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I. INTRODUCTION

Recent astronomical discoveries and calculations have stimulated wide
interest in the astrophysical effects of strong (relativistic) gravitational
fields. Previous to sbout 1962 the view prevailed that general relativistic
effects were significant only for cosmology; that in isolated astronomical
bodies general relativity is probeably unimportant. Since 1962, however, one
has come to believe that strong gravitational fields may be of key importance
for quasars, for violent events in the nuclei of gala#ies, for supernova explo-
sions and remnants, for the death-by-collapse of very massive stars, and for
the periodic-burst radio sources of Hewish et al. (1968). (Reviews will be found
in Zel'dovich and Novikov [1964; 1965; 1967]; Harrison, Thorne, Wakano,

Wheeler [1965]; Wheeler [1966]; Thorne [1967 a,b].)

In order to facilitate theoretical investigations of these phenomens,
considerable effort has been devoted, in the last few years, to the development
of the theory of relativistic stars and star clusters, including: their structure,
stability, rotation, pulsation, collapse, and emission of gravitational waves.

In this lecture I shall review recent theoretical studies of these topics - - -
omitting, however, the topic of collapse, which undoubtedly will be discussed

in detail by others at this conference. The emphasis of this review will be on
general relativity; astrophysical applications will be relegated to a subordinate
role.

II. REIATIVISTIC STELLAR MODELS

Relativistic effects are believed to be important in two types of stars:
Supermassive stars (M 2 1ou %D)’ which may be energy sources for quasars and
galactic nuclei (Hoyle and Fowler 1963, 1965); and stars at the endpoint of

thermonuclear evolution (neutron stars and collapsed stars).
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A. Equilibrium Configurations

The equations of structure for relativistic stellar models were first
derived and used by Oppenheimer and Volkoff (1939). (For recent reviews see
Thorne [1967 a,bl, Zel'dovich and Novikov [1967]). The gravitational field of

a nonrotating, relativistic star is described by the line element
ds2 = e¥at? - (1 - 2 m/r)"t ar® - 12(ad® + sin® 0 a0%), (1)

where m and v are functions of r. (We set ¢ =G =1 throughout.) The stellar
material is idealized as a perfect fluid, at rest in the coordinate system (1),
with pressure, p, and density of mass-energy, P. The equations of structure

for the star consist of an equation of state

p=p (p), (2a)

Einstein's field equations
dm/dr = hﬂrzp, (2b)
dap _ _ (o +p)u + bur’p) (26)
dr r(r-2m) ’ i

-1
dv/dr = - 2(p + p) “(dp/dr) , (24)
and boundary conditions

m(r =0) =0, v(r = o) =0, p(r =surface of star) = O. (2e)

When enérgy transport (conduction, convection, radiation) is taken
into account these equations must be augmented and modified (cf. Thorne 1967 a,b).
On the other hand, when energy transport is ignored,equations (2) yield a unique:
stellar model for each choice of the equation of state, p(P), and central
density, Pp( r =0) = Po
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Since 1957 a large number of relativistic stellar models have been
constructed to represent neutron stars and supermassive stars; and a number
of theorems have been proved about the properties of relativistic stellar
models. A key result of astrophysical significance is this: There exists
no equilibrium configuration at the endpoint of thermonuclear evolution with
mass greater than about 2 solar masses. Any star more massive than this must
eject its excess mass or face eventual death by collapse through the gravita-

tional radius.

B. Stability of Equilibrium Configurations

In 1963 S. Chandrasekher (196L4) and R. P. Feynman (unpublished work which
greatly influenced the Hoyle-Fowler ideas on supermassive stars) discovered a

relativistic effect of extreme importance for astrophysics:l

l'I‘his effect had previously been noticed by Kaplan (1949); but his work went

virtually unnoticed and had no influence on astrophysical thinking.

They developed independently the mathematical theory of radial pulsations of

relativistic stellar models, and in the process they discovered that general

relativity can catalyze an instability in stars, which is absent in Newtonian
theory: In Newtonian theory a star is stable against radial perturbations if
and only if its adiabatic index, suitably averaged over the stellar interior,
is greater than u4/3, However, relativistic effects raise the critical value

of the adiabatic index above 4/3:

Porit = 4/3 + relativistic term of O(M/R). (3)

As a consequence, a star, in which relativistic influence on the structure is
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negligible, and which is just barely stable according to Newtonian theory
(< T'> only slightly greater than 4/3), may actually be unstable because of
relativistic effects. Such is the case, for example, in a nonrotating super-

massive star of lO8 solar masses with M/R = 1o‘h.

