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When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an

‘‘electric’’ part Ejk that describes tidal gravity and a ‘‘magnetic’’ part Bjk that describes differential

dragging of inertial frames. We introduce tools for visualizingBjk (frame-drag vortex lines, their vorticity,

and vortexes) and Ejk (tidal tendex lines, their tendicity, and tendexes) and also visualizations of a black-

hole horizon’s (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of

curved spacetime in merging black-hole binaries.
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Introduction.—When one foliates spacetime with space-
like hypersurfaces, the Weyl curvature tensor C���� (the

same as Riemann in vacuum) splits into ‘‘electric’’ and
‘‘magnetic’’ parts Ejk ¼ C0̂j0̂k and Bjk ¼ 1

2 �jpqC
pq

k0̂
(see,

e.g., [1] and references therein); both Ejk and Bjk are

spatial, symmetric, and trace-free. Here the indices are in
the reference frame of ‘‘orthogonal observers’’ who move

orthogonal to the space slices; 0̂ is their time component,
�jpq is their spatial Levi-Civita tensor, and throughout we

use units with c ¼ G ¼ 1.
Because two orthogonal observers separated by a tiny

spatial vector � experience a relative tidal acceleration
�aj ¼ �Ejk�

k, Ejk is called the tidal field. And because

a gyroscope at the tip of � precesses due to frame dragging
with an angular velocity ��j ¼ Bjk�

k relative to inertial

frames at the tail of �, we call Bjk the frame-drag field.

Vortexes and tendexes in black-hole horizons.—For a
binary black hole, our space slices intersect the three-
dimensional (3D) event horizon in a 2D horizon with
inward unit normal N; so BNN is the rate the frame-drag
angular velocity around N increases as one moves inward
through the horizon. Because of the connection between
rotation and vorticity, we call BNN the horizon’s frame-
drag vorticity or simply its vorticity.

Because BNN is boost-invariant along N [2], the hori-
zon’s vorticity is independent of how fast the orthogonal
observers fall through the horizon and is even unchanged
if the observers hover immediately above the horizon
(the fiducial observers of the ‘‘black-hole membrane
paradigm’’ [3]).

Figure 1 shows snapshots of the horizon for two identi-
cal black holes with transverse, oppositely directed spins S,
colliding head-on. Before the collision, each horizon has
a negative-vorticity region (red) centered on S and a

positive-vorticity region (blue) on the other side. We call
these regions of concentrated vorticity horizon vortexes.
Our numerical simulation [4] shows the four vortexes
being transferred to the merged horizon [Fig. 1(b)], then
retaining their identities, but sloshing between positive and
negative vorticity, and gradually dying, as the hole settles
into its final Schwarzschild state; see the movie in Ref. [5].
Because ENN measures the strength of the tidal-stretching

acceleration felt by orthogonal observers as they fall
through (or hover above) the horizon, we call it the hori-
zon’s tendicity (a word coined by David Nichols from the
Latin tendere, ‘‘to stretch’’). On the two ends of the merged
horizon in Fig. 1(b), there are regions of strongly enhanced
tendicity, called tendexes; cf. Fig. 5 below.
An orthogonal observer falling through the horizon car-

ries an orthonormal tetrad consisting of her 4-velocityU, the
horizon’s inward normal N, and transverse vectors e2 and

e3. In the null tetrad l ¼ ðU�NÞ= ffiffiffi

2
p

(tangent to horizon

generators), n ¼ ðUþNÞ= ffiffiffi

2
p

, m ¼ ðe2 þ ie3Þ=
ffiffiffi

2
p

, and
m�, the Newman-Penrose Weyl scalar �2 [6], is �2 ¼
ðENN þ iBNNÞ=2. Here we use sign conventions of
Ref. [7], appropriate for our (�þþþ) signature.
Penrose and Rindler [8] define a complex scalar curva-

