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ABSTRACT

A research group in Southern California is currently analyzing, by means of perturbation
theory, the rotation and pulsation of fully relativistic stellar models, including the effects of
gravitational waves. In this paper are described the astrophysical motivation for this analysis,
and some of the ideas, techniques, and results which have emerged from it thus far.

1. INTRODUCTION

In the last four years a number of developments in astronomy and as-
trophysics have generated interest in problems on the frontier between general
relativity and astrophysics. The discoveries of quasars, of explosions in ga-
lactic nuclei, and of X-ray sources, as well as rapid progress in the theories
of stellar evolution and of supernovae have given impetus to the study of
relativistic stellar structure and of gravitational collapse. At the same time,
major improvements in radio source counts and the discovery of the cosmic
microwave radiation have generated a revolution and upsurge in research on
cosmology. (For references and reviews see Robinson, Schild, and Schiicking
[1965] ; Harrison, Thorne Wakano, and Wheeler [1965] ; Zel’dovich and
Novikov [1964, 1965] ; Wheeler [1966] ; Thorne [1966, 1967]).

(*) Supported in part by the Office of Naval Research [Nonr-220(47)] and the National
Science Foundation [GP-5391].

(**) Alfred P. Sloan Foundation Research Fellow and John S. Guggenheim Fellow. This
paper was written while the author was working in the International Research Group in
Relativistic Astrophysics at the Institut d’astrophysique, Paris, France, July, 1967.

247


joann
Rectangle

joann
Rectangle


In this paper I shall concentrate attention on a small segment of the
exciting new field of general relativistic astrophysics : the theory of the
rotation and pulsation of general relativistic stellar models. It is widely be-
lieved today that neutron stars are formed by the gravitational collapse of
ordinary stars which have burned most of their nuclear fuel. (See, e.g.,
Colgate and White [1966]). When first created by collapse, a neutron star
will be endowed with rather large rotation and pulsation amplitudes : The
rotation may be sufficient to deform the star markedly, and the pulsation
energy thay be several per cent of the rest mass-energy of the star. Such large
pulsation and rotation will produce important astrophysical effects, accor-
ding to rough analyses based on Newtonian theory and on the linear appro-
ximation to general relativity :

1) Quadrupole and higher-order pulsations should be damped extremely
rapidly by the emission of gravitational waves. Zee and Wheeler [1967],
Wheeler [1966], and independently Chau [1967] estimate that a burst of
gravitational waves containing about 10°? ergs (0.01 of the rest mass of
the star) should be emitted at a period of about 1072 seconds and with an
exponential decay time of about 1 second. Such a burst of gravitational ra-
diation might be detected by the apparatus of Joseph Weber (1966, 1967) if
the star is within about 10? light years of the earth.

2) The neutron star would probably have a strong magnetic field (as
large as 10™ gauss, perhaps). Such a field would couple the collapsed neu-
tron star to the gaseous stellar envelope which is ejected during collapse,
and which may be associated with a supernova outburst. By means of this
magnetic coupling large amounts of energy could be pumped from the stellar
pulsation and rotation into the surrounding nebula, with important, astrono-
mically observable effects. (See e.g. Hoyle; Narlikar, and Wheeler [1964],
Finzi [1966], Cameron [1965 a,b]).

3) The rotation would probably stabilize the neutron star against col-
lapse even if its mass is a little above the Landau-Oppenheimer-Volkoff limit
for non-rotating neutron stars.

The pulsation and rotation of relativistic stellar models is of importance
not only for neutron stars, but also for supermassive stars (stars more mas-
sive than 10* solar masses). Hoyle and Fowler (1965) and Fowler (1964)
have suggested that supermassive stars may be the energy sources for quasars
and for explosions in the nuclei of galaxies. Although general relativity has
little effect on the structure of most supermassive stars, it has marked effect
on their stability (Chandrasekhar 1964, Fowler 1964) : In nonrotating stars
more massive than 10° solar masses general relativistic effects induce collapse
before any nuclear fuel can be burned ; and in rotating stars there is a similar
limit of 10® solar masses. (For a review see Chapter 6 of Thorne [1967]). In
order to evaluate better the plausibility of the supermassive-star model for
quasars, one needs to understand better the interactions between pulsation,
rotation, and general relativistic effects in supermassive stars.
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The astrophysical problems described above, along with other conside-
rations, have motivated two rather different research projects on the rotation
and pulsation of: relativistic stellar models. The first of these, which is being
pursued by Chandrasekhar (1965 a,b,c ; 1967 a,b,c) and independently by
Fowler (1964, 1966), uses the post-Newtonian approximation to general
relativity : General relativistic effects are treated as small perturbations in
rotating and pulsating Newtonian stellar models. This type of approach is
particularly well adapted to supermassive stars, where relativistic effects on
the stellar structure are small. However, it cannot be applied with confidence
to neutron stars, where relativistic effects on the structure are as large as 30
percent ; nor to problems where gravitational radiation is important, since
there are no gravitational waves in the post-Newtonian approximation.

