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ABSTRACT

The theory of small, adiabatic, dipole perturbations of a star away from hydrostatic equilibrium is
developed within the framework of general relativity. The analysis is linearized in the perturbation
amplitudes. The “odd-parity” perturbations describe differential rotation, while the “even-parity”
perturbations describe pulsation. In the pulsational case there are two degrees of freedom associated with
the fluid motion and 7o degrees of freedom in the gravitational field (no dipole gravitational waves).
During the pulsation the star’s external gravitational field is completely unperturbed, to first order in the
amplitude, despite the fact that its surface performs a finite, back-and-forth motion.

'In both the pulsational and rotational cases, the Einstein field equations are put into simple forms
suitable for numerical integration. »

I. INTRODUCTION AND SUMMARY

The first four papers in this series (Thorne and Campolattaro 1967; Price and Thorne
1969; Thorne 1969a, b, hereinafter called Papers I, II, ITI, and IV, respectively) treated
the quadrupole and higher-multipole perturbations (! > 2) of relativistic stellar models.
The dipole perturbations (I = 1), which are treated in this paper, require a different
type of analysis from the others, because (i) there can be no dipole gravitational waves
and (ii) the tensor spherical harmonics for / = 1—unlike those for / > 2—satisfy the
algebraic identities

X'mie = 0, Pl + Vlar = 0 1)

(cf. Appendix A of Paper I; also Table 1 of this paper).

To physicists unfamiliar with the theory of Newtonian stellar pulsations, it might
seem surprising that dipole pulsations are possible. Doesn’t the equality of gravitational
and inertial mass rule out such pulsations altogether? No; it does rule out any oscillatory
motion of the star’s center of mass, and it does rule out any emission of dipole gravita-
tional waves, but it does not rule out dipole pulsations. Imagine, for example, a small
nuclear explosion at a point off the center of the star. The matter at the star’s center will
clearly be driven into motion away from the explosive center. If the explosion does not
disrupt it, the star will subsequently pulsate with its center of mass fixed relative to the
distant stars (conservation of momentum), but with the matter at its geometric center
in motion. If this stellar pulsation is resolved into normal modes, it musf contain modes
with [ = 1 because for [ = 1 the central matter moves, whereas for / = 0 and [ > 2 the
central matter cannot move (8r = 0 at r = 0).

In this paper we first treat (§ II) / = 1 perturbations with “odd parity,” i.e., = =
(—1)H#1 = 41, As in the case of / > 2, these perturbations describe stellar rotation

’

* Supported. in part by the National Science Foundattion [GP-15911 (formerly GP-9433), GP-9114],
the Office of Naval Research [Nonr-220(47)], and th: U.S. Air Force Office of Scientific Research
[AFOSR 68-1453A].

847

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...159..847C

J. - 1597 .7847C!

Al

[0

848 ALFONSO CAMPOLATTARO AND KIP S. THORNE Vol. 159

rather than stellar pulsation. There are no pulsations, because to pulsate the star’s fluid
must experience an oscillatory perturbation in its pressure; such a perturbation must
have scalar-spherical-harmonic angular dependence; and there are no scalar spherical
harmonics with odd parity.

Most of this paper (§ ITI) is devoted to ! = 1 perturbations with “even parity,”

m = (—1)! = —1. A specific gauge is introduced for the analysis of these perturbations
(§ I1Ia). This gauge, which differs from that of Regge and Wheeler (1957), is defined only
up to arbitrary, time-dependent displacements of the origin of coordinates (§ I1I5).

In this gauge the fluid motions are described by two amplitudes—W (¢, ) for radial
displacements, and V(Z, 7) for azimuthal displacements—and the gravitational perturba-
tions are described by three metric functions— H (Z, 7), Hi(2, r), Hs(t, 7). The Einstein field
equations, which govern the pulsations, consist of initial-value equations for the gravi-
tational perturbations H,, in terms of the fluid motions, W and V; plus dynamical
equations for the time evolution of W and V. C onsequentl\ the star has only two
dynamical degrees of freedom, and both are associated with the fluid motion (§ Iilc).