C. Nonredial Pulsation and Gravitational Waves

The nonradial pulsations of relativistic stellar models were first investi-
gated by Chandrasekhar (1965b)using the post-Newtonian approximation, in which
there are no gravitational waves. More recently Thorne and Campolattaro (1967),
Price and Thorne (1968), and Thorne (1968) have studied nonradial pulsations
within the framework of the full, nonlinear theory of general relativity. Using
techniques commonplace in nuclear physics, particle physics, and quantum theory,
they have analyzed the manner in which pulsating stars emit gravitational waves,
and the damping effects of the gravitational waves on the stellar pulsations.
Because this analysis provides the most rigorous example yet given of the coupling
of gravitational waves to their source, I present here a brief outline of the
analysis:

The stellar material is treated as a perfect fluid, which is displaced
by an amount 5 (t,r,0, 9) relative to the coordinate system. The gravitational
field is characterized by the unperturbed metric (1) plus a perturbation,
huv(t’ r, ©, ®). A particular choice of guage (i.e., coordinate system) is
made; and a computer is used (see Fletcher et al. 1967) to derive the explicit,
analytic form for Einstein's field equations in that guage. The field equations
are linearized in E and h“v, but no other approximation is made. (Note that

the equilibrium configuration about which one perturbs is fully relativistic!)
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Attention is concentrated initially on "standing-wave normal modes',in

which the star pulsates sinusoidally and standing gravitational waves couple

it to a perfect reflector at r = . Each standing-wave normal mode is
characterized by spherical-harmonic indices (£, 7 ) and by the pulsation angular
frequency, w. If the frequency, w, is very near a natural pulsation frequency,
o, for the star; then the star's pulsation energy,EM, is large compared to the
energy, Ew, in one wavelength of the gravitational waves. (Ew is calculated
using the Landau-~Lifschitz pseudotensor.) As w is allowed to vary near g, the
ratio of energy in matter to energy in waves goes through a resonance

By 1

- = . L
B (wo) + (/1) *)

(cf. Thorne 1968 for proof.) From the physical viewpoint this resonance is
associated with the natural mode of vibration of the star at w = g; from the
mathematical viewpoint it is associated with a pole in the S-matrix for scattering

of gravitational waves off the star, which pole is located at

Woole = 9% i/t (5)

in the complex frequency plane. Thorne (1968) has explored numerically the
resonances for a variety of neutron-star models. (See Figure 1.)

The above discussion refers to the unrealistic problem of standing-wave
modes. A more realistic situation is obtained by building a 'wave packet" of

standing waves peaked about a resonant frequency, o. For example, the wave

packet.
h § }
Hv, jwt
hP»V’ s = f{w) 2(&)) = ) dw (6)
(w-0)" + (1/7)
represents a star in which gravitational waves flow in from r = 00, exciting
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the star into pulsation; and then the star reradiates the waves. (See Figure
2.) The total energy carried in and back out by the waves is finite and can be
arbitrarily small, so the solution (6) should be an excellent approximation to
an exact solution of Einstein's field equations.

A close examination of the solution (6) reveals this, that as the star
reradiates its gravitational waves, the amplitude of its pulsations (and hence

also of the waves) is damped exponentially,

amplitude « o /T, ' (1)

with a damping rate, 1/t, equal to the half-width of the standing-wave resonance.

An analytic form for the reradiated waves in the radiation zone is

hyg =0 if t < r +2M sn(r-2M);

£,
h h Fr (cos @)
ee !l l! -r-2 -
_T = - ém) 5 = A 4 2+ le(COS g) + 1 _r]: exp | - t-r-2M :n(r 2M)
r r sin @ )
x 8in {o [t-r-2M im(r-2M)] + 7o + 8} + 0(1/1‘2),
m
h OP," (cos 9)
(470} 1l - ! : cos © m 1 t-r-2M fn(r-2M
r sin © sin™©
x cos (g [t-r-2M m(r-2M)] + Mo + 8} + O(l/re)
if t > r + 2M In(r-2M). (8)

Here Tyg is the perturbation of the Schwarzschild metric, and A and b are constants.

Notice that far from the star these waves are very nearly identical to the plane,
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weak waves of linearized general relativity (Landau and Lifschitz 1962, § 101).
They exhibit linear polarization if 7 = 0, and elliptical polarization if
m # O.

