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1. — Introduection.

Astrophysics and general relativity influenced each other very little during
the long period between the first few years of relativity theory and about 1963.
In fact, during that period the absence of any extensive experimental or ob-
servational phenomena in which general relativistic effects might be important
tended to insulate Rinstein’s theory from all other branches of physics.

However, during the last three years a marked change has begun to occur:
The discovery and investigation of quasi-stellar radio sources (***), of explosions
in galactic nuclei (*+*), and of X-ray emission from supernova remnants (+) have
suggested to astrophysicists that strong gravitational fields might, after all, play
an important role in astrophysical phenomsana. At the same time, major advances
in the techniques of radio and optical astronomy have enabled astronomers
to bagin to dstermine the eosmological structure of the universe (*+*)—which
structure is believed to ba governed by general relativity—; and the develop-
ment of powerful nsw experimental techniques has made possible new and im-
proved tests of Einstein’s theory (s*+). Because of these developments, strong

(™) See, e.g., ROBINSON et al. (1965) and the lectures in this volume by E. M. Bur-
BIDGE and A. R. SANDAGE.

(**) See, e.g., BURBIDGE, BURBIDGE and SANDAGE (1963); also the lectures in this
volume by E. M. BUrRBIDGE and A. R. SANDAGE.

() See, e.g., the lectures in this volume by GIACCONI et al.

(") See, e.g., the lectures in this volume by SANDAGE and by Sciama; also DICKE
et al. (1965).

() See, e.g., DICKE (1964), WEBER (1964), PounDp and SNIDER (1964) and other
references cited there, HiLL and ZANONI (1966), ScHIFF (1960, 1966), FAIRBANK and
EvErRITT (1966), SHAPIRO (1964, 1966 a, b), Ross and ScHIFF (1966).
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THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 167

gravitation physics as described by general relativity is rapidly becoming of
interest to astrophysicists, and astrophysics is rapidly becoming of interest
to relativists.

The present set of lectures is an attempt to facilitate the growing dialogue
and co-operation between astrophysicists and relativists by presenting the gener-
al-relativistic theory of stellar structure and dynamicsin a manner which, hope-
fully, will be intelligible to both, as well as to the uninitiated graduate student.
As a result of this orientation neither a knowledge of the Newtonian theory of
stellar structure, nor previous contact with general relativity are prerequisites
for understanding these lectures—at least I hope they are not. AllT have inten-
ded to assume of the reader is a strong background in the fundamentals of clas-
sical and modern physics, such as a student acquires in a four-year course of
study at the university level.

The desire to not assume any general relativity as a prerequisite to reading
these lectures has led me to employ a slightly novel—but, I believe, very power-
ful—approach to the derivation and discussion of the relativistic laws of stel-
lar structure and dynamics. At no point in these lectures is tensor analysis or
modern differential geometry used. Instead, the fundamental physical concepts of
general relativity (e.g. the curvature of space-time), and a few basic results of the
theory (e.g. red-shift in a static gravitational field) are introduced; and then
these concepts and results are used, together with elementary considerations
from theromodynamics and classical mechanics, as a complete basis for all
further considerations. It must be emphasized that, although this « poor man’s
approach » to general relativity is extremely useful and powerful in the present
context, it is so only because we restrict our attention to situations with spher-
ical symmetry and thereby strongly limit the types of dynamical effects which
are considered. (For example, spherically symmetric bodies cannot radiate
gravitational waves.)

I make no apology to either the astrophysicist or the relativist for the omis-
sion of tensorial and differential-geometric tools from these lectures. The astro-
physicist who is interested only in applying general relativity to stellar structure
and dynamics has little or no need for the full formalism of relativity. On the
other hand, this presentation of stellar theory will probably be clearer physically
to a relativist who is familiar with differential geometry than would be a pre-
sentation couched in differential-geometric terms.

Throughout these lectures two distinet sets of physical units are 'employed:
standard c.g.s. units, and geometrized units. Geometrized units are units in which
Newton’s gravitation constant, @, the speed of light, ¢, and Boltzmann’s constant,
k, are set equal to unity, and all quantities are expressed in terms of length.
Quantities measured in geometrized units are distinguished from the corres-
ponding cgs quantities by an asterisk; for example, the mass of the sun is Mg =
=1.989-10* g in c.g.s. units, or Mg = GMy/e? =1.476 km in geometrized
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units. Tablz I shows how to convert quickly from one set of units to the other.

These lsetures are divided into 6 major Seetions: In Sect. 2 are presented
_ the basic thermodynamic and gravitational concepts upon which the subsequent
discussions are based. Section 3 contains a derivation and discussion of the general-
relativistic equations of stellar stracture, together with delineations and proofs
of some fundam>ntal proparties of relativistic stellar models. Section 4 is a

TABLE I. — The conversion from c.g.s. unils to geometrized units (*).

Density of energy
Pressure
Temperature
Entropy
Luminosity

Mass of sun
Luminosity of sun
Nuclear density
Quantum of angu-
lar momentum

& (erg/cm3)
p (dyne/em?)
T (°K)

8 (erg/°K)
L (erg/s cm?)

My=1.989-10% ¢
Ly =3.90 -10% erg/s
Ooue = 2+ 101 g/cma

#=1.0544-10"?7 gcm?/s

S*

Quantity cgs units Geometrized units
Length 1 (cm) l (cm)
Time t (s) t* (cm)=ct=2.997925-1019¢
Mass M (g) M* (cm) = GM/c?*= 0.742-10-28
Energy E (erg) E* (cm) = GE/c*= 0.826-10-%F
Density of mass | (g/em?) o* (ecm~?) = Gp/c?=0.742-10"28p

e* (cm~?) = Gefct = 0.825:10-4%¢
p* (cm—2) = Gpje* = 0.825-10-%p
T* (cm)= GkT/c* = 1.140-10-%5 T
(dimensionless)= S/k=7.243 5-1015 §
L* (em~2) = GL/c’ = 2.755-10~9L
&= GMgfct—1.476 km

© = GLg/c® = 1.07-10-26 cm—2

Onto = Gogy /e = 1.48-1014 cm—2

fi* = G#ifc® = 2.610-10~%¢ cm?

(*) Adapted from HARRISON, THORNE, WAKANO and WHEELER (1965).

developmont of the theory of the dynamical stability of relativistic stellar
models. In Sacb. 5 the tonls developad in Sect. 3 and 4 are applied to configu-
rations of matter near the endpoint of thermonuclear evolution (white dwarfs,
neutron stars, hypsron stars); while in Szct. 8 those tools are applied to a wide
class of hot, nondegenerate stellar models. Finally, Sect. 7 is a brief introduction
to the theory of gravitational collapse to zero volume and infinite density.

If this written version of my lectures seems to overemphasize hot, nondegen-
erate stars as compared to configurations at the endpoint of thermonuclear evolu-
tion, it is because there is already in print a comprehensive monograph on con-
figurations at the endpoint of thermonuclear evolution. That monograph—HAR-
RISON, THORNE, WAKANO, and WHEELER (1965); cited henceforth as HIWW—
is in large m2asurs a companion to thase lectures. Also closely related to these
lectures are the review articles by ZEL'DOVICH and Novikov (1964, 1965), and
the brief, semipopular article of THORNE (1965¢).
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The form of these lectures and my point of view on the topics treated here
have been influenced by a large number of people, foremost among whom are
J. M. BARDEEN, J. P. WricHT, and above all J. A. WHEELER. I thank them.

2. — Thermodynamic and gravitational preliminaries.

2'1. Separation of short-range and long-range forces (*). — The structure and
dynamics of a star are governed by an interplay between nuclear forces, electro-
magnetic forees, and gravitational forces. If it were necessary to describe the
interactions between these three fundamental forces in precise mathematical
detail, so complex a problem as the structure of a star could never be studied.
The basic simplification which makes stellar theory possible is the clean sepa-
ration of the short-range nuclear and electromagnetic forces from the long-range
gravitational forces. By the phrase «clean separation of forces» we mean the
following. In astrophysical situations the characteristic distance over which the
gravitational force changes is many orders ot magnitude greater than the micro-
scopic scale at which nuclear and electromagnetic forces act. Consequently, the
thermodynamic properties of matter and radiation, which describe the statisti-
cally averaged, macroscopic effects of nuclear and electromagnetic forces, are
unaffected by gravitation. Gravitation is important only at the macroscopic
scale, where, in cooperation with the thermodynamic proparties of matter, it
fixes the thermodynamic state (pressure, density, temperature). ‘

Let us verify that short-range and long-range forces are, indeed, separated
irastrophysical situations. There are several fundamental short-range lengths
over which gravitational forces must be homogeneous in order for ordinary,
« flat-space » thermodynamics to be valid. One fundamental short-range length
is the ~ 10~ ¢m which characterizes nuclear forces. Another is the character-
istic distance of action of strong electric forces, which is usually less than or of
the order of the separation between atomic nuclei (™).

(2.1a) I, ~[(density of total mass-energy)*/(nuclear rest mass)*]-¥ = (¢*/ux)~*
y o'/u

(macroscopic charge neutrality). A third short-range length is the size of a
sample of matter containing ~ 102! atomic nuclei (**),

(2.10) lur ~ 107(*/pik) 3 .

(*) Tor a more detailed exposition of these ideas see HTWW, p. 96.

(**) Formulae (2.1a), (2.1b) for the separation between nuclei and the size of a region
containing 102! nuclei break down at densities above ~ 10 g/cm® because of large
Fermi kinetic energies and nuclear interaction energies. However, these formulae remain
sufficiently accurate for present purposes up to ~ 10° g/em?.
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(It is over such samples of matter that the statistical averaging which under-
lies thermodynamics takes place.) Finally, additional fundamental lengths are
the characteristic «localizability distances »—the Compton wave lengths— of
the particles which make up the matter. An upper limit on all of the short-
range lengths is

L < [ 107" if o< 10¥" g/em?
" #ijmee ~ 1071 em if o> 10?" g/cm?,

(2.2) 104 km if p~1072* g/cm?® (density of universe),
0.1 cm if p~1 g/cm? (density of water),
10~% em if p~10%* g/em® (nuclear density),
107 ¢m if p>{10%" g/em?® .

The characteristic size of inhomogeneities in a gravitational field is the
radius of the space curvature which, according to general relativity, describes
gravitation. In a region of space-time where the density of mass-energy is o*,
this radius of curvature is (see, e.g. HTWW pp. 13 and 97)

the Hubble radius if o~ 10~° g/cm? (density of universe),

(©2.3) 1, gt | 107 00 if o~1g/em®  (density of water),
. Le.~ 0 107 em if p~10% g/em® (nuclear density)
10~ cm if ¢~10* g/cm?.

