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THE INSTABILITY OF A TOROIDAL
MAGNETIC GEON AGAINST
chapter 7 GRAVITATIONAL COLLAPSE

Ki1p S. THORNE

I. THE PROBLEM

This conference has called renewed attention to the problem of very massive, spheri-
cally symmetric bodies which, according to Einstein’s theory of relativity, collapse past
the gravitational radius and on into a singularity. In this paper we shall consider a similar
situation: the gravitational collapse of bodies made not of matter but of electromagnetic
fields—geons.

The motivation for studying collapsing geons is most certainly nof that they might
play a role in quasi-stellar radio sources; far from it. There is not the slightest reason to
believe that geons exist in nature or could be constructed by man. Rather, our motiva-
tion is that the analysis of a collapsing geon is much simpler than the analysis of a
collapsing sphere of matter in one important respect: The relation between pressure and
energy density for the electromagnetic field is more precisely known and much easier to
work with than the equation of state for nuclear matter at high densities—a mixture of
heavy nuclei, electrons, neutrons, and even hyperons. Consequently, a geon permits the
study of the nature of gravitational collapse as a phenomenon within Einstein’s theory
of relativity without entangling one in the uncertainties and complexi ties of the equation
of state.

The Einstein-Maxwell equations for interacting electromagnetic and gravitational
fields allow the existence of many types of geons (Wheeler 1955, 1962). Wheeler has em-
phasized that all geons are unstable against gravitational collapse, electromagnetic ex-
plosion, or leakage of electromagnetic radiation out of the active region, and that those
which undergo gravitational collapse should be very useful in studying the issue of the
final state of collapsed systems.! However, only recently has the study of geon collapse
been pursued in earnest.

The initial studies of geon collapse (M. A. Melvin and J. A. Wheeler, unpublished)
involved a toroidal magnetic geon (a toroidal bundle of magnetic-field lines bound to-
gether against the disruptive Maxwell-Faraday pressures by their mutual gravitational
attraction). It soon became clear that the analysis would be greatly simplified by con-

K1p S. THORNE, Palmer Physical Laboratory, Princeton University.
1 See his 1963 Les Houches lectures (Wheeler 1964) for a detailed exposition of this theme.
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sidering the limiting case in which the major axis of the torus is infinite. Thus, Melvin
and Wheeler were led to consider a cylindrically symmetric bundle of magnetic-field lines
of infinite length. By using Weyl’s theory of axially symmetric gravitational fields (Weyl
1919; Weyl and Bach 1922; Levi-Civita 1919), Melvin succeeded in constructing a
cylindrical static geon of this type, in which the Maxwell-Faraday pressures are precisely
counterbalanced by the gravitational forces (Melvin 1964a). This solution was at first
believed to be wnstable against spontaneous gravitational collapse or electromagnetic
explosion.2 However, subsequent analyses have argued for stability! (Melvin 1964b;
Thorne 1964). No perturbation of the system, which vanishes outside a finite region
around the symmetry axis, can lead to gravitational collapse or electromagnetic ex-
plosion. This surprising result appears to stem from the fact that Melvin’s system is %ot
a highly concentrated accumulation of electromagnetic energy as it appears at first
glance; rather, it is the most diffuse distribution of electromagnetic and gravitational
energy possible under the circumstances. Melvin’s system is not a geom; it is a magnetic
universe.

Melvin’s magnetic universe presents many interesting problems, but since they are
apparently unrelated to gravitational collapse, this is not the place to discuss them.
Nevertheless, we can learn a lesson from the problems which the early misinterpretation
of Melvin’s solution caused: Although the mathematics of toroidal geons is simplified by
letting the major radius become infinite and thereby obtaining cylindrical geons, the in-
terpretation of the solutions so obtained becomes vastly more difficuit. The Newtonian
approximation, the most powerful guide we have to the interpretation of solutions of
Einstein’s equations, is applied easily only in an asymptotically flat space. For example,
in order to define the mass of an object in an unambiguous manner, one must get suf-
ficiently far away that orbits about it obey Kepler’s laws to a close approximation. This
occurs only in an approximately flat region of space. But one can never get so far away
from a cylindrical geon that space becomes asymptotically flat. Just as an infinite line
charge creates a logarithmically diverging term in the electrostatic potential of Max-
well theory, so a source of infinite length creates diverging terms in the metric of Ein-
stein’s theory. The logarithmic term causes no special problems in electrostatics because
of the linearity of the theory. But in the non-linear Einstein theory the divergent terms
become real impediments to the interpretation of solutions.

