
lhij/h I
are acceptable. The following is an example of a valid application
of Linearized Theory:

A steel bar of mass M ~500 tons, length I ~20 meters, and
diameter D ~2 meters generates gravitational waves by rotating
end-over-end with angular velocity w ~ 28 radians per second
[Einstein (1918); Eddington (1922); §36.3 of MIW]. (Faster rotation
would tear the bar apart.) For such a bar the internal gravi-
tational field is
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: 8 -28
e LM (leo g_]x(0.7XIO cm]~ 2 x 10722, (2.3.10)

“D 2%10%cm g

The radiation field and the gravitational potential EOO, as

calculated from Linearized Theory, turn out to be
=TT 2 2
!hij, ~(ML"w"/r) cos[2w(t-r) + phase] (2.3.11)

700 _ M/ (2.3.12)

and the fractional errors in the radiation field (eq. 2.3.6) are
thus

§hLT
Jk ~ £ ~ [>
E?i lﬁ§i/ﬁ°°l (uL)?
(2.3.13)
. 10722 . 10712

[(2x10%cm) (28sec ™) (3x1010 em/sec) 172

2.3.2. Invalid Applications of Linearized Theory

For most astrophysical systems internal gravity is important,
and Linearized Theory is thus invalid. Examples are as follows:

(1) Gravitational waves from nonradial pulsations of a star.
Let the star have mass M and radius R. Then its mean density p
and its internal gravitational field strength € are

p-M/R3, €~ M/R; (2.3.14)

and its mean pressure [calculated from hydrostatic equilibrium,
dp/dr ~ pM/R2] is '

P~ p(M/R)y~gp . (2.3.15)

Since Linearized Theory makes fractional errors IGTUv/TOOI~e
its fractional errors in the pressure are

13 .00
Sp ~|6T T' ~ e & 1. (2.3.16)
P TOO le P

Thus, Linearized Theory makes unacceptable errors in the star's
internal pressure forces, as well as in its internal gravity.
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One should not be surprised to learn that its errors in the gravi-
tational waves due to stellar pulsation are also unacceptably large

s ETT
——:%%& > 1. (2.3.17)
z 2
Jk

(2) Gravitational waves from a near-—encounter between two
fast-moving stars. Linearized theory predicts no gravitational
interaction between the stars. Therefore, according to Linearized
Theory, each star proceeds undisturbed along its straight path’
through flat space, oblivious of the other star. As a result, no
gravitational waves are produced -- an obviously incorrect
prediction.

2.4 Post-Linear Theory: A Formalism of Order (2.1)

When analyzing the internal structure and motion of systems with

significant self gravity, one needs a formalism which makes
fractional errors |6TMY/TO0| < g2 -—-i.e., which has a stress-
energy order index nq 2 2. The least accurate and least complex
such formalism is Post-Linear Theory. It has order (nT,nh)=(2,1).

For a derivation of Post-Linear Theory from general relativity
theory, see Thorne and Kovdcs (1975; "TK").

In Post-Linear Theory one describes gravity by a gravitational

field EUV’ which is a good approximation to the general relativ-
istic %ield (eq. 2.1.3):

Y= - v Y I + 0@l (2.4.1)
Post-Linear Theory, like Special Relativity and Linearized Theory,
utilizes the language of flat spacetime. For example, one raises
and lowers indices on the gravitational field by means of the flat
Lorentz metric 1, ; and one performs "trace reversals" in the
familiar manner of Linearized Theory:

. FWV_ o WV &, FHV L WV o WY o
I O V2 ST -1/20 s
(2.4.2)
= —a o
e L L 15

(cf. chapter 18 of MIW). The metric of general relativity is
approximated by
[1+0()]. (2.4.3)

guv = nuv+ lhuv
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The stress—energy tensor In Post-Linear Theory will typically
be expressed in terms of the electromagnetic field F ys» the matter
variables (density, pressure, velocity, viscosity,...), and the
gravitational field lhu « It must be constructed from these
variables in accordance with all the rules of general relativity,
to within fractional errors of O0(£“).

The equations of motion of Post-Linear Theory are formally the
same as those of general relativity

Ny u o v Mo
,v+ 1P ow T * 1P o T = 0; (2.4.43)

T
however, the Christoffel symbols 1Pua8 are given by the "first-
order approximation"

B v _ _
17 e 1Tvag 3 1fvas = (1v0, 8*1008, 07100, v) ¢ (2:4-4D)

The field equations of Post-Linear Theory are the same as those of
Linearized Theory

PRIV N
FHYs

= - 167 T"Y; (2.4.4¢)
1 o,

and their solution can be written, using the flat-space propagator
(eq. 2.3.3), as

B0 = 167 fote,xm vl (2.4.5)

Notice that Post-Linear Theory differs from Linearized Theory
in one crucial, but simple way: It allows the gravitational field
Y o "push the matter around".[Christoffel symbols have been

1nserted into the equation of motion; compare eqs. (2.3.1a) and
(2.4.4a).] This difference is crucial for astrophysics. It
allows Post-Linear Theory to treat accurately the structure and
evolution of stars, planets, planetary systems, star clusters,

and near stellar encounters -- unless the stars are highly compact
(i.e., unless they are neutron stars or black holes). Linearized
Theory makes enormous errors on all such systems.