With an appropriate choice of gauge—i.e., that choice which puts the origin of coordi-
nates at the star’s center of mass, but which permits finite fluid motions at » = 0—the
external gravitational field has Ho = H; = H, = 0. Consequently, the geometry of
spacetime outside the star is unaffected by the stellar pulsations; it remains the spheri-
cally symmetric, Schwarzschild geometry of the unperturbed star (§ 111d).

The Einstein field equations plus necessary boundary conditions form a well-posed
mathematical framework for calculating the stellar pulsations. Numerical integrations
on a computer should not be much more difficult than in the Newtonian case (§IIIg).

In this paper, as in Papers I-IV, most of the mathematical derivations are confined to
appendices. The body of the paper concentrates on a precise, self-contained presentation
of the main results of the analysis.

The notation is that introduced in Paper I [including a choice of units in which ¢ =
G = 1, and including the use of Greek indices to run from O to 3 (i.e., over x°, !, x2, x?)
and Latin indices to run from 2 to 3 (i.e., over 22 = 0 and x® = ¢)] Equations from
Papers I-1V are denoted thus: equation (I 19), equation (II 7), etc. All perturbations
are treated to first order in the amplitude. The letter M is used to represent both the
total mass-energy of the unperturbed star and the “projection index” of spherical
harmonics. This should not be confusing, since group theory guarantees that the spherical-
harmonic index M will never appear in the initial-value or dynamical equations that
govern the perturbations. Only the star’s mass M can appear there.

II. ODD-PARITY PERTURBATIONS!

With an appropriate choice of gauge (cf. Appendix A) the spacetime gedmetry for a
star, undergoing a general / = 1, 7 = (—1)"*! = 41 perturbation, takes the stationary
form

ds? = erdft — erdrt — r2(d6® + sin? 8d¢?) — 2r2wdi[Z;(4m/ 3)1/2<I>1dexf] . ‘(.2)
Here v and X\ are functions of 7, which describe the unperturbed geometry; w is a function
of r, which describes the perturbation; and ¢'y; is a vector spherical harmonic (cf.
Table 1). This geometry is necessarily stationary (i.e., the metric is independent of the

time coordinate ), by virtue of the Einstein field equatrons
The fluid in the perturbed star has four-velocity

wW=¢e"?, w=0, u=—Qedr/3)12Pyi. (3)

Here Q is a function of 7 only, which describes the perturbation. The density and pressure
as functions of radius r are unperturbed. Physically, the fluid perturbationis differential

! For mathematical details, see Appendix A.
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rotation without any change (to first order in angular velocity) in the star’s shape,
density, or pressure.
When M = 0, the fluid has (cf. Table 1 and eq. [3])

wt/u = do/dt = Qlr), u/u0 =0, 4)

which corresponds to differential rotation about the polar axis (z-axis) with an angular
velocity @ that is a function of 7 only. The metric for M = 0 has

—gu/ges =@, gu=0; _ ©)

consequently, w is the “angular velocity of the local inertial frames” as discussed by
Hartle (1967).

When M = +1, the real part of the perturbation corresponds to differential rotation
about the Fe, axis with angular velocity @/+/2; and the imaginary part corresponds
to differential rotation about the —e, axis with the same angular velocity, £/4/2. (We
adopt the usual convention that x = 7 sin 6 cos ¢,y = 7 sin 6sin ¢, and z = r cos 6.) Also,
for M = + 1, the angular velocity of the local inertial frames has a real part of magnitude
w/+/2 and direction F1,, and an imaginary part of magnitude w/+/2 and direction —1,,.

TABLE 1
TENSORIAL SPHERICAL HARMONICS FOR [ = 1*

Type Parity Components
*Scalar.... Even Y!; =(3/4m)'2cos 8 Yy = F(3/8n)1/% etid sin 9
Vector... Even Wi,y =—(3/4m)V2sin 6 Wli9= F(3/87)'/2eti® cos @
Vg =0 Wy 4=—1(3/8)!2 etib sin 6
Odd &% =0 ®ly19=1(3/87)1/2 etid
Plyy =—(3/4m)2sin2 § ®'y19= F(3/8m)1/2 eti¢ sin 0 cos 0
Tensor... Even &'yp9=—Vlyge=V1y

Dlypp=—Wygp=sin? 0 V1,
Pu'op= —V'yop=0
Odd  x'mjxr =0 forallyj, &

* These formulae are calculated from the definitions given in Appendix A of Paper I. The tensor
indices of these harmonics are raised and lowered with the two-sphere metric v kY00 = 1, v b = sin? 4,