So long as I, is orders of magnitude greater than .., 7.c. 80 long as
(2.4) 0 <104 g/em?

long-range gravitational forces can be cleanly separated from short-range forces.
Condition (2.4) is satisfied with more than 20 orders of magnitude to spare in
all conceivable astrophysical situations except one: the endpoint of gravita-
tional collapse to a «general-relativistic singularity » (see Sect. 7). Hence,
throughout our discussion (except in analysing the endpoint of collapse) we
can place great confidence in the clean separation of gravitational forces from
the short-range forces which determine the construction and thermodynamic
properties of matter.

2'2. Thermodynamics, the science of shori-range forces.

2'21. Fundamental thermodynamic quantities. The macrosco-
pic effects of short-range forces on the constitution of matter are described by
the thermodynamic properties of matter. Throughout our discussion we shall
restrict ourselves to matter which has the properties of a perfect | wid—i.e.,
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nonviscous matter in which all stresses are zero except for an isotropic pres-
sure. The basic thermodynamic quantities of interest to us will be:

a) Pressure, p (dyne/cm?) or p* (cm—2) = Gpfc*, as measured in a refe-
rence frame comoving with the matter. We shall assume that the pressure is
always isotropic (negligible shear).

by Number density of baryons, n (cm—3%) or n* =n, as measured in a
reference frame comoving with the matter. We shall often make use of the law
of conservation of baryons.

¢) Average rest mass of a baryon, us (g) or us (em) = Gug/ct. The quan-
tity us depends upon the nuclear state of the matter: for a hydrogen gas s is
the mass of a hydrogen atom in its ground state; for a sample of pure **Fe,
Mz is 1/56 times the mass of a **Fe atom in its ground state. For a mixture of
relativistically degenerate electron, proton, and neutron gases containing 8
neutrons for each proton and electron, us is (§) X (rest mass of neutron)+
+ (%) X (mass of hydrogen atom in its ground state). Whenever nuclear reactions

occur, up changes.

d) Internal energy denmsity of the matter, ¢ (erg/em?®) or &*(cm—2) = Ge/ct,
as measured in a reference frame comoving with the matter. The internal energy
includes all forms of energy except the rest mass of the baryons. For example,
it includes atomic excitation energies, thermal kinetic energies, « zero-point »
energies of compression, and photon energies.

e) Density of total mass-energy, o (/cm?) or p* (cm—2)=Gp/c?, as measured
in a reference frame comoving with the matter. This includes rest mass-energy
and internal energy

(2.5) ¥ = ppn + e*.

1) Thermodynamic temperature of the matter, T(°K) or T*(cm) = G(kT)/e?,
as measured in a reference frame comoving with the matter.

9) Entropy per baryon, s (erg/°K) or s*(dimensionless)= s/k, as measured
in a reference frame comoving with the matter. The density of entropy is clearly
ng (erg/°K cms3). or ns* (cm—3).

h) Fractional nuclear abundances, Zg, Zygey Zn, Zp, ... . Zy is the fraction
of all baryons in a given sample of matter which are in the form k. The nuclear
abundances must satisfy

(2.6) ;Zk=1 ’ > urZy =z,
, )

where p; is the rest mass per baryon of the nuclear species &, and ug is the average
baryonic rest mass.
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i) Nuclear chemical potentials, f;(g) or fi(cmn)= Gji,/c®. Let one baryon
of species k& be inserted into a sample of matter, along with enough internal
energy to keep the sample’s total entropy and volume constant. The total
masg-energy added in this process is equal to i, the chemical potential for
baryons of type k.

In almost all astrophysical situations to be considered in these lectures
nuclear burning occurs sufficiently,slowly that nuclear reactions are not in thermo-
dynamic equilibrium with other typ2s of thermodynamic energy exchange.
Consequently, when a sample of matter is subjected to a thermodynamic change
of state the quantities p*, n, £*, o*, T*, and s* change, but the average baryonic
rest mass, us , and the nuclear abundances remain fixed. Of the 6 parameters
p*, m, %, o*, T*, s* which describ> the thermodynamic state only 5—p*, n, 0¥,
T*, s*—are fundamental; the internal energy &* can always be expressed in
terms of the other parameters through eq. (2.5).

In addition to the above thermodynamic parameters- we shall be interested
in the adiabatic indices, defined by (*)

(2.7 I'y = (01np*/0 Inn)e = (0* + p*) p*~"(Op*/00*)s ,
(2.8) I,=[1—(3ln T*/dInp*).1",
(2.9) Fy=1+ @InT*/dInn)e =1 + (g* + p*) T*(OT*/30*),-,

and in the velocity of sound (*)
(2.10) v =[Ip*/(e* + p*)JF = [(0p*/0g*)w ]t .

Note that because the velocity of sound can never exceed the velocity of light
(vy <1), the pressure, p*, can never exceed the density of mass-energy, o*.

2'2.2. Effects of special relativity on the laws of thermody-
namics. By virtue of the separation of short-range and long-range forces, we
need not take genoral relativity into account when discussing the thermodynamic
properties of matter. Furthermore, so long as we carry out our thermodyna-
mic analysis in reference frames which comove with the matter, we need not con-
sider special relativity effects—with one exception. We must be careful to take
into account the equivalence of mass and energy and the consequent inclusion

(") The second equality in eq. (2.7) and that in (2.9) are straightforward consequences
of the first law of thermodynamics—see eq. (2.14). Expression (2.10) for the velocity
of sound has been derived within the framework of special relativity by Taus (1948)
and in general relativity by Curtis (1950). The partial derivatives in eqgs. (2.7)-(2.10)
must be taken, not only with entropy held constant, but also with nuclear abundances
held constant.
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* of the internal energy density, ¢*, in the total density of mass-energy, o*. (Cf.
equation (2.5).)

To gain some insight into the manner in which the equivalence of mass and
energy affects the formulae ot thermodynamics, let us state the relationship
between heat and entropy, and the first and second laws of thermodynamics
in their correct relativistic forms: 1) If a small amount of heat €Q* is added
quagi-statically to a small sample of matter containing 34 baryons, then the
entropy of the sample is increased by

(2.11) d(s*3A) = (34)ds* = 4Q*/T* .

This formula is the same in relativity theory as in ordinary thermodynamics.

» ii) During any quasi-static change in the state of our sample in which the
total number of baryons, 34, is held fixed, but nuclear reactions may occur,
the volume may change, and heat may be added

d(total mass-energy) = d(p*34/n) =
= — p*d(volume) + T*d(s*34) + > dy A(SAZ,) =
k

= — p*d(34/n) + T*3A ds* + Sasadz,,

or, equivalently,

(2.12) do* = [(¢* + p*)/nldn + T*nds* -+ 3 @rndZ, .
k

These formulae for the first law of thermodynamics differ from the more familiar
Newtonian formula

d(internal energy) = — pd(volume) + €@ + > i, d(number of type k),
k

because in relativistic theory we must allow for the possibility of changes in
the rest mass-energies of the baryons. 3) For any change in the state of our
sample which occurs in isolation

(2.13) d(total entropy) = (34)ds*>0;

and equality holds if and only if the change of state occurs reversibly. This
formula for the second law of thermodynamics is the same as the corresponding
nonrelativistic formula.

An important consequence of the relativistic first law (2.12) is an equation

relating isentropic changes in the density of mass-energy to changes in baryon
number density

(2.14) (3g*[en)e = (0* + p*)n .
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The more familiar nonrelativistic statement of this relation is the trivial formula
(Oo*/On)s = pg (nonrelativistic limit).

Additional examples of changes forced onto the formulae of thermodynamics
by the equivalence of mass and energy -can be found in expression (2.7) and (2.9)
for the adiabatic indices I3 and I in terms of p* and p*, and in expression (2.10)
for the velocity of sound in terms of /7, p*, and p*. The new, relativistic forms
of these expressions are quite easily traced back through eq. (2.14) to the effect
of the equivalence of mass and energy on the first law of thermodynamics.
. All other formulae of thermodynamics can be put into relativistic form by
going back to the foundations of thermodynamics, adding the law of the equiva-
lence of mass and energy, and rederiving the formulae desired by the usual,
nonrelativistic method. (See, e.g., ToLMAN (1934a) for a partial development of
the theory.)

2'2.3. Equations of state. Let us focus our attention on a small
sample of matter located inside a static or dynamic star. The thermodynamic
properties of that sample can be specified in either of two equivalent ways;

1) by giving the fundamental equation
(2.15) 0* = f(n, %, 2y, Zy, ..., Zx)

for the material of which the sample is made, or

2) by giving 2 + N equations of state relating the «intrinsic variables », p*, T*,
© fi3y ...y finy t0 the «reduced extrinsic varables », o*, n, and s*, and to the nuclear
abundances, Z,, Z,, ..., Zy — e.g.

p* =g(0*, n,s* Zy, ..., Zy),
(2.16) T* = h(p*, n, 8% Z1, ..., Zx),

.‘Z: = Ju(0*, Ny 8%, 21y oovy Zy)

Once the fundamental equation or 2 + N equations of state have been given, the
machinery of thermodynamics enables one to calculate all other desired thermo-
dynamic properties of the sample of matter (see, e.g. CALLEN [1960]).

Any sample of matter has 1 4 ¥ thermodynamic degrees of freedom. From a
knowledge of the equations of state of the sample, of the laws of thermodynam-
ics, and of the nuclear abundances one can express any 4 + N of the parameters
(0%, m,y s*, p*, T*, Z,, ..., Zy, fi}, ..., jiy) &8 functions of the other 1+ ¥ parameters.

2'2.4. Tnertial mass per unit volume. In our analyses of stellar struc-
ture and dynamics we willneed one more fundamental result from relativistic ther-



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS ‘ 175

modynamics and mechanics; an expression for the inertial mass per unit volume
'of a perfect fluid in which p*/¢* is not small compared to unity. In order to
obtain such an expression, consider in the framework of special relativity a
perfect fluid which movas in the #-direction with velocity » < ¢ relative to an
inertial observer. Focus attention on a fluid element of area A and thickness
Az. The momentum of this fluid element is the total mass-energy, m, which it
carries past the observer multiplied by its velocity, v:

g=mv.

The mass m which passes the observer arises form #wo sources: the density
of mass-energy, g, of the fluid, and the work done on the rightward-moving
fluid element by the pressure force acting on ifs left face

1
m = pAAx + pes X (force on left face) x

X (distance through which force acts as fluid passes observer) =
= 04Ax 4 pAAx]ez = (o - pler) AAx .

Consequently, the momentum is
9= (¢ +p/e*)(AAz)v.

Next suppose that the fluid element is initially at rest and that the external
observer applies a force, F, to accelerate it up to velocity v < ¢ without changing
its proper density and pressure. Then

F = dg/dt = (o + p/c2)(AAr)dv/dt .