For these reasons it is appropriate to turn away from the study of cylindrical geons
and return to a toroidal geon of the type originally considered by Wheeler and Melvin.
The analysis of the full dynamical behavior of a toroidal geon would be quite difficult.
Fortunately, however, it is not necessary to perform the full analysis in order to verify
the instability of the geon and get some insight into its collapse. For the purposes of this
discussion we need only examine the geon at a moment of time symmetry.

What we propose to do is to examine, at a moment of time symmetry, a sequence of
toroidal magnetic geons all having the same total flux ® and the same proper major cir-
cumference 27}, but having different proper minor radii a’. We will determine the mass
M of the geon as measured by an external observer, and the geometry of the spacelike
hypersurface of time symmetry, as functions of &, ¥, and a'. From these features of the
system we will infer that toroidal magnetic geons with sufficiently small minor radii are
unstable against gravitational collapse. Finally, we will compare these toroidal geons
with a collapsing cloud of dust and from the similarity between the two at the moment of
time symmetry, we will argue that their dynamical evolution should be similar.

2 The belief in its instability was strongly supported by numerical calculations of the dynamics of the
system when perturbed, which were performed by the author and reported at the Symposium on Gravi-
tational Collapse. Because these calculations have since proved irrelevant to the issue of gravitational
collapse, they are reported elsewhere (Thorne 1964) rather than here.




TOROIDAL MAGNETIC GEON 85

II. THE SOLUTION

The analysis of a system at a moment of time symmetry requires the solution of the
initial value equations of general relativity

R — (3)8,°R = 8xGT,0

analogous to div E = 4wp and div B=0 in electromagnetism (Darmois 1927; Stell-
macher 1937; Lichnerowicz 1955; Foures-Bruhat 1956). At a moment of time symmetry
these four equations reduce to one:

(R = 16GTy°,

where (®R is the scalar curvature of the hypersurface of time symmetry (Brill 1959).
Brill has shown that when one has axial symmetry as well as time symmetry, one can
put the metric on the hypersurface of time symmetry in the form

do? = e (dp? + dz?) 4 pPd¢?]
and that the initial value equation then becomes
A(v)/¥ + Vg — (1/p)(8q/ 3p) = —8rGYeT " .

Here V2 is the flat-space Laplacian operator.

Brill has found that the quantity ¢ (“gravitational wave factor”) is often associated
with gravitational radiation (Brill 1959; Wheeler 1964). Because we wish to minimize
the amount of gravitational radiation present, and because we want our initial value
equation to be as simple as possible, we set ¢ = 0.3 In this case the metric is

do? = Yida? = YA(dp? + dz* + p%dd?), ¢V
and the initial-value equation reads
Vi = — 20GYPT° . (2)

Here doy?is a Euclidean “base metric,” and do?, the actual metric of the problem, is con-
formally flat. The initial value equation is just Poisson’s equation with —2xGY*T¢" as
the source of the “conformal correction factor” .

We now further specialize the time-symmetric and axially symmetric geometry to the
case of a toroidal magnetic geon (Fig. 1). Let the magnetic field lines be entirely con-
tained within a torus of major radius b and minor radius a, as measured in the base
metric and let & 3> ¢ (“slender ring””). Let the magnetic field lines be so distributed in the
torus that 27GY*T¢® is uniform throughout it.* Finally, let the coordinate r measure
base-metric distance from the guiding center of the torus

r= o — b+ 2.