'Y“,"O

To construct a stellar model with / = 1 differential rotation, one first constructs a
nonrotating equilibrium model (cf. Thorne 1967). One then specifies the fluid angular
velocity () in an arbitrary manner, subject only to the constraint that

QKL (m/r¥)i2 (6)

where m(r) = 3r(1 — ™) is the mass inside radius 7. (This constraint guarantees that
the centrifugal force will not deform the star so badly that structural changes of order
Q%3/m must be included in the analysis.) One finally calculates the dragging of inertial
frames (i.e., the function w(r) which Q generates) by integrating the differential equation

r4rte Oty ] 4 4 e O] (0 — 2) =0 (7
subject to the boundary conditions (cf. Hartle 1967)
w.= finite constant + O(rz) at r=0, ®
w=0 at r = o,

For rigid rotation about the polar axis (2 independent of r, and M = 0), the above
equations and integration procedure have been discussed in great detail by Hartle
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(1967) ; and numerical integrations have been carried out by Hartle and Thorne (1968):
The aspects of their analysis which are not discussed above can easily be extended to
our case of differential rotation with € a function of » but not of 6.

III. EVEN-PARITY PERTURBATIONS
a) The Metric and Fluid Perturbations?

With an appropriate choice of gauge (cf. Appendix B) the spacetlme geometry for a
star undergoing / = 1, # = (—1)! = —1 perturbations takes the form

dst = e(1 + HyViy)det + 2H, Viydtdr — (1 — HyVig)dr? — 12(d6® + sin?8d¢?). (9)

The metric perturbation functions Ho, H,, H» are functions of r and ¢, so that in this case
—by contrast with the odd-parity case—the gravitational field is dy rnamical rather than
static. This metric differs from that for I > 2 (eq. [I, 7b}) in two respects: (i) for I > 2
H, = Hs, but here Hy # Hy; (ii) for I > 2 there are perturbations of ge and ges, but
here there are not.

The fluid element originally at (7, 8, ¢) in the unperturbed star is dlsplaced to (r + ¢,
0+ £, ¢ + &) in the perturbed star, where

& =12 MW (r, )Yy, & = —r2V(r, O¥y7 . (10)

Hence, the function W(r, {) describes the radial motion of the fluid, while V(r, ¢) de-
scribes its tangential motion. '

In discussing the fluid perturbations, we shall often make use of the Lagrangian change
in pressure, Ap, which results from the fluid displacement (10) and metric perturbation

9). .
Ap = —e2S(r, ) V'ur
S = ype?(r2e MW, + 2r 2V — $H,)

(cf. egs. [1, 16] and [I, C3]). Here v(r) is the adiabatic index and $(r) is the pressure of
the unperturbed configuration.

(11)

b) Gauge Arbitrariness®

The gauge used in Paper I for describing even-parity, / > 2 pulsations is uniquely de-
termined. However, the analogous gauge (eq. [9]) for / = 1 is not. The forms (9) and
(10) of the metric and fluid perturbations are left unaffected by infinitesimal coordinate
transformations of the form

xu.’ = xo +.nu , (123)

= —a V%, m=afVy, 9 =a¥u, (12b)

where

f = rexp [—fr“(l — e")dr] , a = a(f) = arbitrary function of time. (12c)

Such a change of gauge produces the following changes in the perturbation functions:

HY = Hy+ QQa,ue* +arv,)f, (13a)
HY = Hi+ e, [2r"'(1 — &) —v,lf, (13b)
HY = Hy — ar’'[2r"1(1 — &) + A S, (13c)
‘ W' =W — areM?f , (i3d)
» Cf. Appendix B. 2 Cf. Appendix C..
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V' =V +aof, (13¢)
s =35. (13f)

¢) The Field Equations*

- The Einstein field equations for the metric and fluid perturbations (9)-(11) reveal
the following:

There are only two dynamical degrees of freedom in the star. These are associated
with the radial fluid displacement (W[, r]) and the azimuthal fluid displacement (V¢ 7]).
The hyperbolic differential equations which determine the time evolution of W and V are.