Consequently, the inertial mass of the fluid element is ( o+ pjer) AAz; or, equi-
valently,

inertial mass per unit volume of a perfecty *
(2.17) (ﬂuid momentarily at rest with respect to) = (o* + p*).&
the inertial observer who measures it

At first sight this result might be disturbing since in Newtonian physics
o* is by definition the inertial mass per unit volume. However, in relativity
theory, as throughout modern physics, w2 define mass-energy not in terms of
reaction to applied forces, but in terms of conservation laws. The density of
mass-energy, o*, is that quantity which obays tha conse vation law embodied in
the first law of thermodynamics (2.12). In the Newtonian limit (ploc* « 1)



176 K. S. THORNE

this quantity happens to be also the inertial mass per unit volume; but in rela-
tivity theory it is not.

We should note in passing that the inertial mass per unit volume is actually
a tensorial quantity: For bodies in an anisotropic state of stress and with
© < ¢, the acceleration, dv/d¢, produced by a force per unit volume, %, which
does not deform the body, satisfies (*)

(2.18) o(dv/dt) +§j (TR ) (dv,/dt) eq;.

Consequently, the inertial mass per unit volume, ¢ + Tzi/c?, which resists
acceleration in the w-direction differs from that, o + Ty /e, which resists
acceleration in the y-direction. Only in the case of 1s0tr0plc stresses is the iner-
tial mass the same in all directions.

Although the inertial mass per unit volume is not equal to g, the total inertial
mass of any body of negligible self-gravitation (special-relativity limit) and
zero velocity is given by

(2.19) (Total inertial mass) = f o d(volume) .

The stress gives no contribution to the total inertial mass because the equations
of stress balance for a body not being deformed,

[

z T o2’ =0,

guarantee that the volume-integrated stress vanishes.

2'3. General relativity, the science of long-range forees.

2'3.1. Gravitation as geometry. According to general relativity the
concepts of gravitational field and curvature of space-time are equivalent. From
a knowledge of the curvature,or intrinsic geometry, of 4-dimensional space-time
one can calculate the gravitational acceleration of any freely falling test part-
icle as measured by an observer in an arbitrary state of motion near the test
particle.

In our discussions of relativistic stellar models we shall find useful two quite
different methods for describing the gravitational field. The first method is

(*) See, e.g., the discussion of momentum density by ToLman (1934a), p. 65.
Alternatively, this equation and the high-velocity generalization of it can be obtained
3

by expressing the special-relativistic equations of motion Z (8T /3x") = 0, in terms of
u=0

the velocity, «*, and the stresses 757 and density of mass-energy ¢ as measured in the

rest frame of the body.
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to construct a precisely-defined co-ordinate system in the stellar model, and
to give the value relative to this co-ordinate system of the metric tensor, g,,,
as a function of the co -ordinates (x° = t*, #*, 22, 23). (The value of g,, is such
that the squared proper length of the co-ordinate displacement [da®, da?, da?,
do®] is

(2.20) dst = > g derda” )
7’84

The components of g,, play a role in relativity theory analogous to that of ther
gravitational potential, U, of Newtonian theory.

Although this first method of deseribing the gravitational field is very
useful in mathematical analyses of stellar models, it has one serious deficiency:
It is a co-ordinate-dependent description, whereas the gravitational field—or
geometry of spacetime——is co-ordinate-independent. Our second method of
describing the gravitational field avoids this deficiency by exhibiting the geom-
etry of space-time pictorially. The pictorial tools of this method are « embed-
ding diagrams », <.e. pictures of 3-dimensional spacelike hypersurfaces as they
would look if extracted from the space-time manifold of the star and embedded,
with one dimenston suppressed, in our own 3-dimensional Euclidean space.
By means of embedding diagrams we can describe the results of co-ordinate-
dependent mathematical analyses in a co-ordinate-free manner. We shall first
encounter embedding diagrams in Sect. 3'5.1.

2'3.2. Energy and pressure as the sources of curvature. In
Einstein’s theory of gravitation the curvature of spacetime is produced by the
nongravitational stress-energy which moves through space-time. The equation
which links curvature to stress-energy—i.e. to density of mass-energy, o*, pres-
sure, p*, and velocity of fluid—is

(2.21) (Einstein curvature tensor) = 8m(G/c%) X (stress-energy tensor).
This equation is the analogue of the Newtonian equation
(2.22) V?*(gravitational potential) = 476G X (mass density) .

We shall be concerned here with eq. (2.21) only as it is applied in particular
co-ordinate systems to particular situations.

2'3.3. Proper reference frames. There is sometimes considerable con-
fusion in general-relativistic situations over the reference frames in which such
quantities as density of mass-energy, fluid velocity and acceleration, and photon
energy are measured. In order to avoid such confusion, let us introduce the
concept of proper reference frame.

12 - Rendiconti S.I.F. - XXXV,
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Consider an observer who moves along some arbitrary path, or « world
line », through space-time, Let such an observer use physical rods and clocks,
which he carries with himself, to perform measurements in his own neighbor-
hood (within a distance small compared to the radii of curvature of space-
time (*)). The results of such measurements will be called the values of the meas-
ured quantities relative to the observer’s proper reference frame.

In more mathematical terms, the observer’s proper reference frame is for-
med by an orthonormal tetrad which keeps its time-leg tangent to the obser-
ver’s world line and which, for definiteness, is Fermi-Walker transported along
the world line (see SYNGE (1960), pp. 13-15).

The reference frame to which the thermodynamic quantities and laws of
Sect. 2'2. are referred is the proper reference frame of an observer who comoves
with the matter being studied. The laws of physics in this comoving proper
frame are those of flat space-time (special relativity) as augmented by an inertial
(or, according to the equivalence principle, gravitational; or, in more intuitive
terms, centrifugal) acceleration. This inertial acceleration is caused by devia-
tions of the motion of the origin of the comoving frame from a freely falling, or
geodesic path.

2'3.4. The Newtonian approximation. In studying a particular astro-
physical situation it would be a great waste of time and effort to use Einstein’s
geometric theory of gravitation if Newtonian theory would yield the same results.
For this reason it is important to delineate those circumstances under which
Newtonian theory is a good approximation to general relativity. We refer the
reader to EINSTEIN (1965), pp. 85-90, for a beatiful and coincise demonstration
that Newtonian theory and general relativity theory are equivalent if the fol-
lowing three conditions are satisfied throughout the system under study:

a) The system is small compared with the radii of curvature of space-
time (*); or equivalently (cf. eq. (2.3)), the maximum density of mass-energy,
Omsx, and the linear dimensions, !, over which the density of mass-energy is
large satisfy

(2.23) ! < (Onax)?;
or, equivalently, the Newtonian gravitational potential, U, satisfies

(2.24) Uler < 1

everywhere.

(') By «radii of curvature of space-time» we mean (physical components of 4th
rank Riemann curvature tensor as measured in the observer’s proper frame)-t.
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b) The pressure and density of mass-energy satisfy ..

(2.25) P*e* = ploct <1

everywhere in the system.

¢) The macroscopic velocity, », of the matter relative to the Newtonian
co-ordinate system is everywhere small compared to the speed of light

(2.26) (vfe)r < 1.

When these conditions are satisfied the discrepancy between the results of
a Newtonian analysis and a general-relativistic analysis is usually of the order
of the maximum of the dimensionless quantities Uje?, p/oc?, and 2/c>. How-
ever, there are exceptions to this «rule-of-thumb »: If a particular phenom-
~ enon depends critically, in Newtonian theory, upon the difference between two
quantltles and if that difference is of order U/c or p/oc? or v%/c? smaller than
the two quantities, then general-relativistic effects can play a crucial role in the
phenomenon. An important example of such a situation is the phenomenon of
general-relativistic instabilities in hot stellar models (sze Sect. 4°3.1).

2'3.5. The post-Newtonian approximation. The Newtonian the-
ory of gravitation is obtained from general relativity by expanding Finstein’s
equations in powers of U/c?, p/oc, ¢/pc?, and v%/e?; and keeping only the zero-
order terms. A more accurate approximation to general relativity—the post-
Newtonian approximation—results from keeping both zero-order and first-order
terms in the expansion. The resultant equations are very useful for studying
general-relativistic effects in systems for which Uje?, p/oc?, and 1;2/02 are every-
where small.

The post-Newtonian approximation to general relativity has been developed
in full generality for perfect fluids by CHANDRASEKHAR (19654, b); and it has
been independently developed in restricted form for application to problems
of stellar structure, stability, and collapse by FowLER (1964, 1966). We shall
briefly describe Chandrasekhar’s formulation since results obtained from it
will play an important role in some of the later Sections.

To orient ourselves let us briefly review the Newtonian theory of perfect
fluids. In Newtonian theory we describe the gravitational field by a single
gravitational potential, U(x); and we describe the fluid by (in the notation
of CHANDRASEKHAR (19654, b) except that our g, is his p) its density of rest
mass,

(2.27) 0o = Usn ,

its pressure, p, its temperature, T, its internal energy per unit rest mass,

(2.28) II = ¢/, ,
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and its three components of velocity, v.,v,,v,: These eight quantitieg (U,
00, 2, T, 11, v, vy, ¥;) are tied together by eight relations: One gravitational
source equation

(2.29) » ViU = — 4nGg, ,

one equation of continuity
(2.30) 000/0t +V +(gov) = 0,
three equations of motion

(2.31) (9]0t} (00 v;) + g (Ofme)(0o vy v;) = — Opfdx; + 0,0U/[0x; ,

two thermodynamic equations of state, and the demand that the motion be
adiabatic.

In Chandrasekhar’s analogous post-Newtonian theory the gravitational
field is described not by a single potential function, U, but by 3 scalar potentials
(U, @, ) and the three components (U,, U,, Us) of a vector potential. The
orders of magnitude of the five new potentials are

@/er<[maximum (U/e2, v2/e, plo,e®)]? = O(1/eY) ,
(2.32) (82 y/0tdw;)/c® <[maximum (U/e, v2/e2, plo,c2]t = O(1/¢?) ,
U,/e* <[maximum (U/e?, v2/c2, plg,c2) ]t = O(1/c?) .
The six post-Newtonian gravitational potentials are related to the metric tensor
of general relativity by (*)
oo =1 —2TJc* + (2U2 — 4®B)[c* + O(1/e") ,
(2.33) Go; = 4U;/c® — (02 g/dtox;)[2¢® + O(1]c®) ,
gin=—(1+2U/c2)d; + O(1]c*) .

Why are some components of the metric (2.33) expanded in powers of «1/¢»
to order 4, some to order 3, and some only to order 22 Why are we not con-
sistent? Each component is expanded just far enough to guarantee that in
the equations of motion of the fluid all terms of order « 1/¢® » are included.