2.5. Post-Linear Wave Generation: A Formalism of Order (2,2)

Despite its fine ability to analyze the internal dynamics of
astrophysical systems, Post-Linear Theory does a bad job of pre-
dicting their gravitational-wave generation. For wave generation
it has no better accuracy than Linearized Theory.

Fortunately, there is a simple way to improve iﬁs accuracy.
One need only append to it a gravitational field 2h » which is
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more accurate than lEUV:

A= = /g g®Y "ML+ 0 (eD)]. (2.5.1)

By appending ZEUV onto Post-Linear Theory, one boosts its
accuracy from order (2,1) to order (2,2). The resulting formalism,
called the "Post-Linear Wave-Generation Formalism," bears the

same relationship to Post-Linear Theory as Linearized Theory does
to Special Relativity.

TK have derived a formula for ZEUV in terms of lEUV
and THY, Their formula involves the flat-space propagator

Glx,x') = 5%— 8t [l/2(xa—xa')(x8—x8')na8] (2.5.2a)

[eq. (2.3.3)], and also its derivative with respect to the
argument of the delta function

1 (A ;_ ' a_ a' B B' .
G'(x,x") i ) ret[1/2 (x-x )Y(x"—=x )ndB]’ (2.5.2b)
{
Gret(z)_ (d/dz) Gret(z).
The TK formula splits ZEUV into five pieces
BV = BHV 4 gEV L gHY L gV puv (2.5.3)

2 2'D 2'F 2°TL 2’TR 2

Each piece has a particular physical interpretation. However, one
must be careful not to take that interpretation too seriously —-
for reasons discussed below. The five pieces are as follows:

Direct field, zﬁgv . This field is produced directly by the
Post-Linear stress—energy tensor THV; and it propagates from the
source point x% to the field point x® by means of the flat-
space propagator. In other words, it propagates along the flat-
space light cone with parallel-propagation of components and with
a "1/r" fall-off of amplitude. The formula for this direct field
is

zﬁgv (x) = 167 fG(x,x')Tuv(x')[1_lﬁ(xv)]d4x'. (2.5.4)

This part of ZEUV is ~M/r, whereas the other four parts are
typically < M/r.

€ocussing field, 7ﬁ%v . When the gravitational field generated
at x*° propagates through regions of nonzero Ricci curvature —-
i.e., through matter --, it gets focussed. This focussing increases



joann
Rectangle


GENERATION OF GRAVITATIONAL WAVES 19

the amplitude of ZE“V, without changing its directionality (i.e.,
without changing the relative magnitude of its components). The
amount of focussing between a source point x® and a field point x%
is described by the "focussing function"

1 '
alx,x')=1/2 x“xsf RGN, (2.5.5a)
o loB

. .
Here 1RuB(xu + AXU) is the first-order Ricci tensor,(calculaféd
from © gyp = Nog + 1hyg)s evaluated at the event xM + AXH, which
lies a fraction A of the way along the straight line between
source point and field point. A formula for 1%u is

B

- 1/2 lh - 1/2naBT). (2.5.5b)

R =

1%u8 o8, 0° 8
For intuition into the focussing function, see Figure 3. In terms of
the focussing function 0., the flat-space propagator G, and the
stress—-energy tensor ™V s the focussing field is

= 8ﬂ(Ta

LAY ) = 16WJ alx,x")G G, (xd*x . (2.5.5¢)

Tail Field, 25%{ . gonsider the gravitational field ZEUV
generated at an event x% . It has a "wave front" that propagates
outward, initially spherically and initially along the future light
cone of x® . However, focussing produces dimples in the wave
front; and dimpling, when analyzed from the viewpoint of Huygens'
principle, produces waves that radiate outward from the dimpled
region in all directions. (See Figure 4.) The result is a "tail"
of the wave field. Let a wave originating at ©" arrive at an
event x®", with a dimple in its wave front due to focussing. The
amplitude B(x", x')for this dimple to produce a tail is given by

" " 1 "
Bx"x) = 2 ¥ 1 R ad Ol (2.5.6a)
0 1 aB
" " ]
L= P -2 (2.5.6b)
This amplitude is called the "tail-generating function." The tail

which it generates is given by

ﬁ?{(x)=-16n J I G(x,x")B(x",x')G'(x",x')T“v(x')d4x'h4x'.

x'eI(x) (2.5.6¢)
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?I
Figure 3. The region of focussing for a gravitational field
generated at ®' , which propagates through spacetime containing
a lump of matter (world tube € ). Focussing occurs, and o and

Eﬁv are nonzero, in the stippled region--i.e., in the region
containing rays that have passed through the lump.

q',,

Figure 4. The tail of the gravitational field described in
Figure 3. In the region of focussing (stippled region) the tail-
generating function B 1is non-zero. Thus, each point P*" 1in the
stippled region is a source of tail -- and the tail propagates
outward from each such e along its future light cone.
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Here the expression x’qI_(x) means that the integration must extend
over source points x@ that lie inside but not on the past (flat-
space) light cone of x@.