3 Setting ¢ = 0 does not actually remove all gravitational radiation. If it did, outside the source of
the gravitational field the solution to the initial-value equation would also be a static solution to the full-
vacuum field equations.

4 This condition is not necessary to the analysis. The solution in the case of a non-uniform source leads
to a conformal correction factor ¥ which is identical to that of eq. (3) outside the geon, if that equation
is rewritten in terms of the base-metric quantities p, z, and 5. However, inside the geon the more general
case dgi\lrles a more complicated expression for y. Since the added complications yield no new insights, we
avoid them.
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Under these conditions the form of the solution to the initial value equation for ¥
(eq. [2]) can be seen directly from the electrostatics of a charged circular ring: Far away
the electric potential varies as (total charge)/(distance to ring), while nearby it varies as
2 X (line density of charge) X log (distance to center of wire). Similarly, the behavior
of the conformal correction factor far from the geon is governed by (observed mass of
geon)/(distance to geon), while near the edge of the torus it is governed by (magnetic
mass-energy per unit length) X log (distance to guiding line of torus).® Note that the
analogy is not a complete one. For the geon the scale of lengths changes as one moves
from the near region to the far region. Consequently, the observed mass, which governs
the gravitational pull far away, is nof equal to the line integral of the magnelic mass-
energy per unit length, which governs the gravitational pull nearby. What a difference
from elementary electrostatics!

Fic. 1.—A toroidal magnetic geon at a moment of time symmetry as seen in the base metric. The
magnetic-field lines thread the interior of the torus and are confined entirely within it. The electric field
vanishes at the moment of time symmetry, but the time rate of change of the electric field ordinarily

does not (E = curl B).

We turn now from a qualitative description of the solution to a precise statement of
it. Set ¢ = G = 1. The solution external to the geon can be put in the form

1M M, LI b
1//(R)—1+7r 1 [z’2+(p'+b')2]1/2K([z'2+(p'+b')2] )
~1+M/(2R), when R=(p*+32)V2>b, )
14

5 In comparing this statement with eq. (3) one should remember that far away the appropriate co-
ordinates are those of the background metric p, 7, . But nearby the appropriate coordinates are the re-
normalized ones p’, &/, r'. Consequently, the appropriate conformal correction factor far away is ¢, but
nearby itis ¢/ = ¥/, = (M/Mu)y.
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where K is the complete elliptic integral of the first kind. The masses appearing here are
M, the mass measured by an external observer, and M., the magnetic mass obtained by
integrating (B?/8) over the physical volume of the torus. The terms o', 7', and 7’ are
renormalized values of p, 7, and z constructed so as to make the metric flat inside the
torus:

P, = ¢o2p’ r = ‘002" ’ g = vz ’

where ¢, = ¥(r = 0). We have yet to write down the conformal correction factor ¥ for
the interior of the geon. In the case where &' 3> a’ (“slender ring”) and y*T'° = (constant
throughout torus), which we are considering, both the conformal correction factor ¢ and
the physical magnetic field B (as measured in a locally Lorentz reference frame) turn out
to be essentially uniform throughout the torus.

YR) = o = M./M . (R inside torus) (4

The masses which appear in our equations can be expressed in terms of the total magnetic
flux & = Bwa'?, the proper minor radius ¢’ = ay.?, and the proper circumference 2%’ =
2wby.2. The externally observed mass, M, is

M=M.+ M, (5

where M, the “magnetic mass,” and M, the “gravitational potential mass,” turn out
to be
M, = (3%')/(4na’?)

= (B?%/8x) X (proper volume of torus)

M, . /8%
Mp= —Mn 5 7 108 (T)

(6)

and

It is interesting to note that, if we had calculated the mass of the geon in the Newtonian
approximation (Wheeler 1964), we would have obtained precisely the same result, pro-
viding we had remembered that the magnetic pressure, B%/8x, and energy density,
B?/8x, botk act as sources for and feel the gravitational field. M., is just the “mass” ob-
tained by integrating the energy density over the torus; and M, is just the gravitational
potential energy of a Newtonian geon.