(") The arbitrariness in g,, associated with the arbitrariness of co-ordinate systems
is here partially removed by the co-ordinate condition 1 (9/0¢) (E ha"‘) — 9k [ozs =0,
-3 -3

where h,, is the deviation of g,, from the Minkowskian metric: huy = gu— -
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The physics of Chandrasekhar’s post-Newtonian approximation is contained in
13 equations which relate the 6 gravitational quantities (U, @, ¥, Uy, U,, U,) and
the 7 fluid quantities (g,, p, T, 11, v,, v,, v.) to each other. Of these 13 basic equa-
tions 6 are gravitational source equations analogous to the Newtonian eq. (2.29),
one is an equation of continuity analogous to (2.30), three are equations of mo-
tion analogous to (2.31), two are the thermodynamic equations of state, and one
is the demand that the motion be adiabatic. We refer the reader to CHAN-
DRASEKHAR (1965a) (egs. (6), (7), (9)—(12)) for the precise forms of these equa-
tions.

In general-relativity theory there is considerable difficulty with the definitions
of energy, momentum, and angular momentum and with the corresponding
conservation laws. Roughly speaking, the difficulty results from interchanges
of energy and momentum between the gravitational field and the fluid, and
from the nonlocalizability of the gravitational field energy-momentum. Such
difficulties are not encountered in the post-Newtonian approximation because
there cannot be gravitational radiation in this approximation. Gravitational
radiation couples to the fiuid only in higher orders of the expansion in «1/¢»
than are included here. As a result, rest mass, total energy, momentum, and
angular momentum are well defined in the post-Newtonian approximation and
satisfy local as well as global conservation laws. Expressions for these 4 conser-
ved quantities are given in CHANDRASEKHAR (1965a) (eqs. (13)—(16)), and the
conservation laws are proved in CHANDRASEKHAR (1965b). CHANDRASEKHAR
also gives post-Newtonian forms of the tensor and scalar virial theorems.

The post-Newtonian approximation as developed by CHANDRASEKHAR is
sufficiently simple;that any astrophyéica,l problem ever solved numerically in
Newtonian theory can now be solved without too much more effort in post-New-
tonian theory. The results of several such post-Newtonian analyses will play
important roles in later Sections (3'6.2, 41, 4'4).

2'4. Summary. — The principal results of Sect. 2 are these: 1) In all astro-
physical situations except the endpoint of gravitational collapse long-range
gravitational forces can be separated from the short-range forces which deter-
mine the structure and properties of matter. 2) The effect of short-range forces
on the properties of matter can be described in a comoving proper reference
frame by the parameters and laws of classical thermodynamics plus the law of
the equivalence of mass and energy. 3) The gravitational field is described by
the general-relativistic curvature of space-time. Alternatively, if UJe?, v?/c?,
and p/ec* are all small compared to unity, Newtonian or post-Newtonian
gravitational potentials can be used to describe the gravitational field. 4) The
coupling between the long-range gravitational field and the matter whose thermo-
dynamic properties are determined by short-range forces is described by Ein-
stein’s field equations (2.21) or, in the Newtonian and post-Newtonian ap-
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proximations, by the source equations of the gravitational field plus the equa-
tions of motion of the fluid. :

With these thermodynamic and gravitational preliminaries completed, we
are now prepared to turn our attention to the structure of equilibrium stellar
configurations.

3. — Equilibrium stellar configurations.

3'1. Parameters describing the structure of nonrotating stellar models.

3'1.1. Description of the gravitational field. To give an anal-
ytic description of the gravitational field of a nonrotating star, we must first
construct a precisely defined co-ordinate system and then give, relative to that
co-ordinate system, the metric tensor, g,,, which determines the geometry of
space-time (cf. Sect. 2'3.1). Nonrotating, equilibrium stellar configurations are
‘ necessarily spherically symmetric. Consequently, we can use as our . three
space co-ordinates the familiar spherical co-ordinates (r, 0, ¢); bemg such
that 472 is the surface area of a sphere about the center of the star, and 0, )
being angular coordinates on that sphere. Our time co-ordinate, #, is chosen, such,
that a) the geometry of space-time is independent of ¢; and b) very far from the
star (at r — oo) co-ordinate time, ¢, is identical to the proper t1me measured
by the clock of an observer at rest with respect to the star.

These conditions determine our co-ordinate system uniquely, except for
trivial rotations about the center of the star. With respect to lthis co-ordinate
system the metric tensor which describes the gravitational field can be put
into the form

(3.1) ds* =D gudords’ = 2P ds2 — (1 — 2m*[r)~Ldr? — r*(d6? + sinzOdg?) .
s

(See, e.g., ToLMAN (1934), Sect. 95.) Hence the geometry of space-time depends
upon two gravitational potentials, @(r) and m*(r). These potentials always
satisfy @(co) = m*(0) =0 (The gravitational potential @ of eq. (3.1) is not
to be confused with the potential @ of post-Newtonian theory (Sect. 2°3.5).)

We shall see in Sect. 3'2.2 that m*(r) can be thought of as the mass inside
a radius r. As for @(r), it plays in general relativity a role analogous to that of
the gravitational potential, U, of Newtonian theory. In fact, a comparison of
equation (2.33) with the expression

Joo = €® & 1+ 20 + O(D?)

reveals that —U/e? is the Newtonian limit of &. For this reason ‘@(r) is some-
times called the « Newtonian potential » of general relativity.



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 183

3'1.2. @(r) as a governor of energy red-shift. Just as U provides
us with an equation governing the rate of change of the kinetic energy of a par-
ticle moving in a Newtonian gravitational field

(3.2) 1 mov2 — m, U = const ,

so @ is the basis for a general-relativity energy equation. At each point on the
orbit of a particle (or photon) let an observer fixed with respect to the star
((r, 8, p) = const) measure the particle’s total energy, E, in his own proper
reference frame. (By total energy, K, we mean E = kv for a photon, and
F = (rest mass plus kinetic energy) = m,/(1 —v*)* for a material particle.)
Then the energies measured by observers at different points in the star are
related by

(3.3) ‘ Ee® = const .

This equation is valid for particles or photons falling freely inside the star as
well as outside it. In fact, eq. (3.3) is valid for particles or photons falling in
any static gravitational field of the form

(3.4) dsz = e22de + i gy deida .
41

(See e.g. LANDAU and LiFsHITZ (1962), Sect. 89.)

Equation (3.2), which is the Newtonian limit of eq. (3.3), is usually called
« the equation of energy conservation »; the energy which is conserved is the
sum of the kinetic energy, 1m,v? and the potential energy, — m, U. In gen-
eral relativity, however, it is more convenient to avoid introducing the concept
of potential energy and to regard eq. (3.3) as an «energy red-shift » equation.
The energy which is red-shifted as a particle or photon climbs out of a gravita-
tional field is E, and the amount by which this energy is red-shifted in moving
from point A to point B is

(3.5) [E(B)— E(A)]/E(A) = exp[D(A) — H(B)]—1.

3'1.3. Description of thermodynamiec structure. The thermody-
namic structure of an equilibrium stellar configuration will be described in
these lectures by giving the radial distribution of the following thermodynamic
parameters: density of mass-energy, p*; pressure, p*; number density of
baryons, n; internal energy density, £*; entropy per baryon, s*, temperature, 7*;
average baryonic rest mass, us; nuclear abundances, Z,,..., Zy; nuclear
chemical potentials, g}, ..., jiy; number of baryons inside a radius », a(r);
total luminosity, L7 ; neutrino luminosity, L"*; radiative absorption coefficient,
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x#z; thermal conductivity, A;; rate of change of nuclear abundances, of, ..., oy;
rate of thermonuclear energy generation, ¢*; and rate of energy release into
neutrinos, ¢f,. All of these quantities were defined in Sect. 22 except the fol-
lowing: The number of baryons inside a radius r, a(r), is a very useful parameter
for identifying shells of matter in successive confizurations of an evolutionary
sequence, In the language of hydrodynamics, a is a Lagrangian radial co-ordi-
nate. We shall sometimes use a ,rather 'than |r as the independent radial co-
ordinate. The radial luminosity, Ly, is the total mass-energy carried by photons,
by neutrinos, by conduction, and by convection outward across a sphere of
co-ordinate radius r in unit time, as measured in the proper frame of an observer
located at r and at rest with respect to the star. The neutrino luminosity L"*
is that portion of L7 due to neutrinos. The radiative absorption coefficient,
xz, multiplied by the density of mass-energy, o*, is the fractional attenuation
per unit proper distance of the intensity (watt/cm? s) of a beam of light in the
absence of gravitational fields

(3.6) a /I = — %} o*d(proper distance) (no gravitation).
The light beam is assumed to have the average spectral distribution of the ra-
diation at point ». The thermal conductivity, 4., is the proportionality constant
which, in the absence of a gravitational field, relates the energy flux by heat
conduction to the temperature gradient.

(3.7) Q=—-1VT (no gravitation) .
The rates of change of nuclear abundances, oy, ..., ay, are defined by

(3.8) of=dZ./d (time as measured in proper frame of observer at rest in star).

The nuclear abundances change as a result of nuclear reactions. Because
Zy+ ...+ Zy =1, we always have

(3.9) of .. Fay=0.

The rate, q*, of thermonuclear energy generation is the rate per baryoh, as measured
by an observer at rest in the star, at which rest mass-energy is converted into
internal energy by thermonuclear reactions

(3.10) g* = — dus/d (proper time) = — oyt — ... — oy uy -

The rate of energy release into neutrinos, Qe is the rate per baryon at which
internal energy is converted into outgoing neutrinos. (We view nuclear reactions
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as an exchange of energy between rest mass, ugn, and internal ‘energy, ¥,
followed by the conversion of some of the internal energy into neutrinos and
photons.)

3'2. Equations of stellar structurc. — The structure of a star which contains
N different typss of baryons can be described by the 16 + 3N functions of
radius (P, m*, a, o*, p*, n, &, s*, T*, L}, LO* ety AX 5 0%, @y 89 Z1y oey Zy,
By weny fiby afy ..., o). These 16 + 3N functions are governed by 16 4+ 3N equa-
tions of stellar structure: '

1) Differential equations of stellar structure:

a) Baryon number equation:

(3.11-1) dajdr = 4mr(1 — 2m*[r)En , a(0) =0,

b) Mass equation:

(3.11-2) dm*/dr = 4mr o*, m*(0) =0,
¢) TOV equation of hydrostatic equilibrium:

- dp* _ — (¢* + p)(m* + dnrip*)

J1-
(3.11-3) dr r(r —2m¥) !

d) Source equation for @:

' d® m* + darip*
JA1-4 — = T =
(3.11-4) dr — r(r—2m*) ’ Pleo) =0,

¢) Equations of thermal equilibrium:

* 20 2P . K *
3115 (AL dmrine {q* i E(E_) P e dn : _
dt n n? dt a=constant |

dr (1 — 2m*/|r)t
— dmrzne® ds* a4z
= Y e L g (=
(1 —_ 2m*/r)‘} {T ( dt )n-conatmb I ;/‘k ( dt )a-conlbanb}’
V)% 20 20
(3.11.6) OLED) | Amrine? .
dr (1 — 2m*|r)}

f) Equation of energy transport:

i) If convective transport is negligible beside conductive plus radiative
transport (temperature gradient subadiabatic)

d(Te*®) 3 w*o* (L7 — L¥*)e® (1 2m*)"*
- x Tk T )
(3.11-7a) dr 160* T2 dorr? r
101 1 , 160*T*s
e A T
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ii} If conductive and radiative transport are negligible beside convec-
tion, and if convection proceeds efficiently (adiabatic approximation)

ar*  I,—1 1% ap*
dr I, p* ar’

(3.11-7h)

Procedure for choosing between (3.11-7a) and (3.11-7b): Calculate temperature
gradient from (3.11-7a); if it is subadiabatic then the assumption of no con-
vection was correct; but if it is superadiabatic then convection is important and
(3.11-75) should be used.