r2(p + p)e()‘—v)/q,V’” + 3(p + [J)e”/2(r_2e_"/2v,,-),,-W

— 2r%(p + [))(e"/2),,-V - S, (14a)
— (p+ ple?[3Hos + Gv,y — r VHo + (3vr + rHHs] = 0,
(o + eV, + 2S5 + r 2 Mp , W — 3(p+ p)Hy = 0. (14b)

Notice the similarity to two of the three dynamical equations (egs. [I,9b,c]) for 7 > 2.
The perturbation functions .S, Ho, and Hs, which appear in these dynamical equations,
are fixed in terms of W and V by the initial-value equations

Hyp 4+ [r'(1 + &) — N\ + 47rer(p + p)|H,
= 8ureM(p + p)r 2 MW . 4 2% M2 W 4 2% (p + p) V],
S = ypel2(r2e W, + 22V — LH) (15b)
Hoyr + v — 7722 — eM]H,

(15a)

= —¢r 1 H, + 8xrer(Se™2 + r 27 M2p W) ; (15¢)
~ and the additional metric perturbation function H; is determined by
| Hy = —rHy,; + 8n(p + p)2W ., (15d)
or, equivalently (modulo the other field equations), by
Hye = eHop + Gvw — r0eHy + Qo + r)eH, . (15d)

d) The External Gravitational Field

Equations (15a), (15¢c), and (15d) are easily solved in the vacuum outside the pulsat-
ing star, where®

v=—=A=In(1—-2M/r). ‘ (16)
The general solution is
8 + 8M?B,4 _2ME e
= %_—_——_— ’ H, = ’ ’
=30 = = Ta-ofe BTt
where (17a)

¢=2M/r, B = B(t) = arbitrary function of ¢ .

This general vacuum perturbation can be set to zero by the choice of gauge of equations

(12) with a(¢) = —ZMB(¢). Consequently, the geomelry of spacetime outside the pulsating

star is completely unperturbed, it remains the spherically symmetric Schwaraschild geometry!
4 Cf. Appendix D.

5 Here, and everywhere except when it is an index on a spherical harmonic, M represents the total mass
of the star.
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¢) Removal of Gauge Arbitrariness

The result of the last section provides an attractive method for removing the arbitrari-
ness of gauge discussed in § I11b: Of all coordinale systems in which the metric takes the
form of equation (9), there will be one and only one (aside from time translations and rota-
tions) for which Hy = Hy = Hy = O outside the star. We shall henceforth restrict ourselves
to this particular coordinate system. All other coordinate systems of the type (9) can be
obtained from it by a change of gauge of the form (12), which will yield the perturbed
external metric (17a) with

B(t) = (3/2M)a(t) . (17b)

The changes of gauge (12) have a simple geometric interpretation: They correspond
to displacing the coordinate system by the amount

oxt = "'?7“(5; ;;7 0, ¢)

relative to its original position. Near r = o this coordinate displacement has com-
ponents ) .
ot =aoVly, Oor=ally, o6& =ar Wy ; (18)

and in terms of Cartesian coordinates with
z2=1rcosf, x4 iy = rsinfe*

its tomponents are

(3 1/2 3 1/2 ¢ 1
ot = Z‘;) a3, bx =08y =20, 6Z=<E> a or M =0, (19)

3 1/2 _ . ""6 . 3 1/2 5 0
6t—(§;) a.(Fx —1iy), o&x= Fidy= +(§7—r> a, z = (19b)

for M = +1.

This displacement is simply a translation of the coordinate system through a distance
(3/47)2a(t) relative to its original position. The non-Galilean 8¢ associated with this
time-dependent translation of the space coordinates has the form one would expect from
the Lorentz transformations of special relativity.

f) Boundary Conditions on the Field Equations

The perturbation functions Ho, Hy, Hy, W, V, and S must satisfy certain boundary
conditions at the center and surface of the star. At the center the perturbations must
correspond to a finite displacement of the fluid, £ ~ const. X V' and & ~ r~1W¥!,7, with
a well-behaved Lagrangian change in pressure, Ap = —e*/25 Yy ~ r¥. By combining
these constraints with the field equations (14) and (15), one finds that the perturbation
functions have the following forms at the star’s center:

W=w?+00r), V=—w-+O0@,
Hy = hr+ 0(*), Hy=8r(p. + pJw.r* + O(r'),

+ Zw[a%]czr:’ + o),

S = (po + p)€ "¢ w,u + 47(3p. + pJw + 3hlr + O(°) .
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Here w and % are functions of time, and the subscript ¢ refers to the value of a quantity
at the center of the unperturbed star.