ture K ¼ R=4þ iX=4 of the 2D horizon, with R its

FIG. 1 (color). Vortexes (with positive vorticity blue, negative
vorticity red) on the 2D event horizons of spinning, colliding
black holes, just before and just after the merger (from the
simulation reported in Ref. [4]).
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intrinsic (Ricci) scalar curvature (which characterizes the
horizon’s shape) and X proportional to the 2D curl of its
Hájı́ček field [9] (the time-space part of the 3D horizon’s
extrinsic curvature). Penrose and Rindler show that K ¼
��2 þ��� 	
, where �, 
, �, and 	 are spin coeffi-
cients related to the expansion and shear of the null vectors
l and n, respectively. In the limit of a shear- and
expansion-free horizon [e.g., a quiescent black hole; see
Figs. 2(a)–2(c)], ��� 	
 vanishes, so K ¼ ��2,
whence R ¼ �2ENN and X ¼ �2BNN. As the dimen-
sionless spin parameter a=M of a quiescent (Kerr) black
hole is increased, the scalar curvature R ¼ �2ENN at its

poles decreases, becoming negative for a=M >
ffiffiffi

3
p

=2; see
the blue spots on the poles in Fig. 2(b) compared to solid
red spots for the nonrotating hole in Fig. 2(a). In our
binary-black-hole simulations, the contributions of the
spin coefficients to K on the apparent horizons are small
[L2-norm & 1%] so R ’ �2ENN and X ’ �2BNN, ex-
cept for a time interval �5Mtot near the merger. Here Mtot

is the binary’s total mass. On the event horizon, the dura-
tion of spin-coefficient contributions >1% is somewhat
longer, but we do not yet have a good measure of it.

BecauseX is the 2D curl of a 2D vector, its integral over
the 2D horizon vanishes. Therefore, positive-vorticity re-
gions must be balanced by negative-vorticity regions; it is
impossible to have a horizon with just one vortex. By
contrast, the Gauss-Bonnet theorem says the integral of
R over the 2D horizon is 8� (assuming S2 topology),
which implies the horizon tendicity ENN is predominantly
negative (because ENN ’ �R=2 and R is predominantly
positive). Many black holes have negative horizon tendic-
ity everywhere [an exception is Fig. 2(b)], so their horizon
tendexes must be distinguished by deviations of ENN from a
horizon-averaged value.
3D vortex and tendex lines.—The frame-drag fieldBjk is

symmetric and trace-free and therefore is fully character-
ized by its three orthonormal eigenvectors e~j and their

eigenvaluesB~1 ~1,B~2 ~2, andB~3 ~3. We call the integral curves

along e~j vortex lines, and their eigenvalue B~j ~j those lines’

vorticity, and we call a concentration of vortex lines with
large vorticity a vortex. For the tidal field Ejk the analogous

quantities are tendex lines, tendicity, and tendexes. For a
nonrotating (Schwarzschild) black hole, we show a few
tendex lines in Fig. 2(a), and for a rapidly spinning black
hole (Kerr metric with a=M ¼ 0:95), we show tendex lines
in Fig. 2(b) and vortex lines in Fig. 2(c).
If a person’s body (with length ‘) is oriented along a

positive-tendicity tendex line [blue in Fig. 2(a)], she
feels a head-to-foot compressional acceleration �a ¼
jtendicityj‘; for negative tendicity (red), it is a stretch. If
her body is oriented along a positive-vorticity vortex line
[blue in Fig. 2(c)], her head sees a gyroscope at her feet
precess clockwise with angular speed �� ¼ jvorticityj‘,
and her feet see a gyroscope at her head also precess
clockwise at the same rate. For negative vorticity (red),
the precessions are counterclockwise.
For a nonrotating black hole, the stretching tendex lines

are radial, and the squeezing ones lie on spheres [Fig. 2(a)].
When the hole is spun up to a=M ¼ 0:95 [Fig. 2(b)], its
toroidal tendex lines acquire a spiral, and its poloidal
tendex lines, when emerging from one polar region, return
to the other polar region. For any spinning Kerr hole [e.g.,
Fig. 2(c)], the vortex lines from each polar region reach
around the hole and return to the same region. The red
vortex lines from the red north polar region constitute a
counterclockwise vortex; the blue ones from the south
polar region constitute a clockwise vortex.
As a dynamical example, consider a Schwarzschild

black hole’s fundamental odd-parity l ¼ m ¼ 2 quasinor-
mal mode of pulsation, which is governed by the
Regge-Wheeler perturbation theory [10] and has
angular eigenfrequency ! ¼ ð0:747 34� 0:177 92iÞ=2M,
with M the hole’s mass. From the perturbation
equations, we have deduced the mode’s horizon vorticity:
BNN ¼ Ref9sin2�=ð2i!M3Þ exp½2i
� i!ð~tþ 2MÞ�g.
[Here ~t is the ingoing Eddington-Finklestein time coordi-
nate, and the mode’s Regge-Wheeler radial eigenfunction
QðrÞ is normalized to unity near the horizon.] At time