II) Gas characteristic relations:

a) Thermodynamic relations:

(3.11-8) — 4 + N algebraic thermodynamic relations linking the
(3.11-114- N) fundamental thermodynamic quantities (p*, p*, n, s*, T*,
Zyyoony Ziyy [y ooy fly)- e

(3.11-12 + N) 0* = ukn + &*
(3.11-13+ N) pn = > Zui .
b) Opacity relation: o
(3.11-14 4+ N) %p = ng (0% T* Zy,y ..., Zy) .
¢) Conductivity relation: *
(3.11-154- N) AF = A (o*, T%, Zy, ..., Zy) .
d) Equations of thermonuclear energy generation:
(3.11-16 + N) { q*:—zk:oc,fy,’,", .
(3.11-17+ N) 0t = aio(0*, T*, Zy, ..., Zy)
(3.11-18 4 N) —(3.11-16 + 2N) of = af(0*, T* Zy, .oy Zy), k=1,..., N—1,
(3.11-174 2N) — (3.11-16 - 3N) (dzk/dt)a=mnsh = Pk =1,..,N.

Let us examine the origin, the significance, and the Newtonian limits of
these equations.

3'2.1. Baryon number. The baryon number eq. (3.11-1) states that the
number of baryons inside radius r is ‘

r

(3.12) a(r) = j (baryon number density)d(proper volume) =
0

= | ndzr2(1 — 2m*jr)*dr.

]
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3'2.2. Mass equation. The mass eq. (3.11-1) arises from Kinstein’s
field eq. (2.21) (see e.g. TOLMAN (1934a), Sect. 95). Its form suggests that we
interpret m*(r) as the total mass—energy inside radius r, including rest mass-
energy, internal energy, and (negative) gravitational potential energy. m*(r)
is split into its three parts as follows

(3.13)  m*(r) = (rest mass-energy) + (internal energy) +

-+ (gravitational potential energy) :f » n d(proper volume) +

T

+ j g*d(proper volume) —fg*[l — (1 —2m*/n") ]t d(proper volume) .

(To derive the second equajlity,‘ combine the mass éq. (3'.11-2)‘ with the two-way
split (2.5) of ¢* into rest mass plus internal energy, and with the expression

d(proper volume) == 4mr2(1 — ‘2'm’."/7")_i'd7'

for the proper volume of a spherical shell of co-ordinate thickness dr.) In the
Newtonian limit the three- -way split (3. 13) takes the familiar form o

i i
T ) r h T

(3.13")y  m(r)c® = | uynerd(proper volume) + | e 4xr2dr + | ugn(— Gm[r)dmrzdr .
M H

0 0 0

Although it is very useful to give the title «total mass-energy inside radius r»
to m*(r) (*), and although the rest mass-energy, f usn d(proper volume), is a
useful quantity (**), the intarnal enﬂrrry and gravitational potential energy of
eq. (3.13) are not particularly useful except in the Newtonian and post-New-
tonian approximations. :

The value of m* at the surface of the star,

R

(3.14) L M* = m*R) =|4mwrzo*dr,

is the total gravitating mass as measured by an observer who applies Kepler’s

() See e.g. the remainder of Sect. 3, as well as HTWW Chapters 2 and 3 and
Appendix B; and THORNE (1965b), Chapter 5. '
{*") See e.g. Sect. 3'5.3 and 4°2.4, as well as BARDEEN (1965) and TOOPER (1966).
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laws to planets in large orbits about the star (cf. Sect. 8'4.1). [The difference
between this total mass-energy and the total rest mass-energy,

R
(3.15) My Ef s ndari(1 — 2m*/r)-tdr,
[}

is the negative of the binding energy, — E}:
(3.16) BY = MY — M*.

Binding energy and rest mass play an important role in the supermassive stel-
lar models of FOWLER (1964, 1966) and BARDEEN (1964, 1965, 1966).

32.3. TOV equation of hydrostatic equilibrium. The TOV (Tor-
MAN [1934a], [1939], OPPENHEIMER and VOLKOFF (1939]) equation (3.11-3),
like the mass equation (3.11-2), arises from Einstein’s field equations. It ex-
presses the fact that the buoyant force per unit volume, as measured in the
propar reference frame of an observer fixed in the star,

(8.17a)  Fiipens = — dp*/d(proper radial distance) e,= — (1 — 2m*[r}(dp*/dr)e, ,
precisely balanees the gravitational force per unit volume,

— (0* + p*)(m* + 4mrs p*)
r2(1 — 2m*|r)}

(3.17b) Fouw =

roe

(Here e, is a unit vector in the radial direction.)
The TOV equation of hydrostatic equilibrium (3.11-3) differs from its New-
tonian counterpart '

(3.18) — Py = dp*/dr = Fitey = — 0* m*|r2

in several key ways: 1) In place of the density of mass-energy, o*, appears den-
sity plus pressure, (¢* +}p*). This is a consequence of the relativistic role of
(0* + p*) as inertial mass per unif volume (cf. Sect. 2'2.4), plus the equiva-
lence of inertial and gravitational forces (Einstein’s equivalence principle).
2) In place of the mass, m*, appears the expression m* - 4nr®p*. The ad-
ditional term proportional to p* results in one of the most important of all non-
linear gravitationaleffects, multiplicative regeneration of pressure (see Sect. 3'5.2).
3) In the denominator of the TOV equation (3.11-3) is a factor (1 — 2m*/r)
which doss not appear in the Newtonian equation (3.18). This factor prevents
the mass inside a radius r, m*(r), from ever being as large as 7/2 (cf. Sect. 8'5.1);
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and it is closely related to the evolution of an event horizon in gravitational
collapse (cf. Sect. 7).

3'2.4, Source equation for @. The source equation (3.11-4), like
egs. (3.11-2)—(3.11-3) arises from Einstein’s field equations (see, e.g., ToL-
MAN [1943a] Sect. 95); and like the TOV equation (3.11-3}, it can be rewritten
in a form which expresses the hydrostatic balance between gravitational force
and pressure-buoyant force:

(3.19) F* =— (o4 p*)(1 — 2m*/r}}(dD/dr)e, = — F,

grav ~— buoy

=(1— 2m*/r)}(dp*/dr)e,

Note that the relativistic expression (3.19) for the gravitational force per unit
volume, when rewritten in words, takes a form familiar from Newtonian theory

(3.20) F. = — (inertial mass per unit volume) X AD|A(proper radial distance)e,

This is another aspect of the close analogy between the general-relativity
potential @ and the gravitational potential U of Newtonian theory (cf. Sect. 3'1.1
and 3'1.2).

3'2.5. Thermal equilibrium. The energy which a star radiates is sup-
plied from its rest mass by nuclear burning, from its gravitational and internal
energy by quasistatic contraction, or from both sources by both processes.
Equation of thermal equilibrium (3.11-5) expresses the energy balance which
occurs during this conversion of mass-energy from one form to another.

To derive eq. (3.11-5) consider a spherical shell of the star inside of which
there are 4 baryons and which itself contains da baryons. During a co-ordinate
time interval d¢ the internal energy of this shell changes by

{3.21) d(internal energy) =
= (rest mass-energy cobverted to internal energy by nuclear reactions) 4

+(W01'k done on shell by gravitational forces to
change its volume during quasistatic contraction

— (energy radiated away, conducted away, or convected away).

By virtue of definition (3.10) the amount of rest mass converted to 1nternal
energy is g¢*dae®di. During quasi-static contraction the shell under conside-
ration changes its volume by an amount d(3a/n), and the work done on the shell
to produce this change is — p*d(3a/n). The rate, as measured by a clock
fixed in the shell, at which the shell radiates, conducts and convects away
energy is

(3.22)  Li(r 4 3r)exp [2[D(r + 8r) — D(r)]] — Li(r) = (AL} /dr + 2L} dD/dr) dr.
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One of the factors of exp[®(r 4 dr) — D(r)] accounts for the gravitational red-
shift which the transported energy undergoes as it crosses the shell (ef.
Sect. 3'1.2.), while the other accounts for time dilation between the inner and
outer surfaces of the shell. Consequently, the total energy carried away from
the shell in co-ordinate time df is

(AL} /dr + 2L} dD[dr) Sre® dt .
These results enable us to rewrite the equation of energy balance (3.21) as
(3.23) d(c*da/n) = q*dae®dt — p*d(Sajn) — (AL} /dr + 2L} dP/dr)Sre® ds .

When expanded and rearranged this becomes the equation of thermal equili-
brium (3.11-5). The alternative form (second equality) of the equation of thermal
equilibrium (3.11-5) follows from the relation

0* — e ?(d/de)(e*/n) — p*e~?(d[dt)(1/n) = — e~ [(d/dt)(0*/n) + p*(d/dt)(1/n)] =
= — 7 TH(ds*fdt) — 3 (A7)

(cf. the first law of thermodynamies, eq. (2.12)).

From the above derivation it is evident that the time derivatives in the equa-
tion of thermal equilibium must be taken with baryon number, a, held fized; not
with radius, r, held fized. HOW these time derivatives are handled in practlce
will be discussed in Sect. 3'4.3.

It should be mentioned that the equation of thermal equilibrium (3.11-5) '
can be derived directly from the general-relativity law of local energy eonser-
vation, > u, T";, =0 (see BARDEEN [1965], or MISNER and SHARP [1965, 1966]).

[.54

In addition to the general equation of thermal equilibrium (3.11-5), we have
equation (3.11-6) which expresses the law of energy balance for neutrinos alone.
Neutrinos have their own, separate equation of thermal equilibrium because once
a neutrino is produced it escapes freely from the equilibrium configuration with-
out ever being converted into’ any other form of energy. Equation (3.11-6)

can be derived in the same way as was (3.11-5).

