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Relativistic Gravitational Effects in Pulsars

The most amazing feature of the pulsating radio sources (* pulsars ’)
is the long-term constancy of the interval between pulses. The best
studied of the pulsars, CP 1919, emits a 30-millisecond-long burst of
radio waves once every 1.33730113 seconds; and any long-term drift
in its “ period ” must be less than ~10-7 second per yeéar. This
corresponds to a fractional change in period during each pulse of
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This long-term stability of the period has led astronomers to separate
the theoretical explanation of pulsars into two parts: (i) the “ clock
mechanism ”, which regulates the timing of the pulses; and (ii) the
“ emission mechanism ”. In this comment I shall describe why the
clock mechanism probably involves relativistic gravitational effects.

To produce such phenomenal stability, the clock must have a struc-
ture which is very constant in time; i.e., it must be a star, or two stars
orbiting each other, rather than an amorphous configuration of matter
and magnetic fields. The periodicity of the clock could be due to the
pulsation or rotation of a single star, or to the orbiting of two bodies.
No other possibilities have been suggested—except ‘ little green men ”

Normal stars have pulsation, rotation, and orbital periods of hours
or days or longer. The only types of stars which have characteristic
periods of ~1 second are types which have never been identified before
in nature, but which should exist, according to firmly based theoretical
calculations. These are highly compact white dwarfs (radius between
. 1000 and 4000 kilometers, mass between 0.9 and 1.2 solar masses), and
neutron stars (radius between 8 and 300 kilometers, mass between 2
and 0.1 solar masses).

Thus it is that pulsar models generally make use of neutron stars or
compact white dwarfs, which are pulsating, rotating, or orbiting. To
lovers of general relativity theory like me, this is a very exciting state
of affairs, because relativistic modifications of Newtonian theory should
be important in all neutron stars and compact white dwarfs!
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Consider, first, orbital models. Here the most important relativistic
effect is gravitational radiation. If general relativity is the correct
relativistic theory of gravitation, then a binary star system must radiate
gravitational waves, which carry off energy and cause the two stars to
spiral in toward each other. As a consequence, the orbital period P,
must decrease at the rate! o

d_}ii’ - — 26_ (2m)813 Gmim3/(my + mz)]m [1 + (73/24)€* + (37/96)e*
dt 5 coPs a- )

~ 3 x 10 (2)
for Py~ 1lsec, my~my~My, and e=0.

Here m, and m, are the masses of the two stars and ¢ is the &ccentricity
of their orbit. For all reasonable choices of masses and eccentricity,
this predicted change in period is much faster than the observed limit
on changes in pulsar periods [Eq. (1)]!*

Proponents of orbital models® have sought to circumvent this diffi-
culty by appealing to Herman Bondi’s 1962 criticism of the simple-
minded analysis by which Eq. (2) is usually derived, and to his suggestion
that bodies orbiting each other might not radiate at all.* However,
Bondi’s remarks are now six years old. Since he wrote them, improved
analyses’ have greatly strengthened our understanding of the coupling
of gravitational waves to their sources, and have greatly strengthened
our confidence that general relativity predicts gravitational radiation
from binary star systems.

Other attempts to circumvent radiation damping in orbital pulsar
models appeal to the shaky experimental foundations of general
relativity. However, whatever may be the correct relativistic theory
of gravitation—general relativity or some other theory—it will almost
certainly predict the existence of gravitational radiation. Why?
Experiment reveals that a sudden change in the shape of a body
produces a change in its gravitational influence. Causality and local
Lorentz invariance demand that this change in gravitational influence
propagate with a speed less than or equal to the velocity of light—i.e.,
as a “ wave . In a wide variety of relativistic theories of gravity®—
and perhaps even in all such theories—the wave carries off energy from
the emitting system at a rate which, in order of magnitude, is the same
as that predicted by general relativity.

The effects of gravitational radiation have forced attention away from
_orbital models of pulsars, to pulsational and rotational models. For pul-

‘gating, rotating, compact white dwarfs, relativity has a negligible (<0.1
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percent) effect on the stellar structure. However, relativistic gravita-
tional effects are crucial in determining whether the star is stable against
gravitational collapse and, if so, what its fundamental period. of pulsa-
tion is. A compact white dwarf (density above 10%®g/cm®) has an
adiabatic index very close to 4/3,

5.35 x 108 A[Z glem?®\2/3
density ) )

T =43 + ( (3)
(Here A[Z is the ratio of atomic weight to charge for the white-dwarf
matter.) This means that when the star is compressed homologously
(8r/r independent of radius), the increased inward gravitational force
on each fluid element is almost precisely balanced by the increased
outward pressure force; and when the star is expanded, there is a similar
near balance between the gravitational and pressure petturbations.
In Newtonian theory the gravitational force is slightly less sensitive to
compressions and expansions than is the pressure of white-dwarf
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F1a. 1. Pulsation period as a function of central density for the fundamental
radial mode of a white dwarf with 4/Z =2 (a white dwarf made of He4, C2, O1,
or Mg?¢). The periods shown are predicted by Newton's theory of gravitation,
and by the general theory of relativity. Beyond a central density of 2 x 10
g/em® (below & radius of ~1000 km) general relativistic effects produce an
instability against gravitational collapse. For some chemical compositions
collapse can also be triggered by pressure-induced electron capture in the stellar
‘interior. [This figure is based on numerical studies by J. Faulkner and J. R.
Gribben, and by W. J. Cocke and J. M. Cohen (see Ref. 7).]
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matter, so the net force acts to restore equilibrium and produce stellar
pulsations. In general relativity theory the sensitivity of gravity to
compressions and expansions is a little greater than in Newtonian
theory; consequently the restoring force (sum of gravitational and
pressure perturbations) will be markedly less than in Newtonian theory,
and the star will pulsate more slowly or even collapse. This effect is
illustrated in Fig. 1 for nonrotating, homogeneous white dwarfs made of
matter with 4/Z = 2. Notice that the fundamental pulsation period
for such stars can be arbitrarily small in Newtonian theory, but cannot
be less than 2.14 seconds in general relativity theory. In other rela-
tivistic theories of gravitation the story might be different from either
of these.