FIG. 2 (color). Four different black holes, with horizons col-
ored by their tendicity (upper two panels) or vorticity (lower two
panels), ranging from most negative (red) to most positive (blue),
and with a Kerr-Schild horizon-penetrating foliation (exercise
33.8 of Ref. [18]). (a) A nonrotating black hole and its tendex
lines; negative-tendicity lines are red, and positive blue. (b) A
rapidly rotating (Kerr) black hole, with spin a=M ¼ 0:95, and its
tendex lines. (c) The same Kerr black hole and its vortex lines.
(d) Equatorial plane of a nonrotating black hole that is oscillating
in an odd-parity l ¼ m ¼ 2 quasinormal mode, with negative-
vorticity vortex lines emerging from red horizon vortexes. The
lines’ vorticities are indicated by contours and colors; the con-
tour lines, in units ð2MÞ�2 and going outward from the hole, are
�10, �8, �6, �4, and �2.
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~t ¼ 0, this BNN exhibits four horizon vortexes [red and
blue in Fig. 2(d)], centered on the equator at ð�;
Þ ¼
ð�=2; 1:159þ k�=2Þ (k ¼ 0; 1; 2; 3), and with central vor-
ticities BNN ¼ �ð�1Þk39:22=ð2MÞ2. From analytic for-
mulas for Bjk and a numerical QðrÞ, we have deduced

the equatorial-plane red vortex lines and vorticities shown
in Fig. 2(d). As time ~t passes, the vortexes rotate counter-
clockwise, so they resemble water splayed out from a
turning sprinkler. The transition from the near zone to the
wave zone is at r� 4M (near the outermost part of the
second contour line). As one moves into the wave zone,
each of the red vortexes is smoothly transformed into a
gravitational-wave trough, and the 3D vortexes that emerge
from the blue horizon vortexes (concentrated in the dark
region of this figure) are transformed into gravitational-
wave crests.

Vortex and tendex evolutions in binary black holes
(BBHs).—We have explored the evolution of frame-drag
vortexes and tidal tendexes in numerical simulations of
three BBHs that differ greatly from each other.

Our first simulation (documented in Ref. [4], movies in
Ref. [5]) is the head-on, transverse-spin merger depicted in
Fig. 1 above, with spin magnitudes a=M ¼ 0:5. As the
holes approach each other and then merge, their 3D vortex
lines, which originally link a horizon vortex to itself on a
single hole [Fig. 2(c)], reconnect so on the merged hole
they link one horizon vortex to the other of the same
polarity [Fig. 3(a)]. After the merger, the near-zone 3D
vortexes slosh (their vorticity oscillates between positive
and negative), generating vortex loops [Fig. 3(b)] that
travel outward as gravitational waves.

Our second simulation (documented in Ref. [11], mov-
ies in Ref. [12]) is the inspiral and merger of two identical,
fast-spinning holes (a=M ¼ 0:95) with spins antialigned to
the orbital angular momentum. Figure 4 shows the evolu-
tion of the vorticity BNN on the common apparent horizon
beginning just after the merger (at time t=Mtot ¼ 3483), as
seen in a frame that corotates with the small horizon
vortexes. In that frame, the small vortexes (which arise
from the initial holes’ spins) appear to diffuse into the two
large central vortexes (which arise from the initial holes’

orbital angular momentum), annihilating some of their
vorticity. (This is similar to the diffusion and annihilation
of magnetic field lines with opposite polarity threading a
horizon [3].) Making this heuristic description quantitative,
or disproving it, is an important challenge.
Our third simulation (see movies in Ref. [13]) is a

variant of the ‘‘extreme-kick’’ merger studied by
Campanelli et al. [14] and others [15,16]: two identical
holes, merging from an initially circular orbit, with oppo-
sitely directed spins a=M ¼ 0:5 lying in the orbital ðx; yÞ
plane. In this case, the vortexes and tendexes in the merged
hole’s ðx; yÞ plane rotate as shown in Fig. 2(d). We have
tuned the initial conditions to make the final hole’s kick
(nearly) maximal, in the þz direction. The following con-
siderations explain the origin of this maximized kick.
In a plane gravitational wave, all the vortex and tendex