3'2.6. Energy transport. In general, energy is transported from the
hot interior of a star toward its cool surface by a combination of diffusing photons,
escaping neutrinos, heat conduction in the stellar material, and convective mo-
tions of the stellar material. In any particular situation a careful analysis of the
processes of energy transport yields three basic equations: the equations of
thermal equilibrium (3.11-5, 6)—which are expressions for the gradient of the
energy flux—; and the equation of energy transport (3.11-7), which is an expres-
sion for the temperature gradient.
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The analysis of energy transport for stellar models in which convection
contributes roughly the same energy flux as conduction plus photon diffusion is
very difficult and has not yet been carried out in general relativity. Fortuna-
tely, in most situations of physical interest either convection is negligible beside
conduction plus radiation, or conduction plus radiation is negligible beside
convection. We consider these two cases below.

3'2.7. Energy transport by conduction, photon diffusion, and
neutrino escape. When convective transport is absent or negligible, the
equation of energy transport takes the form (3.11-Ta). We will derive this
equation in three steps: First, we will obtain a relation between temperature
gradient and photon energy flux; second, we will obtain a similar relation be-
tween temperature gradient and conduction energy flux; third, we will combine
these relations to obtain eq. (3.11-7a).

a) Photon energy transport. The theory of radiative transport in general
relativity has been developed independently by BARDEEN (1965), by MISNER
and SHARP (1965, 1966), by HAMEEN-ANTTILA and ANTTILA (1966), and, in great-
est detail, by LINDQUIST (1966). For the interior of a star, where photon trans-
port is diffusive, this theory yields the following equation of radiative transport:

A(T*e®) 3 xto* L®*e® (1 2m*‘)—i
=)

24 = —
(3.24) dr 160* T*3 A4mre

Here L®* is that portion of the luminosity, L}, which is due to photon dif-
fusion; o* is the Stefan-Boltzmann constant (cf. eq. (3.28)); and the other
quantities have the meanings given in Sect. 3'1.

One can give a physical derivation of eq. (3.24) wichout going into the details
of transport theory. At any point inside the star the electromagnetic radiation
consists of two parts—a large, isotropic part; and a very much smaller, purely
radial part which accounts for the photon luminosity L{®*. Consider the gra-
dient in the radial component of the (almost isotropic) radiation pressure. It
arises from two sourcas—gravitational attraction of the photon gas toward
the center of the star; and interaction of the radiation with matter. The
gravitational attraction must be balanced by a pressure gradient

d(radiation pressure)/d(proper radial distance) =

= — (inertial mass per unit volume of photon gas) d®P/d(proper radial distance);

or, equivalently,

(3.25) (Ap3/Ar)emy = — (0F + P3) dD/dr
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(cf. Sect. 8'2.4). Of all interactions between matter and radiation only ab-
sorption of the excess radial component, L{®*, is anisotropic and can thus con-
tribute to the radiation pressure‘ gradient. The droiJ in radiation pressure
over a co-ordinate interval dr due to absorption is the mass-energy absorbed
from the radial beam per unit proper time and per unit area by the matter in
the shell of thickness dr:

(3.26) (dp;)absorntion = ”; Q*(L:-R)*/47tr2)(1 - 2m*/r)"*dr.

Consequently, the total gradient of the radiation pressure (sum of (3.25) and
(3.26)) is:

(3.27) dptldr = — (0% + p%) AD/dr — sk ¥ (Li™* [4mr*}(1 — 2m*[r)t.

Now, the (very nearly isotropic) radiation pressure, py, and the density of ra-
diation energy, o}, are related to the temperature, T, of the matter by

(3.28) oh = 3y = 4o* T+

where ¢* is the Stefan-Boltzmann constant. By combining equations (3.27)
and (3.28), and rearranging, one obtains the equation of radiative energy

transport (3.24).

b) Conductive energy tramsport. The portion, L¥*, of the total luminosity
L*, which is due solely to heat conduction is related to the temperature gradient
by the equation of conductive energy transport

d(T*ed)) Lﬁ.c)*eqj 2m*\ 1
. : = 1— .

(3-29) dr dmr2 iy ( r )

This equation can be derived from the following considerations: In the Newton-

ian approximation the conductive luminosity is related to the temperature

gradient by the equation of conductive energy transport

(3.30) dT*/dr = — 7 X (energy flux) = — LO*/4nr2 7 .

The relativistic generalization of this equation must be obtainable by insertion
of the general-relativity « correction factors » ¢? and (1 — 2m*|/r)* in appropriate
places. The factor (1 — 2m*/r)t is always used to convert differential radial
co-ordinate intervals, dr, to proper radial distances, (1 — 2m*/r)~*dr. Hence,
eq. (3.30) when corrected for the effects of (1.— 2m*|r) reads l

(3.30) dT*/d(proper radial distance) = (1 — 2m*/r)dT*/dr — — LO*/4nr2 1 .
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The second correction factor, ¢?, must be inserted in such a manner as to ac-
count for the red-shift of the energy which is being conducted upward through
the star. A factor of ¢® to some power, k, will appear inside the radial derivative;
and another factor, ¢¥'?, will appear outside the radial derivative

(3.307) (1 — 2m*[r)te¥'® (1% *®) [dr = — LE* 42 A7 .

We have chosen our normalization of @ in such a manner that @(co) = 0.
However, just as Newtonian gravitation theory is unaffected by the addition
of a constant to the gravitational potential, U-— U - constant, so the laws
of general relativity are unaffected by the corresponding transformation
@ — @ + const. Such a transformation merely corresponds to an expansion
or contraction of the co-ordinate time scale (cf. eq. (3.1)). The demand that the
equation of conductive transport (3.30") be invariant under the transforma-
tion @ — @ 4 const tells us that k'= — k.

To determine the correct value of k¥ = — k', consider a hot star which is
surrounded by an insulator that prevents energy from flowing into or out of it.
Inside the star photon diffusion will attempt to create a temperature distri-
bution of I*e¢? = const (cf. eq. (3.24)), while heat conduction will attempt to
create the distribution T*¢*® = const. (cf. eq. (3.30")). Consequently, if x> 1,
photons will carry energy at a finite rate from the center of the star to the sur-
face, and heat conduction will recycle the energy back to the center. The
result will be a finite heat flow from a hot region to a cold region by one
route and back by another with no increase in entropy—a violation of the second
law of thermodynamics. Since ¥ <1 would lead to a similar violation of the
second law, & must be precisely 1, and k¥ must be —1 (*). By setting k =
=—Fk'=1 in eq. (3.30") and rearranging, we obtain the general-relativity
equation (3.29) for heat conduction in a star.

¢) Combined photon, conduction, and neutrino transport. We have now com-
pleted the first two steps in our derivation of the transport equation (3.11-7a).
We have obtained the egs. (3.24) and (3.29) which govern photon diffusion and
heat conduction whenever there are no mass motions in the star (negligible
convection). Before constructing the combined transport equation (3.11-7a), it
ig useful to rewrite the equation of conductive transport in a form identical
to the equation of radiative transport

, d(T*e?) 3 Kot L*e®(  omr\
(3.29) dr — 160* T* dme \© 1 )

Evidently the conductive absorption coefficient »* which appears here is related

() This proof that k=1 is due to P. J. E. PEEBLES (private communication).

13 — Rendiconti S.I.F. - XXXV,
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to the thermal conductivity A} by

(3.31) ® = (160* T*3)[(30* 2*) .

By combining the conduction eq. (3.29’) with the equation of radiative
transport (3.24), and by noting that because convection is negligible

L;R)* _}_ L;c)* — L:ﬂ — L;v)* ,
we obtain the transport equation (3.11-7a).

3'2.8. Convective energy transport. In general relativity, as in
Newtonian theory, a layer of a star is unstable against convection if and only
if its temperature gradient is superadiabatic:

(3.32) Instability against convection <

<>(— AT*/dr) — (1 — 1/T,)(T*[p*)(— dp*/dr) >0 .

Here I, is the adiabatic index of eq. (2.8).

This condition for convective instability can be derived in general rela-
tivity theory by a physical argument analogous to the Newtonian argument
of ScHWARZSCHILD (1958), pp. 44-46: (*)

Congsider a particular configuration of hydrostatic and thermal equilibrium.
Displace a small element of fluid at radius r, upward through a small co-
ordinate distance Ar, to 7z =r, + Ar. As it is displaced let the fluid element
expand adiabatically until it reaches the same pressure as its new surroundings.
Then release the displaced fluid element, and see in what direction the sum of the
gravitational and buoyant forces acts. If the fluid falls back toward its original
position, the star is stable against convection in the neighborhood of 7,; if it
continues to rise, the star is unstable against convection. The forces per unit
volume acting on the displaced fluid element, as seen by an observer at rest
at rz, are (cf. Sect. 3'2.4)

(3.33) F*=F}, + Fiyan =
=[— (of, + P*)(1 — 2m* ) (dD/dr) e,], + [— (1 — 2m*/r)t (dp*/dr) e,], -

(*) For a considerably more rigorous relativistic derivation of (3.32) see
THORNE (1966). TFor a post-Newtonian discussion see CHANDRASEKHAR (1965d).
BoxD1 (1964) seems to have been the first to notice that convective instability is
unaffected by general relativity.
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Here o is the density of mass-energy of the displaced fluid element,
(3.34) e = 01 +[(g* + p*)(dp*/dr)/ [y p*]s Ar;

and the subseripts « A » and « B» indicate quantities evaluated at », and 7.
By combining expressions (3.33), (3.34), and (3.19), we obtain for the proper
acceleration of the displaced fluid element relative to the surrounding medium

(3.35) F (1 — 2m*|r)t (—- dp*

= o = — AS -
S (¢* + p*) I'np* \ dr ) rS(rer

where S(r), the relativistic Schwarzschild discriminant, is
(3.36) S(r) = dp*/dr — I p*(o* + p*)~'de*/dr .

If 8(r) is positive (subadiabatic temperature gradient), the displaced fluid
element is accelerated back toward r, and the star is stable against convection;
but if 8(r) is negative (superadiabatic temperature gradient), the displaced
fluid element is accelerated on upward, away from r,, and the star is unstable
against convection. Hence, criterion (3.32) for convective instability, which is,
equivalent to 8(r) << 0, is proved.

It should not be surprising that the condition for convective instability
is the same in general-relativity theory as in Newtonian theory. Convective
instability is a purely local phenomenon; it occurs locally and it is governed
entirely by the local values of the thermodynamic variables and their gradients.
Consequently, it cannot be affected by nonlinearities in the gravitational field,
which act only over finite distances.

Whenever photon, conduction, and neutrino cnergy transport alone would
produce a superadiabatic temperature gradient, convection breaks out and
drives the temperature gradient down to adiabatic or near-adiabatic (*). In
vhe adiabatic approximation, which is usually valid, the temperature and
pressure gradients are related by eq. (3.11-7b); and they are related to the
density gradients by

(3.37a) do*/dr = (p*+ p*)n—tdn/dr,
(3.370)  dT*/dr = (I';—1)(T*/n) dn/dr = (I'y,— 1)(T*/[o* + p*]) do*/dr ,
(3.37¢) dp*/dr = I'y(p*/n)dnfdr = I'(p*/[o* + p*]) do*/dr .