For a rotating white dwarf, centrifugal forces help to stabilize the
pulsations, and permit fundamental pulsation periods as‘low as 0.6
second.® However, to obtain pulsation periods as low as 0.25 second
(the period of pulsar CP 0950) or lower, one may have to turn from the
fundamental mode to * overtone >’ modes.

The overtone periods of a given white-dwarf model are unaffected
by relativity because the °‘ nonhomologous” fluid displacements
(8rfr # constant) of the overtones produce gravitational perturbations
which are markedly weaker than the pressure perturbations. However,
there is a minimum possible period (usually less than 0.25 second) for
each overtone, since no real star can be so compact that its fundamental
mode is unstable.

The rotational periods of white dwarfs are limited by two factors:
(i) the onset of collapse due to relativistic effects or nuclear reactions,
which puts a lower limit on the radius of a white dwarf, and (ii) the
demand that gravitational acceleration exceed centrifugal acceleration
at the star’s surface (no mass shedding). The point of onset of collapse
is not known for rapidly, differentially rotating white dwarfs. How-
ever, calculations to date® suggest that white dwarfs can perhaps not
have surface rotation periods as low as 0.25 second (except very near
their poles).

Neutron-star models are much more compact than white dwarfs;
and, hence, relativity affects their structure much more than the
structure of a white dwarf. The relativistic effects on structure range
from ~1 percent for the least massive, least compact neutron stars
(M ~0.1M o, B ~300 km), to ~100 percent for the most massive, most
compact ones (M ~1M o, B ~10 km).10

When pulsating, a neutron star experiences pressure and gravita-
tional perturbations which do not balance so precisely as in a white
dwarf. Consequently, the effect of relativity on the neutron-star
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pulsation is not magnified relative to its effect on the structure. Both
structure and pulsation exhibit relativistic effects of the same magni-
tude— ~1 percent to ~100 percent, depending on the compactness of
the star.

Unfortunately for lovers of relativity, the pulsation periods of highly
compact, strongly relativistic neutron-star models are ~10-2 to 2 x 10~
second. The only neutron stars which should pulsate as slowly as the
pulsars are those with low mass (M ~0.1M,), low central density
(pe ~3 x 10'3 g/em3), large radius (B ~200 km), and small relativistic
effects (~1 percent).

On the other hand, any neutron-star model—highly relativistic or
not—can rotate with a period of one sccond. The minimum possible
rotation poriod, corresponding to mass-shedding at the equator, is
~0.3 sccond for the least relativistic models and ~3 x 104 second
for the most relativistic.

A neutron star—or white dwarf—pulsating nonradially, or deformed
by rotation and pulsating radially, should emit gravitational waves.
For the quadrupole pulsations of highly relativistic neutron’ stars
(pulsation period ~2 x 10— sec), the radiation’ damps the pulsations
in a time of ~1 second.’ However, for the slower stellar pulsations
used, in pulsar models, the damping time is enormous (2 10* years).
Because the pulsation period—unlike an orbital period—is highly
insensitive to damping, radiation reaction presents no problem for the
constancy of the periods in pulsar models based on neutron stars. On
the other hand, the gravitational waves from such pulsar models may
be strong enough to be detectable at the Earth 112

Recent observatlons of two pulsars by Drake and Craftl"' suggest
quite strongly that, in addition to the highly stable period of ~1 second,
there is a much less stable period of ~0.01 second. To account for this,
Drake and Craft suggest that the “ clock ” is a pulsating, rotating
neutron star with rotation period ~1 second and pulsation period
~0.01 second. Such a star, pulsating in its fundamental mode, would
have the following propertiesi?:

Central density ~3 x 102 to 1 x 1014 g/ecm?;

Mass ~0.1 to 0.2 solar masses;

Radius ~50 to 200 km ;

Gravitational binding: unbound relative to dispersed iron atoms,
bound relative to dispersed hydrogen atoms;

Relativistic effects on structure ~2 or 3 percent at star’s center;

Mass distribution: highly centrally condensed, with a large, diffuse
envelope;

Radius of gyration ~8 to 12 km;
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Quadrupole moment due to rotation ~ (3 to 4) x10~* Mo km?;

Energy of rotation ~10% ergs;

Energy of pulsation ~(10% to 10% ergs) x (OR/R)?*;

Shape of pulsation eigenfunction: small amplitude at star’s center,
large at surface—(8R/R) ~ (300 to 3000) x (87/r)centers

Damping time for pulsations due to gravitational waves, caused by
rotational coupling of quadrupole modes to fundamental radial mode:
~10% to 108 years.

In this article no attempt was made to give a fair treatment of the
relative merits of various pulsar models. Rather, attention was con-
centrated only on some of the relativistic effects that permeate the
models. Looking into the future, one can hope for two major steps in
studies of relativistic aspects of pulsars: (i) the clear delineation of
which clock mechanism is correct and of which relativistic gravitational
effects (if any!) should be important for it; and (ii) observational
verification that the relativistic effects are present. Although we might
be fairly optimistic about step (i), it is far from clear whether step (ii)
can be achieved in the near future. The observational unravelling of
relativistic effects from effects due to equation of state, for example,
might be a tremendous job.

Krp S. THORNE
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