Notice that equations (20) are qualitatively the same as in Newtonian theory: there
are two arbitrary functions of time in the asymptotic expansion about the star’s center,
corresponding to the two degrees of freedom in the fluid motion. The function w(f) de-
termines the displacement of the fluid element that originated at the star’s center; i.e.,
it determines W(r = 0, {) and V(r = 0, t), and thence &(r = 0, 7). The functions A(f) and
w(?) together determine the amount by which fluid elements near the center are com-
pressed; i.e., they determine S(r = 0, /), and thence the Lagrangian changes in density
and pressure.

At the star’s surface the Lagrangian change in pressure, Ap = —Se*/2¥y, must
vanish; consequently,

S=0 at r=R_, ie, justinside the star’s surface . (21a)

In addition, the geometry of spacetime inside the star must join smoothly to the geome-
try of spacetime outside. More particularly, the first and second fundamental forms of
the star’s three-dimensional timelike surface must be the same when measured from the
star’s exterior, where Hy = H, = H, = 0, as when measured from the star’s interior.
Straightforward but nontrivial calculations show that the first fundamental form is
continuous if and only if

Hy=0 at r=R_, ~ (21b)

and the second fundamental form is continuous if and only if
H =0 at r=R_, (21¢)
H, = 8xr 1M Wp at r=R_, (21d)

H,, = —8wr2"*(1 4+ imv . )Wp at r=R_. (21e¢)

The surface boundary conditions (21) are not all independent of the field equations
(14) and (15). In fact, the field equations together wilh two boundary conditions (eq. [210]
on Hyand eq. [21¢] on H, ) guarantee that all of the other boundary conditions are satisfied.
Since the field equations are a fourth-order differential system in 7, and since there are
two independent boundary conditions at the star’s surface, precisely two arbitrary func-
tions of time are needed to fix the solution near the surface. We can take them to be the
amplitudes, W(r = R, ¢) and V(r = R, {), for the radial and tangential components of
the fluid displacement.

Notice that the qualitative features of the surface boundary conditions (two con-
straints on gravitational field; two degrees of freedom in fluid displacement) are pre-
cisely the same in general relativity theory as in Newtonian theory.

2) Normal Modes of Pulsation

Numerical analyses of the normal modes of dipole pulsation for relativistic stellar
models should not be much more complicated than numerical analyses of the normal

radial modes. The normal modes will have perturbation functions of the form
H, = Ho(r)e"“" , H, = H](?’)ei“’t y Hy, = Hg(r)ei“" y (22)
W = W(r)ewt, V= V(rewt, S =S(r)e“t.

Equations (14a), (14b), (15a), (15b), and (15c) will become coupled eigenequations
for the eigenfunctions Hy(r), Hy(r), W(r), V(r), and S(r). This system of eigenfunc-
tions will be of fourth order. For any given value of the frequency, w, two of the four
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independent solutions, corresponding to the two independent constants we—it and ket
in equation (20), will be phy sically acceptable at the star’s center, and two solutions will
be unacceptable. At the star’s surface, two solutions will be phy smally acceptable, while
the other two will violate the two mdependent boundary conditions (21b) and (21e) on
H o and Hy,,. Only for particular (usually discrete) values of the frequency, w—the star’s

“eigenfrequencies”—will a linear combination of the two acceptable surface solu'tions
match onto a linear combination of the two acceptable central solutions.

The eigenfrequencies and eigenfunctions can be calculated for any stellar model by a
series of trial-and-error integrations. In each trial integration one can: (i) pick a trial
frequency w, (ii) integrate the two acceptable central solutions out from r = 0 to » ~
iR (““match point”), (111) integrate the two acceptable surface solutions inward from
r = R to the match point, (iv) try to match a linear combination of the surface solutions
to a linear combination of the central solutions.

Because no provision was made in our stress-energy tensor for dissipation, and because
no dipole gravitational waves are possible, each solution of the eigenvalue problem
should either pulsate sinusoidally with no losses (w real) or grow exponentially with no
oscillations (w imaginary). It would be interesting to prove this conjecture from the
eigenequations directly—i.e., to prove that, for all solutions that satisfy our boundary
conditions, ? is real.