(*) See e.g., SCHWARZSCHILD (1958), p. 47. For a Newtonian discussion of those
rare circumstances in which convection does not produce an adiabatic temperature
gradient, see KIPPENHAHN (1963).
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Here I and I} are the adiabatic indices of eqs. (2.7) and (2.9). A stellar model
in which the gradients are adiabatic is often called isentropic because it has con-
stant entropy per baryon,

(3.37d) ds*jdr =0 .

This completes our discussion of energy transport in relativistic stellar
models. We have considered transport only for the cases in which convective
transport is negligible beside radiation plus conduction (eq. (3.11-7a)), and for
the case in which radiation plus conduction is negligible beside convection,
and convection proceeds efficiently (eq. (3.11-7b) or, equivalently, any one of
eq. (3.37)). Itis interesting to note that in neither case does the neutrino lumi-
nosity L®* have a direct influence on the temperature gradient. This is because
once neutrinos are emitted they never interact again with the star.

32.9. Thermodynamic relations. As was discussed in Sect. 22.3,
once the equations of state of the stellar material have been specified, the laws
of thermodynamics fix any 4 4- N of the quantities (¢*, p*, n, s*, T*, Z , ..., Z,,
fi3y -+y i) a8 algebraic functions of the other 1 + N. The stellar structure equa-
tions (3.11-8)-(3.11-11 4- N}, which include Z, 4... +Z,=1, are these three
algebraic relations. Equation (3.11-12 4- ¥) is the split of the density of mass-
energy into rest mass plus internal energy, which we discussed in Sect. 2°2.1.
Equation (3.11-13 4-N) is the expression for the average baryonic rest mass in
terms of the nuclear abundances and rest masses.

3'2.10. Opacity and conductivity relations. The radiative ab-
sorption coefficient, »;, and the thermal conductivity, ¥, depend upon local
thermodynamic conditions, which are determined by two thermodynamic
parameters (e.g. o* and I'*) and the nuclear aboundances, Z,, ..., Zy. The
opacity and conduectivity relations (3.11-14 4 ¥) and (3.11-15 4 ¥), which put
this dependence in quantitative form, are discussed in all treatises on the New-
tonian theory. of stellar structure (see e.g., SCHWARZSCOHILD (1958), pp. 62-73;
SCHATZMAN (1958), pp. 78-87; and Cox (1965)).

For the purpose of computing stellar models the effects of opacity and
conductivity are combined into the single absorption ecoefficient x* of
eq. (3.11-7a). Perhaps the most accurate values of this combined absorption
coefficient are those produced by a computer program which has been developed
by Cox and his collaborators at. Los Alamos Scientific Laboratory (see e.g.,
Cox (1965)).

32.11. Equations of thermonuclear energy} generation. The
reaction rates for thermonuclear transformations, like opacity and conductivity,
depend upon local thermodynamie conditions. Equations (3.11-17 4- N') through
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(3.11-16 4 2N) are embodiments of this dependence. (*) For discussions of the
specific reaction rates which are needed to make these equations guantitative
see e SCHWARZSCHILD (1958), pp. 73-88; BURBIDGE (1963); REEVES (1965);
BamcALL (1964); BAECALL and WoOLF (19654, c).

The remaining equations of thermonuclear energy generation, (3.11-16 -~ N)
and (3.11-17 4 2N)-(3.11-16 + 3N), follow from the definitions of ¢* and o
(cf. Sect. 3'1.3).

This completes our discussion of the equations of stellar structure. We
next turn our attention to the boundary conditions which must be imposed
on the stellar-structure paramsters at the center and surface of the star.

3'3. Boundary conditions for stellar structure. — Of the 16 - 3N equations of
stellar structure (3.11), 7 are first-order differential equations with respect to
the radial co-ordinate, r. Corresponding to these 7 differential equations are 7
boundary conditions on the stellar-structure parameters

(3.38a) a(0) =0, m*(0) = 0, L}0)=0, L0y =0,
(3.380) P(c0) =0,
(3.38¢) PHR)=0, T*R)=0.

These boundary conditions can be understood as follows: a and m* vanish ab
the center of the star by definition, since a(r) is the number of baryons inside
a sphere of area 4zr* and m*(r) is the mass-energy inside that same sphere. The
radial luminosities L} and L{®* vanish at the center because of spherical sym-
metry. The gravitational potential, @, is zero at radial infinity by definition—@
is defined by the physics only up to an additive constant; the choice ®{co) = 0
corresponds to the demand that

. . proper time as measured by an observer at rest
(3.39) (co-ordinate time, t)= ;

with respect to the star but very far away from it

The boundary conditions at the surface of the star (= R) are not so
straightforward as those at the center and at infinity. Any star not at zero tem-
perature possesses an atmosphere in which originate most of the photons that
escape from the star. Although the atmospheric temperaturés and pressures
are definitely not zero, they are generally very small by comparison with inte-
rior temperatures and pressures. For this reason one can describe accurately
all regions of a star except its surface layers and all properties of a star except
the spectrum of its radiation by imposing the «zero-boundary conditions »

*) o} is fixed in terms of &%, ...,&__ by the relations > Z, =1 (one of eqs. [3.11-8]—>
N 1 N-1 y k

—[3.11-11 + N]) and dZ,/dt= e®a; (eqs. 3.11-17 4 2N]—[3.11-16 4 3N]J).
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(3.38¢). Since a relativistic theory of stellar atmospheres has not yet been de-
veloped, we shall confine ourselves to the zero-boundary conditions throughout
these lectures (*).

3'4. Construction of stellar models.

3'4.1. External gravitational field. The equations of stellar struc-
ture (3.11) are easily solved in the region outside the star, yielding

3.4 m¥(r) = M* = m*(R) ; »
(8.40) ®(r) —1ln(1—2M*r) or T A

Consequently, the geometry of space-time outside the star is that first discus-
sed by SCHWARZSCHILD (1961):

(3.41)  ds? = (1 —2M*/r)ds: — (1 — 2 M*[r)~ dr2 — r2(d62 + sin26dg?) .

At distances r>> M* this geometry represents a gravitational field which can
be described accurately by the Newtonian gravitational potential

(3.42) U= — @z = M*c2fr = GM|r.

Hence, the quantity M = m(R) is the mass of the star as measured gravita-
tionally by a distant observer; it is the mass which governs the Keplerian
motion of distant planets about the star.

3'4.2. Internal structure of noncontracting stars. As in New-
tonian theory, so also in general relativity, one can obtain physically interesting
interior solutions to the equations of stellar structure only by numerical inte-
gration. In the case of noncontracting configurations (configurations in which
the energy flux, L,, is precisely balanced by thermonuclear energy generation)
the time derivatives of eq. (3.11-5) (first equality) vanish. The equations of
stellar structure then become 7 ordinary first-order radial differential equa-
tions (3.11-1)-(3.11-7) coupled to 9 + 2N (N being the number of different
nuclear species present) algebraic relations (3.11-8)—(3.11-16 +2N) and to N
first-order, time differential equations (3.11-17+42N)—(3.11-16 + 3N). There, are
in all 16 4 3N equations for the 16 + 3N structure parameters (@, m* a, o*,
p*, ny ¥, 8%, T LY, LY, ngy A7, 0%, 65, ;u;y Zy ooy Ziyy gy oevy flay OF 5 ovvy 003

(*) For Newtonian discussions of stellar atmospheres see, e.g., SCHWARSCHILD (1958),
P- 89, and GREENSTEIN (1960). The general-relativity treatment should differ from the
Newtonian treatment only as a result of red-shift effects, which will often be of negligible
importance.
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In order to construct a noncontracting stellar model and follow its subsequent
evolution one might proceed in a manner gimilar to that used in Newtonian theory
(see e.g. ScHWARZSCHILD (1958), pp. 97-101): 1) Specify ab initio the total
number of baryons in the star, A = a(R), plus the initial nuclear abundances
Zyy ..., Zy, as functions of the baryon-number co-ordinate, a. 2) Calculate the
remaining 16 + 2N structure parameters by integrating the 7 differential equa-
tions (3.11-1)-(3.11-7) subject to the 7 boundary conditions (3.38) and coupled
to the 9 + 2N algebraic relations (3.11-8)—(3.11-16 4 2N). The solution will be
uniquely determined—aside from cases of mathematical degeneracy (Y)— by
these equations and boundary conditions. 3) Having now constructed the initial
stellar model at time ¢ = 0, use eqs. (3.11-17 4 2N)—(3.11-16 + 3N) to deter-
mine the nuclear abundances at a later time At

(3.43) Z(a, At) = Zi(a, 0) + exp[D(a, 0)]ar(a, )AL, k=1,..,N.

In regions where convective transport occurs, correct (3.43) for convection
by averaging over the convective zone the Z,(a,At) obtained from (3.43).
4) Next calculate the stellar configuration at time At by step 2). 5) Repeat
steps 3) and 4). ’

In those phases of evolution characterized by rapid contraction or expansion
of the star, this procedure must be replaced by that of the following Section in
order to account for the internal energy changes caused by compression or ex-
pansion of the fluid.

3'4.3. Internal structure of stars in quasi-static contraction.
Whenever the luminosity, L,, is not precisely balanced by nuclear energy gene-
ration, the star must supply the required excess luminosity by quasi-static
contraction and by changing its internal energy per baryon, ¢*/n. In order to
construct a stellar model in quasi-static contraction (or expansion) and follow
its evolution, one can proceed as follows: 1) Specify ab initio the total number
of baryons, A, plus the initial nuclear abundances, Z(a), ..., Zs(a), plus the
radial distribution of one thermodynamic variable—say s*(a) for definiteness.
2) Calculate the remaining 15 4 2N structure parameters by integrating the
6 radial differential equations (3.11-1, 2, 3, 4, 6, 7) subject to the 6 boundary
conditions (3.38a, ) and p*(E)=0, and coupled to the 94 2N algebraic relations
(3.11-8)—(3.11-16 + 2N). (The boundary condition T*(R) = 0 should be guar-
anteed by the specified value of s*(4) and the condition p*(R) = 0.) The solu-

(*) Such cases do occasionaly arise, particularly for stars at the end point of thermo-
nuclear evolution (see ¢.g. Sect. 54.1). For a discussion of the mathematical structure
of the initial-value problem—which is the same in general relativity as in Newtonian
theory—and of the uniqueness of the solution, see e.g. SCHWARzscHILD (1958), p. 97.
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tion will bs uniqualy dstermined aside from cases of mathematical degener-
acy (*). 3) Having now constructed ths initial stellar model at time ¢ =0,
use eqs. (3.11-3) and (3.11-17 + 2N)-({3.11-16 4 3N) to determine the nuclear
abundances and the distribution of entropy at time ¢ = At

(3.44a) Z(a, \)) = Z,(a,0) + exp[Da, 0)]of(a, 01AL, k=1,..,N

(1 — 2m*[r)t ¢ A(LF %)
dmr:nT* dr

— T*-1 Y i*(a, 0) exp [D(a, 0)]ck(a, 0) At .