Transition Field, zﬁ%%. The gravitational field ZEUV generat-

ed at an event xa' does not really propagate along light cones of

the (fictitious) flat space of Post-Linear Theory. Rather, it
propagates along light cones of the slightly curved metric

By =Ny + lh v+ The result is a time delay relative to flat-space
propagation -- a delay measured, for example, in the "Shapiro radar
time-delay experiment" (Shapiro 1964;§40.4 of MTW). The direct..
field (eq. 2.5.4) fails to take this time delay into account. There-
fore, one must correct it for the effects of the time delay. The

"transition field" zﬁ%“ does that correcting. The correction is
embodied in a "time—de?ﬁy function"
o u! u
Y(x,x'") = W2X X h_ (x" + AX7)d}, (2.5.7a)
OlaB
1
b L (2.5.7b)

For two events x and x' separated by a distance ? in the laboratory
frame, this time-delay function is

Y (x,x") =1Ats, (2.5.7¢)

where Ats is the "Shapiro time delay" (difference between curved—
space and flat-space propagation times). In terms of this time—
delay function, the transition field is given by

E?;(x) = 167 fY(x,x')G'(x,x')Tuv(x')d4X'- (2.5.74)

The name"transition field" is taken from electromagnetic theory:
When a charged particle moves, with uniform velocity, through a
medium of variable index of refraction, it radiates. The radiation
(called "electromagnetic transition radiation™) is caused by varia-
tions in the speed of propagation of the particle's Coulomb field.

2The expression for h;ﬁ given by TK differs slightly from eq.(2.5.7d):
TK have to "truncate the external time delay" because they do not
restrict attention to the local wave zone, wher the external delay is
negligible.
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The "gravitational transition field" (2.5.7d) has a similar
origin: It is caused by variations in the "flat-space" speed of
propagation of the particle's direct ("Coulomb™) gravitational
field.

=HV
2h
generated not only by the material stress-energy tensor Tu , but
also by "gravitational stresses." For example, when two stars go
flying past each other at high speed, theilr relative gravitational
potential energy builds up quickly, then dies out quickly (i.e.,
goes "whump'"), and in doing so it produces a burst of second-order
gravitational field. TK call this field the "whump field",
not only in the case of stellar fly-by, but also in general. The
"gravitational stresses" WY which generate it are a certain

sum of products of first derivatives of lh 3 in particular,

Phump field, 2H$r' The gravitational field is

o Hv FHo
W = 1 LL+ (16'n)

0
L L (2.5.8a)

where tUV is the "Landau-Lifshitz pseudotensor,”

fractional errors ~ E3

1{1 aB

accurate up to

E>\p,\) + i EBA,\)

169§ = a6 1M, 1 1P a1

- L0 - LB a\)p - ,0 A\)B
-G R 1 MELVMEL IR 2 1M’ 1P (2.5.8b)

1 0B - v, 1 -0 58 1 o ,A}_
"% " 1Pw,e 1P ELMEURS 1}‘,A1h

In terms of these stresses, the whump field is

zﬁav(x)=l6ﬂlG(x,x')th(x')d4x'. (2.5.8¢)

The gravitational waves emitted by a Post-Lineas source are
described by the "tranverse, traceless part" of zﬁu , evaluated
in the local wave zone

TT =TT = 1

= h =P h P -=P

By = By = Pya 2fap Pox "7 Pk Pab LR (2.5.9)

Here ij is the usual transverse projection tensor(eq. 1.3.4).
In the local wave zone ZEUV satisfies the flat-space Einstein
field equations zﬁuv, 0LBnmB = 0 and the flat-space '"Lorentz gauge

- 2
condition" 2huv, v = 0, except for fractional errors of 0(e ).

As a consequence, the gravitational-wave field ﬁgﬁ
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&A«m} . 8 ~ML/oLt . (4.3.3)
) 3

In this case their contributions to the radiation field [eq.(3.3.1)]
will be

T £

(5 mass g-pote =YD @A, (4.3.4a)
TT » ol

(031 current g-pole ~ M) (L/D) 5 (4.3.4b)

Since L/% << 1 {slow-motion assumption), mass quadrupole radiation
is usually far larger than the other multipoles. The current
quadrupole field and mass octupole field are normally a factor L/x
smaller. It is this fact which allows one to compute only the
lowest few multipole moments when applying the slow-motion formalism.

In special cases (e.g., torsional oscillations of a neutron star)
the mass quadrupole moment will vanish, or will be far smaller than
its normal value. Then the current quadrupole or mass octupole
radiation may dominate -- unless they, too, are abnormally small,
allowing higher moments to make themselves felt.

Notice that, if one is interested in the linear momentum
radiated by the source (eq. 3.4.7), one must compute not just the
lowest significant multipole moment, but also the moments "adjacent"
to it. Linear momentum is carried off only through the interference
of adjacent multipole fields with each other.