IV. CONCLUSION

This completes our series of five papers on the theory of the nonradial pulsation of
relativistic stellar models. Since this series was begun, the discovery of pulsars has made
this work much more relevant for astrophysics than it was orlgmally At the same time,
however, pulsar research has called into question one of the fundamental premises on
which this work rests: the assumption that the stellar material can be idealized as a
perfect fluid. At subnuclear densities, according to Ruderman (1968, 1969), neutron-
star matter might crystalize and might support shear stresses. If so, then the theory
developed in this series of papers should be extended to stars with fluid cores and
crystalline mantles.

We thank Barbara Zimmerman for assistance with the computer calculations of the
Einstein tensor and of the divergence of the stress-energy tensor. One of us (K. S. T.)
thanks the Alfred P. Sloan Foundation for a Research Fellowship during part of theperiod
of this research.

APPENDIX A

ODD-PARITY PERTURBATIONS

Odd-parity perturbations for / > 2 were treated in Appendices A and B of Paper I, The
analysis for I = 1 differs from that for / > 2 because the odd-parity tensorial spherical har-
monic, xa;jk, vanishes identically.

In a gemeral coordinate system which agrees, before perturbation, with the gchwarzschxld
coordinates of the star (cf. eq. [I,1]), a general odd-parity, I = 1 perturbation has the form of
equation (I,AS5)—but with %;z = 0 because x4x = 0:

=0, §&=U@ )%u;;
ho = hor = her = hji = 0, hoj = ho(r, O®'wj ,  hj = ha(r, )®P'u; .
The expression for the metric perturbation can be simplified by a specialization of the gauge:

' =attr, m=n=0, un;=Al )Py,
kaﬁ/ = hop — (Mais + 78:0) -

In Paper I A(r, t) was chosen so as to make k;;" vanish. However, for I = 1, ki, like k., will
vanish automatically because x'm;x = 0. Consequently, we can now choose A(r, £) so as to

(A1)

(A2)
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make h,; vanish. By doing this, we obtain a gauge in which (with primes omitted henceforth,
and with a change in notation)

F=0, = —(41r/3)1/2[0f9(r, Ddt |8t (A3)

hoj = —-(41r/3)”2r2w('r, t)(lej, ho = hor = By = h'rj = hjk =0.

Here, and always, the tensor indices on spherical harmonics are raised and lowered by using the
two-sphere metric—ygs = 1, vog = 0, Y44 = sin? f—rather than the metric of spacetime, and
indices j and k run over 6 and ¢ (i.e., 2 and 3).

The fluid four-velocity corresponding to equation (A3) is

w=¢e"?, u=—UAr/3)Qe 2Py, u =0. (A4)

The Lagrangian and Eulerian perturbations in pressure and density are zero because their
angular distributions must be described by scalar spherical harmonics with / = 1 and = =
(—1)"! = 41, and no such scalar spherical harmonics exist. Consequently, the Eulerian
perturbation in the stress-energy tensor is 67, = (p + p) (.04 + u’du,). This has as its
only nonzero components

0T, = r'e”(p + p)(Q — w)(4m/3)!1*P!y; (AS)

and 6T ’, which is readily calculated but is not needed here. The perturbation in the Einstein
tensor, associated with the metric perturbation of equation (A3), has the following nonzero
components:

BG,-O _ %r—2e—(u+)\) /2[6— (Cap] /27'40.’,,] ,7(47‘./3)1/2¢1M]_ , (A6a)
anr' = %1’28—)‘—"0),”(411'/3)”2¢1Mj ’ (Aﬁb)

0Go’ and &G, are also nonzero, but we do not need them since they are not independent of
0G;° and 6G;". By constructing Einstein’s equations, 8G,® = 87T, from equations (AS5)

" and (A6), by manipulating them, by combining them with the zero-order field equations (I, 2

and 3), and by demanding that w approach zerp as » approaches infinity, we obtain
Q,t = W, = 0 , (A7a)
r~4rie W2y ]+ dr e 2] (w0 — Q) = 0. (A7b)

The physical interpretations of the perturbations (A3) and corresponding field equations
(A7) are given in the text.