The other research project on rotation and pulsation is well adapted to
neutron stars and to gravitational radiation. This project is being pursued by
a group in Southern California consisting of myself and S.M. Chitre at Caltech,
James Hartle at the University of California at Santa Barbara, and Alfonso
Campolattaro at the University of California at Irvine. We treat pulsation and
uniform rotation as small perturbations of a fully relativistic, nonrotating
stellar model. The perturbations are analyzed to second order in the angular
velocity and to first order in the amplitude of pulsation. In the remainder of
this paper I shall describe a few of the ideas, techniques, and results of our
analyses.

2. THE PERTURBATION ANALYSIS OF ROTATION AND PULSATION

A — Method of Analysis

Our method of analysis is essentially the same for all types of problems -
pure rotation, pure pulsation, or mixed rotation and pulsation : (1) Set the
problem up in an arbitrary coordinate system to second order in the rotation
and first order in the pulsation. The geometry of spacetime is given by

ds? = e”dr* — ehdr? — r*(d6® + sin?0dp?) + hy dx2dx? (1)

where #,, is the perturbation from the nonrotating, nonpulsating, equili-
brium geometry. The fluid is displaced from its equilibrium position by an
amplitude £, and the density and pressure are changed from their equilibrium
values by amounts 8p and 6p. (2) Expand 8p and 8p in scalar spherical
harmonics, expand £ in vector spherical harmonics, and expand hy, in tensor
spherical harmonics. None — or only a few — of the harmonics of different
orders are coupled to each other by the Einstein field equations. (3) Intro-
duce a particular “gauge” (coordinate system) in which the metric pertur-
bation, #,,, takes a simple form for those spherical harmonics of interest.
(4) Insert the resulting metric and stress-energy tensors into a computer pro-
gram (Thorne and Zimmerman 1967) which computes the analytic forms of
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the corresponding Einstein field equations G: = 8'1rT#"'and T”" » = 0.(5)Use
the resulting field equations to prove analytic theorems about the pulsation
and rotation. (6) Numerically integrate the field equations to obtain the
structures of particular rotating stellar models ; and to obtain eigenfunc-
tions, pulsation frequencies, gravitational-wave amplitudes, and damping
times of the normal modes of pulsation.

Some of the results obtained with this method before July 1967 are des-
cribed below :

B — Structure of Slowly Rotating Stars

James Hartle (1967) has used this method to derive the equations of
structure for slowly and rigidly rotating, fully relativistic stellar models, to
second order in the angular velocity, 2. To first order in £ the only effect of
the rotation is to cause a dragging of inertial frames. Hartle shows that the
angular velocity associated with this dragging

w=g,/2,, (2)

is a function only of radius 7 ; and that it decreases monotonically from the
center of the star to infinity. The maximum value of w, attained at the star’s
center, is always less than the angular velocity

Q =u’/u? 3)
with which the fluid in the star rotates.

At second order ($?) in the rotation the surfaces of constant density
and pressure inside the star are deformed from spheres into spheriods ; the
star’s gravitational field becomes nonspherical (it picks up a quadrupole mo-
ment) ; and the mass and mean radius for a given central density and equation
of state are changed from their equilibrium values.

The effects of rotation on particular models for neutron stars and su-
permassive stars have been calculated numerically by Hartle and Thorne
(1968). In Figure 1 are shown the effects of rotation on the masses and
mean radii of stars at the endpoint of thermonuclear evolution.

C — Pulsation of Nonrotating Stars

The theory of radial pulsations of nonrotating stars was originally deve-
loped by Chandrasekhar (1964). Subsequent developments are summarized
in Thorne (1966, 1967). Dipole pulsations have been analyzed very recently
by Campolattaro and Thorne (1969). In radial and dipole pulsations no gra-
vitational radiation is emitted, and the external gravitational field of the pul-
sating star is the spherically symmetric, static Schwarzschild geometry.
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Figure 1. The effect of rotation on some properties of stars at the endpoint of thermonu-
clear evolution. The thick curve is a plot of mass versus radius, parameterized by logarithm
of central density in g/cm?, for nonrotating stellar models obeying the Harrison-Wheeler equa-
tion of state. (See Harrison, Thorne, Wakano, Wheeler 1965). The thin curve is mass versus
mean radius ((mean radius] = [Surface area/4 7]*?) for stars obeying the same equation of
state but rotating with uniform angular velocity & = (GM/R®)!/2. This amount of angular
velocity is approximately the amount needed to produce shedding of mass at the star’s
equator. For smaller angular velocities the deformation of the mass-radius curve is smaller
by the dimensionless factor Q*R3/GM. The small arrows indicate the displacement, with
increasing angular velocity, of configurations with given central densities.