4,3.1. A Sample Application

As a typical application of the slow-motion, multipole-poment
formalism, consider a slowly rotating neutron star which is not quite
axially symmetric. Ipser (1971) has formulated a general relativ-
istic analysis of the interior of such a star, using the Regge-
Wheeler (1957) formalism for small, strongfield deviations from
spherical symmetry. Ipser's analysis shows how internal stresses,
supported by the crystal structure of the star's mantle, maintain
the star's deformation. It also gives formulas for the star's
near-zone multipole moments in terms of the star's internal structure.
By inserting those near-zone multipole moments into the slow-
motion wave-generation formalism, one obtains the gravitational-wave
field hi{ produced by the star's rotation, and also the energy
and angular momentum radiated. (Ipser computed the gravitational-wave
field from his near-zone multipole moments by brute force, and
discovered the then surprising result that it had the same form as in
weak-field, slow-motion theory. That discovery was the original
motivation for my constructing the above formalism.)
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4.4 Weak-Field Limit of the Slow-Motion Formalism

For a slow-motion source (L/X<<1) with weak internal fields
(e << 1) and weak internal stresses (S2 << 1), one can use Newtonian
theory to analyze the interior region; cf. §2.6. Using Newtonian
theory, one can express the multipole moments

S and &
A Ay

in terms of volume integrals over the source [See, eg., TV for
detailed proof].

The multipole volume integrals must be performed in a mass-
centered Cartesian coordinate system--i.e., in Cartesian coordinates
with

J-j(t) = J p(x,t) x, x = 0. (4.4.1)

[Note that such a coordinate system is automatically the rest frame
of the source, since the time-derivative of equation (4.4.1) can be
put in the form

3

0=4d .ﬁj(t)/dt = ][8p(§,t)/8t] xy dx (4.4.2)

= Jp(x,t) vjdax = (momentum of source).
The third equality follows from the equation of mass conservation
(2.6.3a) and an integration by parts.]

In a mass-centered Cartesian coordinate system, the volume
integrals for ‘N and S, are

2 2

4 = Symmetric trace-free part of I s (4.4.3a)

Al Al
_ [&'th moment of - 3.

Iy, = [mass distribution] jpxa ceexy 47 (4.4.3b)
2 1 2

SA = Symmetric trace-free part of Sy o (4.4.4b)
2

S

2-1 moment of angular] (4.4.4b)

A£= Lmomentum distribution

= [(e X, 0 V) X eeeX d x.
f aljk 3 k a, a,
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The "symmetric, trace-free part' can be computed from equations
(3.2.1) and (3.2.2).

The volume integrals (4.4.3) and (4.4.4) are not precisely equal
to the exact near-zone multipole moments of the source, of course.
They contain errors of post-Newtonian order (cf. eq. 2.6.1):

(58
A

) due to weak-field assumption
wMA e+ L) 24s?T (4.4.52)
( 68A ) due to weak-field assumption

9
“ML/ XX [ers Ty2es?y, (4.4.5b)

These errors are in addition to the amounts (eqs. 4.3.2) by which
the wave-zone multipole moments fail to agree with the near-zone
multipole moments.

The weak-field limit of the slow-motion wave-generation
formalism can be summarized by the following set of rules:
(1) Use the Newtonian theory of gravity to analyze the structure
and evolution of the source. (2) Calculate the lowest few multipole
moments by evaluating expressions (4.4.3) and (4.4.4) in the mass-
centered, Cartesian coordinates. (3) Insert those multipole moments
into the local-wave-zone formulas of §3. Those formulas will
then describe the lowest few multipoles of the radiation field.
(4) Check that the radiation field is larger than the errors
inherent (a) in the matching of near zone onto local wave zone
(eqs. 4.3.2. with R=L), and (b) in the weak-field assumption

(Shgi)mass 2-pole errors‘V(M/r) (L/*)2[8+(L/*)2+SZ]’
(4.4.6a)
(6h§i)current L-pole errorsA’(M/r)(L/x)Q+1[€+(L/k)2+82]'

(4.4.6b)

This weak-field, slow-motion formalism dates back to Einstein
(1918), for the mass quadrupole part. The mass octupole and current
quadrupole parts were first derived (so far as I know) by Papapetrou
(1962, 1971); and the full formalism (in different notations from
this) was first derived by Mathews (1962); see also Campbell and
Morgan (1971). The earliest versions of the formalism assumed gravity
so weak that one had to use Linearized Theory rather than Newtonian
Theory in analyzing the source ('no self-gravity"). However, it
was soon realized that a modest amount of self-gravity causes no
problems in the formalism.
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4.5 Post-Newtonian Multipole Formalism

We now return to the Epstein-Wagoner (1975) Post-Newtonian
Wave-Generation Formalism, which was described qualitatively in
§2.7. 1In this formalism Epstein and Wagoner find it most convenient
to analyze the structure and motion of their source using a
different Post-Newtonian gauge from that of Chandrasekhar (1965).
Like Chandrasekhar, they describe the matter of their source by
perfect-fluid thermodynamic variables measured in its local rest
frame

po=mass.density, P=presgure, Il=specific internal energy;

(4.5.1a)
and by the coordinate velocity of the fluid
h|
- dx
vj* Fralt (4.5.1b)

The internal gravity of the source they describe by the potentials
U, V.,,¥, and ¥ which satisfy

j’
U,jj = —4npo, Vﬁ,kk= —4wpovj,
b4 = ~4mp (v2+U+ lﬂ + é-P/p ) X = =20 (4.5.2)
»33 o 2 2 o”? :jj ? T

and which are related to the post-Newtonian metric by

= —142U—2U4Y— 6

%00 1+2U0-2U"+4¥ X’00+0(€ ) (4.5.3a)
= 4V +0(c>

ng = 4Vj (E ) (4-5.3]))
_ 4

gjk = 2U6jk+0(s ) (4.5.3¢)

[In the Post-Newtonian formalism one assumes & ~ Sz~ (L/k)z.]