APPENDIX B

METRIC AND FLUID PERTURBATIONS FOR EVEN PARITY

Even-parity perturbations for [ > 2 were treated in Appendix A of Paper I. The analysis
for I = 1 differs from that for / > 2 because the even-parity tensorial harmonics satisfy the
identity (I)lek = —‘I’lek.

Before specialization of the gauge, the general [ = 1, even-parity perturbation has the form
of equation (I,A6), with ®!; and Wy interchanged in %;: (note the errata to Paper I):

=X, 0YV'n, &=V O)¥u;;

ho = eHo(r, ) Y'sr,  hor = Hi(r, )Yy,  hw = e Hy(r, ) Vi ;
hoj = ho(r, O)OWar; ,  hej = hy(r, Wy :
kit = Y G(r, £) — K(r, )%

(B1)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...159..847C

J. - 1597 .7847C!

Al

[0

856 ALFONSO CAMPOLATTARO AND KIP S. THORNE Vol. 159

The expression for the metric perturbation can be simplified by a specialization of the gauge:
a = a0 92, o= Mo(r, ) Vs , . (B2)
= Mi(r, ) Y'y, n; = Ma(r, )¥u; .

In Paper I we chose Mo, M1, and M, so as to annul the functions ko, k1, and G. Here, because of
our simplified form for %;x, we can annul K at the same time as we annul G—i.e., we can annul
G — K, the only combination in which G and K appear. By doing this, we obtain a gauge in
which (with primes omitted and with a change in notation)

ET = _f"2e)\12W(” t) YIM ’ EJ' = V(” t)\I,lMJ' )
hoo = eHo(r, ) Vig, oy = Hi(r, ) Viag, o = &Ha(r, ) Viar,  (B3)
hoj = hej = hjx = 0 .

APPENDIX C

NONUNIQUENESS OF EVEN-PARITY GAUGE

The I = 1 gauge of equation (9) (or equivalently eq. [B3]), and the ! > 2 Regge-Wheeler
gauge of Paper I are specified completely by the conditions

ho = eHo(r, )Y, ho = Hi(r, OV, by = e Hy(r, ) Yiu ,
hoj = hej =0,  hjp = r’K(r, )®'u;n , (C1)
Kir,) =0 if I=1.

Is there a change of gauge which leaves the form of these perturbations unchanged?
To answer this question, consider the most general change of gauge which does not produce
spherical harmonics with other values of I, M, and parity:

ae’ = x¢ + 7%, Mo = MO(") t)YM’ Nr = Ml(ry t)YM’ n; = Mz(?’, t)\I’lMiy

. (C2)
ha'p' = haﬂ - (‘ﬂa:ﬁ + ’76;@) .
Straightforward calculation yields
hyo = [e’Ho — 2Mo,: + v e M1 Vi
holrl = [Hl el MO,!‘ + V'rMO - Ml,t] YlM ’
b = [6Hy — 2Mry + N M) Vg
(C3)

hoyj = —[Mz,e + Mo]¥'in; ,
by = —[Mae — 2r M, + My|¥Wly;,
hj'k' = [1’2K - Zfe_le]@lek — ZMz\I’lek .

For 1 > 2, when ®%;j;, and ¥y, are completely independent functions, the new gauge will
have the same form as the old one if and only if

Mye+ Mo=0, Moy—2rMy+M =0, M,=0. (C4)

The most general solution of these equations is My = M, = M, = 0. Hence, for I > 2 the
gauge of equation (C1) is unique.
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For ! = 1, when ®4j;, = — Wy, the new gauge will have the same form as the old one if
and only if

M.+ Mo =0, My, — 2r ‘Mo + My =0, 2re*M,—2M,=0. (C3)

The general solution to these coupled equations is readily shown to be
M, = '—a.tfy M, = ar_le)‘f ’ M, = af’

f=rexp [— Jril — e‘)dr] , a = a(f) = arbitrary function of ¢t . (C6)

Hence, for I = 1 the gauge of equation (C1) is unique only up to transformations of the form
(C2), (C6). The changes in the perturbation functions, Ho, H1, Hy, W, and V, produced by such
transformations, are readily calculated by combining equations (C1)-(C3), (C6), and (10).
The results are given in equations (13).