Nonradial pulsations of quadrupole and higher order, including the
emission of gravitational waves, have been treated analytically by Thorne
and Campolattaro (1967) ; but no numerical integrations for particuler stellar
models have been attempted yet. Thorne and Campolattaro treat gravita-
tional radiation from non-radial pulsations by a complex-eigenvalue and wave-
packet technique patterned after the theory of particle decay in nuclear
physics. Attention is concentrated on all normal modes corresponding to a
particular spherical harmonic. (There is no coupling between spherical har-
monics.) Each such normal mode can be described by an amplitude. K (r, ¢),
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for gravitational waves, and by two amplitudes, W (#, t) and V (r, 1), for the
radial and angular motion of the fluid. Once these three amplitudes are known,
the entire gravitational field and fluid motion of the star can be calculated
uniquely. Corresponding to any complex frequency.

w =0 ti/r (by convention o = 0) , 4

there is a unique complex set of amplitudes
W, =W,(ne , Ve, n=V, e | K@, =K (e,
(5)

which are solutions to Einstein’s field equations. The eigenfunctions,
K, , W, (r),V, ("} are determined by an eigenequation of the form

L{K,,W,,V,} =w*{K,,W,,V} , (6)

where £ is a third order, linear, differential operator in r ; and by certain
boundary conditions Far from the star the eigenequation (6) reveals that
the gravitational waves consist of an ingoing component with amplitude
Cg), and an outgoing component with amplitude Cg)

Kw = [Cg)eiw(r+2Mlnr) + Cff,)) e—iw(r+2M1nr)] F(r) . @)

Of particular interest are those complex normal modes which have
only outgoing gravitational waves (CS)= 0). For most stars, only a discrete
set of normal modes are purely outgoing, and the outgoing modes possess a
discrete set of eigenfrequencies : w, , w, ,... . From the purely outgoing
modes — which are always complex ; never real if radiation is present — one
can construct real wave packets that exhibit damping by gravitational radia-
tion. For example, if w, = g, + i/7, is the complex frequency for a purely
outgoing normal mode, and if | i/7] < g,, then the real wave packet

={K,),W, "),V () e“'dw
(w—0,)* + /72

K, Uu,v}=f 8

(}
has the form far from the star
0 if 0<t<r+ 2Minr

K¢, = |
2| dC®/dw l"’n F(r)e=(-r=2MInDI1y cosg (t —r — 2Minr)

+35,] if t>r+ 2Minr. ®
This represents radiation from a star which is in equilibrium before ¢ = 0,
which is set into pulsation at time ¢ & 0, which pulsates with frequency g,

thereafter, and which is damped by the emission of gravitational waves with
an e-folding time (“decay time”) 7,. Notice that, because the gravitational-
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radiation wave packet has a sharp front and decays exponentially behind that
front, it can contain only a finite amount of energy. (The actual amount of
energy contained in the packet can be evaluated, after the packet has pro-
pagated far from the star into nearly flat space, by means of a stress-energy
pseudotensor). Because the packet contains finite total energy, there should
be no difficulties with the convergence of higher-order corrections to this
linearized perturbation analysis.

The wave packet of equations (8) and (9) was built under the assumption
that |1/7, | < g,. When this condition is violated, one can still build wave
packets which identify o, as the pulsation frequency and 7, as the damping
time ; but the analysis near the wave front is much more difficult than when
/7, | K ag,.

From the above discussion, it is evident that the characteristic proper-
ties of the real, physical, nonradial pulsations of a relativistic star are deter-
mined by the complex normal modes with purely outgoing radiation. (See
Figure 2). Our research group will begin soon numerical computations of the
complex, outgoing normal modes for neutron stars. For a summary of the
results of the numerical computations see Thorne (1968).

/T
*
w=o+i/t
*
X X X
9) 0 9) o
KEY: % Stable, rapidly damped pulsations
X  Stable, slowly damped pulsations
©  Unstable pulsations with slowly
g growing amplitude
P 0 Rapidly growing collopse or explosion

Figure 2. The nature of the physical nonradial pulsations of a relativistic stellar model, as
determined by the mathematical complex normal modes with purely outgoing radiation.
From equation (9) and the associated discussion, one learns the following : if the eigen-
frequencies for the outgoing normal modes lie in the region marked “**, the real pulsations
are stable and are damped rapidly by gravitational waves ; if the eigenfrequencies lie in the
region marked “x“, the real pulsations are stable and are slowly damped ; if the eigenfre-
quencies lie in the region “0“, the real pulsations are unstable but have slowly growing am-
plitudes — “overstability’ in the language of astrophysicists ; if the eigenfrequencies lie in
the region “0°, the star is unstable against rapidly growing collapse or explosion.
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D — Pulsation of Slowly Rotating Stars

Chitre, Hartle, and Thorne (1969) are currently studying the effects of
rotation on the radial modes of pulsation of relativistic stellar models. No
concrete results are available yet from this analysis. However, one expects on
general grounds (cf. Wheeler 1966 ; Chau 1967) that the deformation of the
star by rotation will mix a small amount of quadrupole pulsation into the
radial modes, and will thereby cause gravitational waves to be emitted by the
radial modes.

4. CONCLUSION

These are the main features of our work on rotation and pulsation in
relativistic stellar models. We hope that, when our project is completed, the
results from it will be useful in the design of gravitational radiation detectors,
in the further development of gravitational radiation theory, and in the
construction or elimination of models for supernovae, supernova remnants,
and quasistellar sources.
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