lines with nonzero eigenvalues lie in the wave fronts and
make angles of 45� to each other (bottom inset in Fig. 5.)
For vectors E (parallel to solid, positive-tendicity tendex
line) and B (parallel to dashed, positive-vorticity vortex
line), E� B is in the wave’s propagation direction.
Now, during and after the merger, the black hole’s near-

zone rotating tendex lines (top left inset in Fig. 5) acquire
accompanying vortex lines as they travel outward into the
wave zone and become gravitational waves, and the rotat-
ing near-zone vortex lines acquire accompanying tendex
lines. Because of the evolution-equation duality between
Eij and Bij, the details of this wave formation are essen-

tially the same for the rotating tendex and vortex lines.
Now, in the near zone, the vectors E and B along the
tendex and vortex lines (Fig. 5) make the same angle
with respect to each other as in a gravitational wave
(45�) and have E� B in the �z direction. This means
that the gravitational waves produced by the rotating near-
zone tendex lines and those produced by the rotating
near-zone vortex lines will superpose constructively in
the �z direction and destructively in the þz direction,

FIG. 3 (color). Head-on, transverse-spin simulation:
(a) Shortly after merger, vortex lines link horizon vortexes of
the same polarity (red to red, blue to blue). Lines are color coded
by vorticity (different scale from horizon). (b) Sloshing of near-
zone vortexes generates vortex loops traveling outward as gravi-
tational waves; thick and thin lines are orthogonal vortex lines.
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FIG. 4 (color). Insets: Snapshots of the common apparent
horizon for the a=M ¼ 0:95 antialigned simulation, color coded
with the horizon vorticity BNN. Graphs: BNN as a function of
polar angle � at the azimuthal angle 
 that bisects the four
vortexes (along the black curves in snapshots).
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leading to a maximized gravitational-wave momentum
flow in the �z direction and maximized black-hole kick
in the þz direction. An extension of this reasoning shows
that the black-hole kick velocity is sinusoidal in twice the
angle between the merged hole’s near-zone rotating vor-
texes and tendexes, in accord with simulations.

Conclusions.—In our BBH simulations, the nonlinear
dynamics of curved spacetime appears to be dominated
by (i) the transfer of spin-induced frame-drag vortexes
from the initial holes to the final merged hole, (ii) the
creation of two large vortexes on the merged hole associ-
ated with the orbital angular momentum, (iii) the subse-
quent sloshing, diffusion, and/or rotational motion of the
spin-induced vortexes, (iv) the formation of strong nega-
tive ENN poloidal tendexes on the merged horizon at the
locations of the original two holes, associated with
the horizon’s elongation, and a positive ENN tendex at the
neck where the merger occurs, and (v) the oscillation,
diffusion, and/or circulatory motion of these tendexes.

We conjecture that there is no other important dynamics
in the merger and ringdown of BBHs. If so, there are
important consequences: (i) This could account for the
surprising simplicity of the BBH gravitational waveforms
predicted by simulations. (ii) A systematic study of frame-
drag vortexes and tidal tendexes in BBH simulations may
produce improved understanding of BBHs, including their
waveforms and kicks. The new waveform insights may lead
to improved functional forms for waveforms that are tuned

via simulations to serve as templates in LIGO-VIRGO data
analysis. (iii) Approximation techniques that aim to
smoothly cover the full spacetime of BBH mergers (e.g.,
the combined post-Newtonian and black-hole-perturbation
theory method [17]) might be made to capture accurately
the structure and dynamics of frame-drag vortexes and tidal
tendexes. If so, these approximations may become powerful
and accurate tools for generating BBH waveforms.
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FIG. 5 (color). Bottom inset: Tendex and vortex lines for a
plane gravitational wave; E�B is in the propagation direction.
Upper two insets: For the extreme-kick simulation, as seen
looking down the merged hole’s rotation axis (� z direction):
the apparent horizon color coded with the horizon tendicity (left
inset) and vorticity (right inset) and with 3D vortex lines and
tendex lines emerging from the horizon. The tendexes with the
most positive tendicity (blue, E) lead the positive-vorticity
vortexes (blue, B) by about 45� as they rotate counterclockwise.
This 45� lead is verified in the oscillating curves, which show
the rotating BNN and ENN projected onto a nonrotating ‘ ¼ 2,
m ¼ 2 spherical harmonic.
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