Let a particular toroidal geon (characterized by ®, @/, and 4') be observed as it
evolves away from its moment of time symmetry. Will it explode, or will it collapse? To
get some insight into this question, consider a sequence of geons all having the same total
flux ® and major circumference 2x%’, but having different minor radii, a’. Plot their
masses as functions of o’ (Fig. 2). For large a’ where the magnetic mass dominates, the
measured mass varies as 1/a”2. However, as a’ decreases, the negative gravitational po-
tential mass becomes more and more important, and it eventually wins out causing the
measured mass to decrease as — 1/a’* (second term in eq. [5] dominates over first term).

Turn now from a family of geons to the behavior of a particular geon as it evolves
away from its configuration of time symmetry. If a’ is sufficiently large (“dilute field
configuration”), we can use ordinary Maxwell theory to solve the problem, and we will
find, of course, that the geon flies apart because of the magnetic pressure. On the other
hand, if ¢ is sufficiently small (< 10~% light years in the case of Fig. 2), the gravitational
attraction between the magnetic field lines should dominate over the electromagnetic
repulsion, and the geon should collapse. In either case, as the geon evolves away from
its configuration of time symmetry, the changing magnetic field creates electric fields.
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A precise description of the gravitational collapse of a toroidal geon must await the
full solution of the dynamical equations. However, we can make a few general state-
ments about collapse dynamics at this point. As has been discussed by Wheeler (1964),
there are two possible modes of collapse: (1) a mode in which the magnetic field lines
collapse onto the guiding center of the torus (minor radius shrinks to zero as major
radius remains finite) and (2) a mode in which the field lines all contract to a point
(major and minor radii simultaneously shrink to zero). Wheeler shows that mode (2) isa
very reasonable mode of gravitational collapse. On the other hand, two facts suggest
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F16. 2.—The magnetic mass, gravitational potential mass, and measured mass of a time-symmetric
toroidal magnetic geon as functions of the configuration at the moment of time symmetry. Here we con-
sider geons all having the same flux & = 6 X 107 gauss-cm?, and the same proper circumference 27d’ =
2 light-years, but having different proper minor radii o’. Since M, = (constant dePending on ¥ and
@) X (b'/a’)? and M, = — (another constant depending on 5" and ®) (¥ /a')* log (8b'/a'), these curves
will have the same shape independently of ® and &’. In particular, as 2’ decreases the observed mass, M,
will always rise slowly, reach a maximum, then fall off rapidly toward — .

that mode (1) might never occur: First, there are two cases on record® in which magnetic
flux is capable of preventing gravitational collapse; but (to the author’s knowledge) there
are no known examples of the collapse of a magnetic-flux-containing-and-conserving
system. Second, we shall see later that in the limit M = 0, &, ¥, o’ finite, the time-
symmetric hypersurface of a toroidal magnetic geon is curved up into a closed universe
with 3-sphere topology. If the geon were to collapse onto its guiding line, one might
expect the topology of a 3-torus instead.

Because the maximum in the curve for mass versus minor radius should mark the
point separating exploding geons from collapsing geons, it is of interest to examine the

& The two cases are Melvin’s magnetic universe (Melvin 1964¢; Thorne 1964) and the Reissner-Nord-
strom solution for a “wormhole” threaded by an electromagnetic field (Wheeler 1964).
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“critical geons” corresponding to this maximum. We do so in Table 1. Here we have an
indication of how preposterous it would be to believe geons exist in nature or could be
created and studied experimentally. To be near criticality a laboratory-size geon must
have field strengths corresponding to supranuclear energy densities, while a geon of more
reasonable field strengths must be fantastically large.