The equations governing the evolution of the source in the Epstein-
Wagoner gauge are the equation of mass conservation

1 2 1 2 _
[po(1+ > Y +3U)],O+[po(1+ > Y +3U)vj]’j—0, (4.5.4a)
the equation of state
P=P(po,H), (4.5.4b)
the adiabatic equation of energy conservation
p, dli/dt + ij’j=o, d/dt = 3/3t + v, 3/8xj’ (4.5.4¢c)

and the Fuler equations of motion
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2
podvi/dt - pov’ifP’if(H+x +4U+P/p°)P’i
2
+ (BpOU’0 + P,O + 4poij,j)vi + (AU—! )pov’i—épovi,o

1
+4p v (Ve 3=V 1)+ P (3K gog72¥ o) = 0

After one has computed the structure and evolution of the
source using these equations, one can then compute the multipole
moments which govern the radiation field. For typical sources --
to which Epstein and Wagoner restrict their attention -- the multi-
pole components of the radiation field have the magnitudes (4.3.4).
The mass quadrupole dominates with magnitude M/1) (L/X)? and the
post-Newtonian formalism is able to compute it with a fractiomal
error ~ €2 -~ (L/X)“. If one wishes to compute the other multipole
contributions to similar absolute accuracy, then one must have
fractional errors no larger than the following in the various
multipole moments (cf. eq. 4.3.4):

S0 @b, g s awmd, g s wm? g s wm,
5

Ay 3 4
3 3 2 .
SAZ: w/%) sA3. (L/% SAA' (L) . (4.5.5)

Up to this accuracy the multipole moments can be expressed in the
following form:

(S]R’ 9&jk’ sjE) a Symmetric trace-free parts of (Ijk’ Iijk’ Sjk)’

2

- 11 4 _4 3
Ijk = f[TOOxjxk + 31 Tjkr + 21 Tppxjxk 7 xprjxk]d X,

(4.5.6)
1 = TanX, X, X, + X, T r2 + l-'r X, X - X T .X d3x
1jk 00°1%4% Kk T *1' 4k 3 Top™1¥9%k T Fplpt* k¢

0 3 2 1 3
Sij = f[?iequxpT q 28 eipqxpr athj + 28 xiequxpatrqsx;]d X,

(Sijk’ sijkl) equal the Newtonian expressions (4.4.3), (4.4.4).

Here,the "effective energy density". Too® "effective momentum density"
Toj, and "effective stress" Tjk are

2 - 3
Tog = Pp (LHI+v +4) BT U’jU’j (4.5.7a)
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0 2 3 1
T, = HHV +4U) v +Pv, + U,+z=U.V
37 P (MY HD) v v, + 3 UPLI

»k'k,]
-iyy -20V
2Tk ",k oj’ (4.5.7b)
T =0 v,v, - 1 U .,U - 1 uu
jk o jk 4m »J Lk 2T »jk
3
+ ij(P + EF-U,iU,i - ZpOU). (4.5.7¢)

Epstein and Wagoner use a different notation than ours for the

multipole moments. The above formulas for the moments (eqs.
4.5.6) are derived in TV.

5. PERTURBATION FORMALISMS

Thus far I have described two large classes of wave-generation
formalisms: weak-field formalisms (82) and’'slow-motion formalisms
(84). Now I turn attention to a third large class: Perturbation
formalisms.

The fundamental assumption underlying all perturbation
formalisms is this: that the entire wave-generation region of space-
time can be treated as a small perturbation which radiates, super-
imposed on a nonradiative but strongly curved "background"
Examples are: (1) Small-amplitude pulsations of fully relativistic
stars. Here the background is an unperturbed, equilibrium stellar
model; and the perturbation is the pulsation. (2)Slow rotation
of a slightly nonspherical neutron star (pulsar). Here the back-
ground is a nonrotating, spherical star; and the perturbation is
both the deformation and the rotation. (3) Motion of a small
object in the gravitational field of a black hole. Here the back-
ground is the Kerr metric of the black hole; and the small
perturbation is the stress—energy tensor of the object, plus the
gravitational field it produces.

There are a variety of different perturbation formalisms,
each designed to handle a specific type of problem. Some applica-
tions make use of several formalisms combined together--and many
applications combine a perturbation formalism for the wave-
generation region with a multipole analysis of the radiation field
(i.e., with a variant of the formalism described in §3).