The pulsation angular frequencies, ¢, and damping time, T, have been
calculated by Thorne (1968) for the quadrupole pulsations of a variety of neutron-
star models. The pulsation periods for neutron stars of mass M > 0.5 %3 are

typically
T =2¢/ad ~ 0.1 to 0.3 millisecondé; (9)
and the damping times are typically
T ~ 0.1 to 10 seconds. (10)

Consequently, immedistely after a neutron star is formed in a supernova explosion,
it should emit ~ lO52 ergs in a burst of gravitational waves in the kilocycle

frequency region; and the burst should last for only about 1 second.

D. Rotation

The effects of rotation upon the structure and stability of relativistic
stellar models have been investigated recently using two different approximations:
(1) The post-Newtonian approximation has been used to examine small relativistic
effects in slowly and rapidly rotating stars (Chandrasekhar 1965 a, 1967 a, b, c;
Fowler 1966, Durney and Roxburgh 1967; Bisnovatny-Kogan, Zel'dovich, and Novikov
1967); and (2) The small-rotation approximation has been used to examine the
effects of rotation on fully relativistic stars (Hartle 1967; Hartle and Thorne
1968; Chitre, Hartle, and Thorne 1968).

Several new effects emerge when rotation and relativity are coupled:



(1) 1Inertial frames are "dragged" by the rotating star. This well-known
"Iense-Thirring effect" has been studied extensively in the above papers and

also by Brill and Cohen (1966). (2) Rotation helps to stabilize stellar models;
for example, it can delay the onset of the relativistic instabiiity in super-
massive stars. (3) Rotation deforms a star and thereby couples its radial
modes of pulsation to its quadrupole modes. That coupling, and the resultant
emission of gravitational waves by the quasi-radial pulsations have been investi-
gated by Chitre, Hartle, and Thorne (1968), using techniques analogous to those
described in the last section.

These effects of rotation will be discussed in some detail in the lecture.
III. RELATIVISTIC STAR CLUSTERS

Relativistic star clusters, like relativistic stars, may play an impor-
tant role in high-energy astrophysics: Hoyle and Fowler (1967) have suggested
a model for quasars in which the compact source of opticel radiation resides at
the center of a very massive (M . lO13 qg) cluster of stars, and derives most of
its redshift (g ~ 0.2 to 2.2) from the cluster's relativistic gravitational field.
Other investigations (see Ipser and Thorne 1968 for references) have suggested
that relativistic clusters might evolve in the nuclei of some galaxies and might
be associated with the explosions which disrupt galactic nuclei.

One expects that relativistic star clusters should exhibit properties
very similar to those of relativistic stars (e.g., instability against collapse
when they become too compact; emission of gravitational waves if they are not
stationary; deformation and dragging of inertial frames when they rotate.
However, the development of the theory of relativistic star clusters has begun

only recently: Spherically symmetric equilibrium configurations for star
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clusters havé been studied by Zel'dovich and Podurets (1965) and by Fackerell
(1968a, b). Fackerell (1968c) has initiated the study of rotating star clusters.
The theory of the spherical pulsations of spherical clusters has been developed
by Ipser and Thorne (1968) and is now being used by Ipser to study the onset
of the relativistic instability in clusters.

In the lecture I will describe these analyses of star clusters and their

implications for quasars and galactic nuclei.
IV. CONCILUSION

The structures of nonrotating stars, the effects of rotation upon them,
their small-amplitude pulsations, and the resultant emission of gravitational
waves --- all of these things are now moderately well understood within the frame-
work of general relativity when either (i) relativistic effects are small (post-
Newtonian approximation), or (ii) the departures from spherical symmetry are
small (small-amplitude approximation). These were the easy problems. The hard ---
and more interesting -~-- problem which remains is that of generalizing these
analyses to the large-amplitude, fully relativistic situation.

I thank nearly everybody in the field of astrophysical relativity for

helpful discussions.
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Figure 1

Figure 2

FIGURE CAPTIONS

Resonances in the quadrupole standing-wave normal modes for

a H-W-W neutron star at the center of a huge (r » ®),

perfectly reflecting cavity. Corresponding to each value of

the angular frequency, w, there are four independent standing-
wave modes (  =-2, -1, O, +1, + 2). Plotted as a function
of w is the ratio of the total pulsation energy, EM,of the matter
in the star, to the energy, EW’ in one wavelength of the standing
gravitational waves. This ratio is the same for all four modes
(degeneracy in the quantum number 7 ). (Figure based on

numerical computations by Thorne 1968.)

Schematic spacetime diagram for the absorption and reemission of
gravitational waves as described by equations (6) - (8). (Based

on the work of Price and Thorne 1968.)
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