The huge magnetic field encountered in the laboratory-size geon reminds us that the
equation of state for the electromagnetic field becomes very complicated when a field
strength of the order of the characteristic field of electron pair theory is reached:

Fore = mc?/[e(B/mc)] = 4.4 X 108 gauss = 1.3 X 10% volt/m

(Euler and Kockel 1935; Heisenberg 1936). When such field strengths are reached,
vacuum polarization, virtual pair production, and occasionally even real pair production
occur. Then we are back in the realm of elementary particle physics and all the complica-

TABLE 1

VALUES OF PROPER CIRCUMFERENCE, PROPER MINOR RADIUS, MAGNETIC FLUX, MAGNETIC
FIELD STRENGTH, MAGNETIC ENERGY DENSITY, AND MASS
FOR SEVERAL “CRITICAL GEONS"*

Laboratory-size Astrophysical-size Universe-size
Geon Geon Geon
Proper circumference, 2ob’. ... ...... 60 m 6 light-years 6X 10% light-years
Proper minor radius, ¢’............. 1072 cm 1078 light-years 105 light-years
Magnetic flux, ®............... ... 6X 102 gauss cm? | 6X 10% gauss cm? | 6X 107 gauss cm?
Magnetic field strength, B.......... 2X 10” gauss 2X 10" gauss 20 gauss
Magnetic energy density, B2/8x. .. .. 1.6X10% gm/cm?| 1.6 gm/cm? 1.6X10™® gm/cm?
Magnetic mass, M =(B?/8x) X vol-
UIME. ..ottt iiee e 3X10% gm 3X10% gm 3X 1088

Gravitational potential mass, Mp....| —1.5X10% gm —1.5X104 gm 1.5X10% gm
Measured mass, M................. 1.5X10% gm 1.5X10% gm 1.5X10% gm

* Geons which are expected to collapse if squeezed but explode if distended; or, more precisely, geons corresponding to a
maximum in the M versus a’ curve.

tions which it adds to the collapse phenomenon, to escape from which we turn to the
study of geons. Fortunately, however, we are free to consider large geons as well as small
ones, so that if, in following the collapse of a particular geon, one finds uncomfortably
large field strengths developing in the center, he need only turn to a much larger geon in
which a given stage of collapse is characterized by much smaller field strengths.

Return to the curve of observed mass versus minor radius for fixed flux and major
radius (Fig. 2). There is one disturbing thing about this curve: the mass M goes negative
for minor radius @’ < 0.72 X 107 light-years. This is impossible, according to a theorem
of Brill (1959) on the positive-definiteness of mass in time-symmetric, axially symmetric
systems. What is wrong here? The answer is that our solution (egs. [31-16]) is not physical-
ly admissible in those cases where the mass M is negative. Whenever M is negative the
Conformal correction factor ¥ is not everywhere positive; it contains a nodal 2-surface
surrounding the geon. As was pointed out by Brill, such a nodal surface in the space of
the base metric is a single point of the hypersurface of time symmetry, since do* = 0
everywhere on it. The region outside the node of ¥ is totally cut off from the geon, and
the geometries of both the exterior and interior regions exhibit cusplike singularities at
the node. Configurations of negative mass are thus ruled out.

It is still puzzling that as the minor radius ¢’ is decreased toward a certain finite value
(0.72 X 1075 light-years in the case of Fig. 2), the observed mass M approaches arbi-
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tarily close to zero. To understand this phenomenon better, we examine the geometry of
the hypersurface of time symmetry as ¢’ approaches a'o, that value for which the ob-
served mass M vanishes. Figure 3 presents “Imbedding diagrams” of the geometry of the
p-¢ 2-surface for geons with successively decreasing values of @'. It is seen from this
figure that, as o’ approaches a’o, the throat between the exterior region and the geon
closes off leaving, in the limit of a’ = a’¢, (1) a geon so dense that it has closed space up
around itself, and (2) a perfectly flat, empty exterior region.
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Fic. 3.~—“Imbedding diagrams” of the geometry of the p — ¢ 2-surface for geons all having the
same flux ® = 6 X 1097 gauss-cm? and proper circumference 2xd’ = 2 light-years, but having different
proper minor radii ¢’. In these diagrams we plot (3) (proper circumference of a circle about the geon’s
center) = py?(p) = R horizontally against a fictitious vertical coordinate {. { is so constructed that in
the region where the curve is solid the proper length of a radial line segment is do = (dR? + d¢2)i2 but
in the region where the curve is dotted do = (dR? — d¢?)!/2. (Thus, two points separated by a 45° dotted
line are actually very close together.) In more physical terms, if one rotates the figures about the vertical
axis one obtains from the solid parts of the curves the p — ¢ 2-surface asit looks imbedded in 2 Euclidean
3-space, and from the dotted parts the p — ¢ 2-surface as it looks imbedded in a Minkowski 3-space
with “imaginary’’ vertical axis. The regions in which the magnetic field is located are indicated by radiat-
ing lines.