In a recent review article (§II.C of Thorne 1977¢) I have
described most of the perturbation formalisms with which I am familiar.
Rather than repeat that material here, I simply refer the reader to
it.
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6. WAVE GENERATION BY SOURCES WITH STRONG
INTERNAL FIELDS AND FAST, LARGE-AMPLITUDE MOTIONS

The strongest sources of gravitational waves in the Universe
should be sources with strong internal fields (e~ 1) and fast
(v ~L/% 1), large-amplitude internal motions. Examples are
the highly nonspherical collapse of a star to form a black hole
(or naked singularity, or whatever it does form, and a collision
between two black holes. Unfortunately, such sources have eluded
all efforts at analytic analysis.5 There exists no formalism today
by which one can calculate the waves they generate. Obviously, an
accurate analysis of such systems is the most important and most
difficult task lying ahead of us in the theory of gravitational-wave
generation.

Fortunately great progress has been made on this task recently
by Bryce DeWitt, Larry Smarr, Kenneth Eppley, and others ( see
Smarr 1977 for a review). Abandoning all hope of a truly analytic
analysis, they turn to massive electronic computers as their key
tool. Their method is elegant numerical solution of the full,
nonlinear Einstein field equations. By now they have encountered and
surmounted a number of serious numerical problems. The resulting
numerical methods are nearly good enough to give reliable results
for strong-field, high-speed, large-amplitude sources—-and we can
expect true reliability within another year or two. This, when it
is achieved, will be very useful in planning gravitational-
wave—-detection efforts.

5An exception is the special situation of a collision between two
black holes with relative velocity very nearly the speed of light
[y=(1-v )_l/2 >>1], for which D'Eath (1977) has formulated a
remarkable "colliding-plane-wave' approximation that yields the
dominant features of this radiation.
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7. PROPAGATION OF WAVES TO EARTH
7.1. The Geometric-Optics Formalism

Once the gravitational-wave field h?i is known in the local

wave zone, one can then propagate it out through the surrounding
Universe to Earth, using the vacuum Einstein field equations. In
nearly all situations one can use the geometric-optics approxima-
tion to the Einstein equations (e.g. Exercise 35.15 of MTIW). 1In
this section I describe the geometric optics formalism in a
language different from, but equivalent to MTW.

This’formalism, which is valid for r >> r (wave zone),
describes spacetime by a background metric g&%) through which

the waves propagate. The waves are described by a gravitational-
wave field wuv which reduces to

TT (7.1.1)
uhk = hjk , uﬁo =0, y =0 1in local wave zone and in
00 asymptotic rest frame of
source.

In an appropriate coordinate system (gauge) the full metric of
spacetime is
() 2
= + + 0 . 7.1.2
By = By U, F0GD) (7.1.2)
The waves are distinguished from the background by the very small
length scale X on which they vary

x = length scale of <« = [radius of curvature ]
= variations in wu B” lof background spacetime) *
(7.1.3)

The geometric optics formalism remains valid so long as the
propagating waves do not encounter regions of extremely strong
curvature--i.e. regions where mBs X .

In applying the geometric optics formalism to a specific
problem; one proceeds as follows: (1) In the local wave zone and
in the asymptotic rest frame of the source one describes the back-
ground metric by the line element

dsz=—dt2+dr2+r2(d62+sin26d¢2)+0(M/r)dxadx8, (7.1.4)
with the source located at the origin. (ii) One constructs null
geodesics of g % extending radially away from the source.

Near the source each geodesic has the form

t-r=T1_=const., O=const., ¢=const. in local wave zone.
€ (7.1.5)
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These geodesics are called "rays." The gravitational waves
propagate along them. (iii) Each ray is labeled by the proper

time (“emfssion time" or "retarded time") T_  at which it intersects
the source; and by this ray labeling T bécomes a scalar field
extending through all spacetime. (iv) fach ray has an affine
parameter [, a world line {P(Z) with coordinates x%(Z), and a
tangent vector ("propagation vector')

k = d/a, k® = ax%/dz. (7.1.6)

Of course, since ®(r) is a null geodesic, ﬁ must satisfy

>2

k= kako" =0, k_.kP=o0. (7.1.7)

alB

Here and below a slash denotes covariant derivative with respect
to the background metric. (v) One normalizes the affine parameter
of each ray so that near the source

[proper distance from source
r=

g = as measured in asymptotic in local wave zone.
\rest frame; eq.(7.1.4) (7.1.8a)
As a result
0 unit radial vector in source's asymptotic
k" =1, k = n =|pointing away from rest frame and local
~ 7  [|source wave zone.
(7.1.8b)

(vi) From the above definitions and constructions one can show that
throughout spacetime the gradient of the retarded time is equal to
the propagation vector, except for sign

> -+

k = V13 k =-T . (7.1.9)

(vii) 1In the local wave zone one imposes the starting conditions
(7.1.1) on the gravitational-wave field VYyg8- Note that

hecause hTE is transverse and traceless, waB is initially
trace-free’ and orthogonal to the propagation vector

= = aB  _ B _
y = ‘yg = ¥,q By = 00 Ypgk = O (7.1.10)