APPENDIX D
EQUATIONS OF MOTION FOR EVEN PARITY

For the even-parity perturbations of equations (9) and (10), the perturbed Einstein field
equations are calculated by the same method as we used in Appendix C of Paper I. The pertur-
bation in the stress-energy tensor is identical with that of Paper I, except that the angular de-
pendence is specialized to [ = 1, M not necessarily zero, and the function K vanishes:

0T, = 6T = 6Ty = [e72S + r~ 2% M2p , W] V'n , (D1a)
6To" = [—(p + p)(¥p) 'S — r72% ™ 2p W]V y , (D1b)
8Ty = (p + p)r 2 22W , Viy, (D1c)
ST = —(p 4 p)r 2V, Wi . (D1d)

The only other nonvanishing components, 67,° and 67, are dependent on these. In these
expressions S is the function defined in equation (11). Notice that —Se™/2 ¥y is the Lagrangian
change in pressure.

The perturbation in the Einstein tensor, as calculated by using the computer programs AL-
BERT (cf. Thorne and Zimmerman 1967) has components

0G, = [2rleH,,, — r e H,, + r2Hy — r 1t 4+ v,)e "Hy| Yy, (D2a)
0G = 8Gy® = {—3e"Ha,ue + e "Hy,e + (r™ — 3N )e " Hy,y — 3€  Ho e
— 3¢ v — I\ +r Y Ho, + 372 Ho — 36707 + ) Hos (D2b)
FieN—r2 + Ny — v F N — .2 = v Hy Vi,
0GP = {—re My, + r e\, — (1 + e NH} Viar (D2c)
0Gy" = (r"le ™ H,, + r~2e*Hy) Vy , (D2d)
8Gy' = — 3 H,, — e Hy, + 3\ — v ) Hil ¥ (D2e)
0Gy = —§r e’ Hy,. — Hoy + (r™' — v, )Ho — (r™' + 3v,) Ho]¥W'y' . (D2f)

The only other nonvanishing components, 8G,°, 8G;,°, and 6G;", are dependent on these.
P ’ y 0Lrj 3 P
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The divergence of the stress-energy tensor for the perturbed star has as its perturbations
8(T+.,) = {—r%p + p)e**W,u + €25, »
+ [por + 3o+ D) v — (271 + NP AW (D3a)
+ (o + P)r.r2V — 3o + p)v.-Hy — 5(p + p)Hor + (p + p)eHy i} Vin
§(T#,) = {(p+ P’V + 25 + r 2 Mep W — 3(p + p)Hoj¥'u; . (D3b)
8(T*.,) =0. (D3¢

(The procedure used to construct the stress-energy tensor [Appendix C of Paper IJ, together
with T'*;, = 0 for the unperturbed star, guarantees that 6(To*,,) = 0.)

From the above expressxons for 6T,*, 6G,’, and 8(T,”;,) one can readily obtain the ﬁeld
equations presented in § ITIc: The equation 8G,’ = 8w8T, = 0 is an initial-value equation for

Hl,g.'
Hy,=eHy, + Bv, — rYeHy+ v, + r)eH,. (D4)

By using this equation to eliminate Hy,, from 6(T'*;,) = 0 (eq. [D3a]), and by using the zero-
order field equations (eqgs. [I,1]-[I,3]) to simplify some of the terms, one obtains the dynamical
equation (14a) for W. The equation 8(T;#;,) = 0 (eq. [D3b]) becomes the dynamical equation
(14b) for V without any manipulation. By combining the equation 0Go® = 8mdT¢® (egs.
[D2c] and [D1b]) with the definition (11) of S, one obtains the initial-value equation (15a)
for H,. Equation (15b) is merely a restatement of the definition (11) of S. By using equation
(D4) to eliminate H 1, from 8G,” = 8wdéT," (egs. [D2a] and [D1a]), one obtains the initial-value .
equation (15¢) for Ho. The equation 8G¢" = 8w8T " (eqs. [D2d] and [D1c]) becomes the initial-
value equation (15d) for H, without manipulation; and equation (D4) becomes the initial-
value equation (15d’) for Hy,,.

One can verify that equations (14) and (15) are a complete set of field equations, i.e., that,
if they are satisfied, then all of the equations 8G,” = 8mdéT,” and 6(T,”;,) = O are satisfied.
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