From the diagrams it is clear that as ¢’ decreases toward a’, = 0.72 X 10~% light-years (the value for
which the observed mass vanishes), the geon pinches off from the exterior region, leaving, in the limit
¢’ = d,, a Lorentz-flat exterior (Diagram IV). The geon which is separated from the exterior space at
& = d’,is so dense that it curves space up around itself into a closed universe. At the point in this closed
universe farthest from the geon’s center the hypersurface of time symmetry is flat.

Although this figure specializes to the case & = 6 X 10% gauss-cm?and b’ = 1 light-year, the imbed-
ding diagrams would be essentially unchanged if ® and &’ were chosen differently.

This situation is strikingly similar to the one depicted in Figure 4 for a collapsing
cloud of dust (Oppenheimer and Snyder 1939; Klein 1962; Beckedorff 1962; Beckedorft
and Misner 1964). The topologies of the hypersurfaces of time symmetry are identical in
the two cases; and in both cases the same type of pinch-off occurs as the surface area of
the energy-containing region is reduced.” The similarity between the hypersurfaces of

71t is striking that in the pinch-off the entire torus, including its central “hole,” separates from the

external universe. One might have expected the pinch-off to occur in a canal-like region around the ring.
A similar situation arises when one has two Schwarzschild solutions very close together: They share a
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time symmetry in the two cases is so striking that one is led to expect that the dynamical
behavior of a collapsing geon will resemble that of a collapsing dust cloud. In particular,
it seems likely that, as the geon collapses, an event horizon similar to the “Schwarzschild
singularity” will develop.

The detailed investigation of the dynamics of the collapse of a toroidal magnetic geon
—free of all reference to any equation of state—should give still further insight into
gravitational collapse in general and the issue of the final state.

The author is indebted to the U.S. Air Force Contract AF49(638)-304 for funds which
made his attendance at the symposium possible, and to the Danforth Foundation for
support during the period in which this research was conducted. He also wishes to thank
Professor John A. Wheeler for valuable discussions, suggestions, and criticisms of this
work.

I I
$=308km? S=20km?
M= 0.84M, M=0.43M,
(1710 Scale) (1/2 Scale)

m ™
S$=1.35km? $=0
M=0.027 M, M=0
(full scale) { full scale)

Fic. 4—“Imbedding diagrams” of the geometry of the hypersurface of time symmetry for collapsing
clouds of dust. For each dust cloud, if one takes a two-dimensional surface of constant azimuthal angle ¢
at the moment of time symmetry and imbeds it in Euclidean 3-space, one obtains the surface formed by
rotating the corresponding curve about its vertical axis. Four diagrams are shown corresponding to clouds
of dust all containing 1 M o of matter (fTo°dvphy.;c.l = M) but having different surface areas. As the
surface area shrinks from « to 0, the mass of the cloud as measured from the exterior shrinks from1 Mo
%0 0. In the limit where the surface area reaches zero, the dust cloud pinches off from the exterior region
and one is left with a flat, empty exterior universe and a separate closed Friedman universe viewed at the
moment of time symmetry.

The dust cloud is located in the circular region of each diagram, while the parabolic region corresponds
to empty space outside the cloud’s surface.
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