These properties are preserved as the waves propagate (cf. eqd. 7.1.12
below). (viii) Initially, and after it has propagated, WGB

is a rapidly varying function of retarded time T, and in

addition is a slowly varying function of location along surfaces

of constant Te:

o F3 O F3 M e v
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waB' lPaB (Te;xo’xl’xzyxa), (7.1.11a)
2
bz —aB ol L T B
aB —5?; | X |, aB QT; x2
(7.1.11b)
oy Y v
3'3] = o[ 8 LB] (7.1.11¢)
9x )Te 4 (RB s
. Yag . Vg (7.1.11d)
Vagly = Vagky T O Y o

: %

Here the slash (wale) denotes covariant derivative with respect to

the background metric, and O0[X] means "of order X." (ix) wGB
propagates along the rays in accordance with the propagation
equation

w_ _1.u
waBIuk = 5k IuwaB' (7.1.12)

(x) One uses equation (7.1.12) to propagate the initial, local-wave-
zone field out through the Universe to Earth.

Because, in an appropriate gauge, waB is the metric perturba-

tion associated with the waves (eq. 7.1.2), one can use the usual

formulas (Chapters 35 and 37 of MIW) to calculate from what -
aB

ever properties of the waves one wishes. TFor example,

one can use equations (35.62a,e)of MIW to compute the contribution

of the waves to the Riemann curvature tensor of spacetime. By

virtue of equations (7.1.11) that contribution is

(Gw)— -}. .o rY) —00 -Oo
Ragys =7 Vaskgty ¥ VeyRdbsVastaly Varets) 1y

+ fractional errors of O[%X/C +X/ﬁB].

Similarly, one can use equation (35.70) of MIW to compute the
Isaacson (1968) stress-energy tensor associated with the waves.
It reduces to

Gy _ 1 5 aw
Toa =37 < Ut kK (7.1.14)

where < > means"average over several wavelengths of the waves."
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The gravitational-wave field is not fully measurable. Only
that part which contributes to the Riemann curvature tensor is
measurable; the remainder can be changed at will by gauge
transformations (infinitesimal coordinate transformations). The
form of the generic gauge transformation which preserves all the
above equations is

NEW OLD

wuv = wuv + @ukv + @vku ’ (7.1.15a)
where ¢, 1is a vector field which has the same variability
properties as waB [eqs. 7.1.11], which is orthogonal to the
propagation vector

¢uk“ =0, (7.1.15b)
and which satisfies the propagation equation

o,k =— Lk : .1.

u[ak 2k IG¢U (7.1.15¢)

An arbitrary observer with 4-velocity U, at an arbitrary
event in spacetime, may find it convenient to make v "spatial,
transverse, and traceless'" in his own rest frame. Ha can
accomplish this by a gauge transformation of the above form with

uawa ualpaeuB
¢L == oy , ko (7.1.16a)
quY 2(quY) H

The resulting ("NEW"; "Transverse Traceless') gravitational-wave
field ¢I%  is related to the original ("OLD") one wuv by

- -y = - gTT, . TT _ _ ., IT TT _
V™ Vix = Vyy Vyys Viy = Yy = Yy 3 811 other § o =0

in local rest frame of observgr, with+Minkowskii
coordinates so oriented that k=k0(e0+ez). (7.1.16b)

In other words, this gauge transformation simply throws away all
parts of waB except those that are purely spatial and are
transverse to the propagation direction; and in the process it
preserves the tracelessness of waB .

7.2 Example of Propagation

As an example of the above formalism, consider a gravitational
wave emitted by the gravitational collapse of a 106 solar-mass star
at a time when the universe was only a few million years old.
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Idealize the background metric, through which the waves propagate
toward Earth, as a perfectly smooth Friedmann metric (MIW chapter
29)

ds -gés) 1'ld —az[—dn2+dx2+ 22(d02+sin20d¢2)] (7.2.1a)

sin ¥ 1f universe is "'closed"
a=a(n), Z=9%1X if universe 1is "flat" ;(7.2.1b)
sinh X if universe is "open"

and at each event in the universe introduce the orthonormal frame :
("local proper rest frame of universe') ;

z:l;_i- x =l—a— —ey/\=—l—§.— e =-——-—]—'_ .._a_
A a an°>% ad %0 = D’ P alsind 36
(7.2.1c)

Place the supermassive star (source) at the origin of the Friedmann
spatial coordinate system, Xg = 0; and let it emit its gravitational

waves during an interval of time n <n < ns + An . The

duration of the burst [AT, = a(n YAn = (a few seconds)] will be very
short compared to the age of the universe at the time of emission;
and hence "a" will change negligibly during the emission

a_ = a(ns) >>>(da/dn)s An. (7.2.2)
The rays, along which the waves propagate, are null geodesics

emanating from the star's world line (xs = 0, ng<n<ng + An). By

solving the geodesic equation in the Friedmann metric one obtains the
following equations for the ray originating at (x= 0, n = Ng + Te/as)

and propagating in the (ee,¢e) direction:

X=n .,(hs+ Te/as), 6= Oe, ¢ = ¢e , (7.2.3a)
a
k k iz ar az , k k 0. (7.2.3b)

Note that the "physical components' of the propagation vector
(components in the local proper rest frame of the universe
[7.2.1c]) are

A
KW o=x? = 0, k" =X

(a /a) at general event
s

(7.2.4)

[}
=

at source.
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The source's retarded time, expressed as a function of Friedmann
coordinates, is

Te =ag (n-n_ -3 (7.2.5)

cf. equation (7.2.3a). The gradient of T is the negative of
the propagation vector, as required by equa%ion (7.1.9).

In the asymptotic rest frame of the source
(X << 13 gL N o+ An ) the Minkowskii radial and time

coordinates are related to Friedmann coordinates and to retarded
time by

r=ax, t= as(n-ns); T, = t-T3 (7.2.6a)

and the line element is

ds? = - at? + dar® + 1% (a6% + sin0 d?) (7.2.6b)

+ 0(i/x) ax® de*—contributions from
gravity of source

+ O(rz/a2+t d 2n a/dt)dxadxst— cosmological
corrections.
The gravitational waves, expressed in a gauge that is "TT" with
respect to this asymptotic rest frame, have as their only nonzero
components

A(T_,8,0)

|-

LG

in local wave zone.(7.2.7)

N

‘b’é - ‘%@ Ax(Te,e,d))

The quantities A+ and Ax are amplitudes for the two orthogonal
n_1n

polarization states "+" and 'x They are rapidly varying

functions of retarded time To = t-r, and slowly varying functions
of 8 and ¢

>

A = aA A 1 a_A.v-A ’ .——1 AA—\&A
A= 3?;"v X r o r r sin® 3¢ r (7.2.8)

[cf. eq. (7.1.11) and note that in the asymptotic rest frame
= (affine parameter) = r ].
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The gravitational-wave field (7.2.7) propagates out into the
Friedmann universe by means of the geometric-optics propagation
equation (7.1.12). By solving this equation one discovers that

aZwag = constant along each ray, (7.2.9)

where % 1s the cosmological circumference function defined in
equation (7.2.1b). Consequently (cf. egs. [7.2.1b], [7.2.6a],
[7.2.7], and [7.2.5])) the gravitational-wave field at an arbitrary
event (Nn,¥%,0,¢) in spacetime is

A la_(n-n -X),8,9) (7.2.10a)

[
2

Vag= ~Vpg =

Ax[as(n—ns—x),6,¢]- (7.2.10b)

Pl
&)

Ve % -

Because the source is far from Earth, when these waves reach
Earth they look plane waves. An observer on Earth can interpret
them in terms of a local Minkowskii coordinate system with basis
vectors

9 > 9 > _ 3:++ 3 - > >
-—t— = eo—eﬁ, —a—z' = ez e;z, 5; = ex ee, ay = ey e$.
(7.2.11a)
If the location of Earth today is (no, Xy 90, ¢o), then

the observer's Minkowskii coordinates and the global Friedmann
coordinates near Earth are related by

t=a_(n-n), z=a_(x-X,)» *=a I (6-6 ), y=a I sind_ ($=6 ).
(7.2.11b)

The observer on Earth describes the universe's cosmological structure
in terms of a Hubble expansion rate H_ and a deceleration

o
parameter q ; and he describes the source of the waves as
having a cosmological redshift Zs’ which is related to the
expansion factor by

1+2Z =a /fa. (7.2.12)
) o' s

The equations of Friedmann cosmology permit one to express aoZo =
(circumference of a circle that passes through Earth and is
centered on the source at redshift Zsyhﬂ in terms of Ho, qo, and

Z :
s
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H—l
o

— 1/2
af =R=—F— 1-q +q Z_~(1-q ) (2q_Z _+1) ;
q, (l+ZS)

(7.2.13)
cf. eq. (29.33) of MIW. By combining equations (7.2.10) -(7.2.13)

one obtains the following expressions for the gravitational-wave
field that sweeps past Earth:

= e = l ;-i .
Vex = yy 2 A [l+zs + const., 6,0, ], (7.2.14a)
Voo = Vo = z A2 const.,0 ,¢
Xy Tyx o Roxlz RACHCENE (7.2.14b)
all other wuv vanish.

Notice that the time dependence, A[(t-z)/(14+Z )+const.,
0 ,¢0], of the waves as they sweep past Earth 1s identical to the
time ‘dependence of the emitted waves as measured by the source,
A[Te,eo,¢o], except for a redshift of l+ZS —— the same redshift

as one sees in electromagnetic spectral lines. Notice also that
for very large redshifts, Z_ >>1, the amplitude of the waves
is independent of redshift:

A A
Y ~ - ﬁ;-q—-o—- for ZB >> 1 and ZS >>l/q0. (7.2.15)

8. CONCLUDING REMARKS

Although it may appear from these lectures that the theory of
gravitational-wave generation is a highly sophisticated and complex
subject, one should not let this blind one to its gross
inadequacies.

The strongest sources of gravitational waves in the universe——
and the most promising sources for ultimate detection -- are those
with strong internal gravity and fast large-amplitude internal motions.
For them the only reliable technique of analysis is massive computer
calculations (86). All the fancy analytic tools of these lectures
are helpless in the face of such sources!

I am indebted to Joseph Weber for his patience, and to
Alessandra Exposito and Jim Isenberg for valuable assistance in
the preparation of the typed manuscript.
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