At —

(3.44b) s¥a, AT) = s*(a, 0) —

4) Caleulats th> stallar configuration at tims A¢ by step 2) but with the initial
condition s*(a) = (initial value of s*(a)) replaced by (3.44b). 5) Repeat steps
3) and 4) until the assumption of quasi-static motion breaks down, e.g., as the
rasult of the onset of dynamical instabilities (cf. Sect. 4), or until the star has
cooled to zero temperature.

3'5. Properties of nonrotating stars. — We now turn our attention from pro-
cadures for eonstructing ralativistic stellar models to soms of the properties
of such mopdels. Our discussion will b2 based on the equations of stellar struc-
ture (3.11).

3'5.1. Geometry of space-time. For stars with mass M* and radius
R such that 2M*/R~1, ths geomstry of space-time is far from Ruclidean.
Consequently, thare is no a priori reason to expect that the surface area, 4mre,
of succsassive spheres about the center of such a star will b2 an always-increasing
function of distance from the center. Indeed, in Sect. 7°3.7, we shall see that
4mr® can somstimes decrease (« bag of matter ») as one moves outward from the
canter of a gravitationally collapsing star. However, this peculiar radial de-
crease in 4zr3, and hene> also in 7, is limited to dynamical situations; in any
spherical configuration of hydrostatic equilibrium the radial co-ordinate, r, increases
mondtonically from O at the center of the star to co at an infinite distance away.

The monotonicity of r can be seen as follows: Introduce as a new radial
co-ordinate proper distance, I, from the center of the star. By virtue of expres-
sion (3.1) for the geometry of space-time, I and » are related by

(3.45) dr = + (1 —2m*/ntdi .
Since r is zero at the center of the star and r is always nonnegative, r must at

first increase with [ as one moves outward from I =0. r{) can later reach
a maximum and start decreasing only at a point where 2m*/r becomes unity

(*) See footnote (*) on p. 199.
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(ct. eq. (3.45)). Howevar, if 2m*/r approaches unity in some region of the star,
the pressura gradient (eq. (3.11-3)) becomes so large that the surface of the
star, p* == 0, is reached before 2m*/r reaches one. After the surface of the star
is passed, m* remains constant and 2m*/r decreases. Consequently, 2m*/r is
always less than unity; and r(l) cannot have a maximum. QED. (For a more
rigorous proof see BoNDI (1964)).

The gravitational field of an equilibrium configuration is most easily visual-
ized by means of an embedding diagram (Sect. 2'3.1.) of the hypersurfaces of
constant time. The geometry of these hypersurfaces is given by

(3.46) do? = (1 — 2m*/r)=1dr? -+ r2(d6? -+ sin? Odg?) .

In order to construct a surface with this geometry in Euclidean 3-space we must
supprass ons rotational degree.of freedom; ¢.e. we must restrict ourselves to
the 2-geometries

(3.47) do? = (1 — 2m*/r)-*dr2 + r2d6?

of constant ¢ and ¢.

An embadding of this 2-geom2try is most conveniently obtained by intro-
ducing into the Eaclidean 3-space cylindrical co-ordinates (7,60, %) and by
taking as the embedded 2-surface

(3.48) r=r ’ §=6 , z =f[2m*/(fr — 2m*)]i‘dr .
o]

That the intrinsic geometry of the 2-surface (3.48) in Euclidean 3-space is, indeed,
id>ntical to the geomstry (3.47) of space around an equilibrium stellar confi-
guration is easily verified as follows:

(3.49)  d52 = Az - dF - 7202 — [2m*/(r — 2m*)]dr? -+ dr? - r2d6? =
= (1 — 2m*[r)dr? + r2d6? = do* .

The embedded stellar geometry (3.48) for a typical equilibrium configuration
is shown in Fig. 1.

The embadding diagram for any equilibrium configuration necessarily has
the following properties: 1) The interior region is a bowl with a smooth bot-
tom which op2ns outward and upward. 2) The exterior region is a paraboloid
of the form

(3.50) 7 =2M*+ (Z2—Z,)2/8M*, Z, == const < Z at surface of star.

3) The intarior and exterior regions join together smoothly. 4) The geometry



202 K. 8. THORNE

nowhere contains a radial bulge or neck (« bag of matter »); i.e. r is a monotonic
increasing function of z.

V4 .
140°  120° 100° 80° 60° 40°

Fig. 1. ~ Embedding diagram for the geometry of the 2-surface (f, ¢) = constant of
a nonrotating star in hydrostatic equilibrium. The co-ordinates (r, §) intrinsic to this
2-surface are related to the co-ordinates [F= (z2+ ¥2)}, 0= tg-! (y/z), 7] of the Eucli-
dean embedding space by eqs. (3.48). The interior of the star is distinguished from the
exterior by stippling. Because the rotational degree of freedom associated with ¢ has
been suppressed from the diagram, regions of constant radius, r, are here circles of
circumference 2nr about the center, r= 0. The 3-geometry of space around the star
at a particular moment of time, #, can be visualized by mentally replacing the circles
of constant » in this diagram with spheres of area 4nrt.

It must be emphasized that only points lying on the embedded 2-surface
have physical significance so far as the stellar geometry is concerned; the 3-di-
mensional regions inside and outside the bowl of Fig. 1 are physically meaning-
less, as are the co-ordinates (7, Z, §) of the Euclidean embedding space. They
merely permit us to visualize the geometry of space around the star in a con-
venient manner.

From the embedding diagram of Fig. 1 and also from eq. (3.46) it is clear
that the area, 4nr2, of a sphere about the center of the star is always less than 472,
where 1 is the proper radius of the sphere

(3.51) ! :fu — 2m*[r)tdr .

35.2. Distribution of pressure. From the TOV equation (3.11-3) of
hydrostatic equilibrium it is evident that pressure, p*, deereases monotonically from
the center of an equilibrium configuration to its surface. Also, a comparison of the
TOV equation with its Newtonian counterpart (3.18) reveals this, that at a
radius 7, inside of which is a mass m*, the pressure gradient is steeper than would
be expected from Newtonian theory. An increased pressure gradient is necessary
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to counterbalance the relativistically enhanced gravitational acceleration
(eq. (3.17)). :

Two different types of relativistic nonlinearities enhance the gravitational
acceleration, and hence the pressure gradient: 1) the « geometric » nonlinearity
associated with the quantity (1 —2m*/r) in the denominator of the TOV equa-
tion (3.11-3); and 2) « pressure-regenerative » nonlinearities associated with the
two pressure terms in the numerator. In hot, supermassive stars, both geometric
nonlinearities and pressure-regenerative nonlinearities are important; and they
steepen the pressure gradient by <19,. Pressure-regeneracive nonlinearivies
dominate and reach their extreme in (physically unrealistic) configurations of
incompressible fluid—see, e.g., HTWW Chapter 4, and WHEELER (1964a)
pp. 222-225—where they enhance the pressure gradient by arbitrarily large
amounts. In superdense stars near the endpoint of thermonuclear evolution
(Sect. 5) the two types of nonlinearities are equally important; they both
enhance the pressure gradient by ~109%,.

8'5.3. Extremal mass-energy. A very important and intuitively satis-
fying property of equilibrium configurations is the following: Consider an arbi-
trary, momentarily static, spherical configuration of fluid which may or may
not be in hydrostatic equilibrium. Adiabatically perturb this configuration in
the radial direction by an amount &(r) = dr, and calculate the change, 3.M*,
in the total mass of the star which results from the perturbation. Then the ori-
ginal configuration was in hydrostatic equilibrium if and only if d M* vanishes
to first order in the amplitude of the perturbation, & Put more briefly, the
total mass-energy, M*, of an equilibrium configuration is an extremum with respect
to adiabatic, radial perturbations (*).

In Secv. 42.1 we will see how this theorem of extremal mass-energy can be
extended to determine the stability of an equilibrium configuration.

3'5.4. Orbits of freely falling bodies. The orbits of small bodies
falling freely in the external gravitational field of a relativistic star have been
studied in great detail by DARWIN (1959). We summarize here some of the most
interesting results, assuming always that the surface of the star is inside the
orbits under discussion.

(*) This theorem was first proved independently by Cocke (1965) and by THORNE
and WHEELER (1965). (See also HTWW, p. 16 and 156). The proof in HTWW applies
only to zero-temperature configurations, but it can be generalized to arbitrary con-
figurations by simply replacing all ordinary derivatives (dp*/de*, dm/de*, etc.) by
isentropic partial derivatives [(Op*/0p*),, (On/@p*),, ete.]. COCKE actually proves the
theorem, in an inverted but equivalent form; he shows that the total entropy, 8, of an
equilibrium configuration is extremized with respect to adiabatic, radial perturbations
in which M*—but not necessarily A—is kept fixed.
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Orbits with perihelions at 73> M* are Keplerian in form, except for the
parihelion shift which is familiar in the case of Mercury. However, orbits which
extend into the region 7<10M* have forms unexpected in Newtonian theory.
For example, there is never a perihelion in the region r < 3M*; any orbit which
extends into this region necessarily hits the surface of the star. Circular orbits
are allowed throughout the region r>3M*; but they are stable only for
r>6M*. A particle in a circular orbit with 3M* <r<<4M*, if perturbed,
will escape to infinity or fall into the star. A circling particle with 4 M* <
<r<<6M*, if parturbed, will enter a spiraling orbit which eventually falls into
the star. Circular orbits at r = 3.M* are allowed only for photons or neutrinos
since they can be maintained only by a particle moving with the speed of
light,

The energy red-shift relation (3.3) plays a fundamental role in the study
of particle and photon orbits.

3'5.5. Gravitational red-shift. The energy red-shift relation (3.3)
when applied to photons yields an expression for the gravitational red-shift
of the wavelength of light. Consider a photon which is emitted at a point (ry,
005 @o) in the gravitational field of a star and received at a point (r, 0,, ¢1). Let
the energy and wave length of the photon, as measured in the proper frames of
observers at rest with respect to the star, be ¥ and 1= he¢/E. Then

(3.52) Ee® = (he[Mr)) exp[D(r)] = const ,
80 that the red-shift factor is
(3.53) 2= (h— L)/ = exp[D(r)) — D(r))] — 1.

For a photon emitted from the surface of the star (r = R) and received
at infinity this becomes (cf. eq. (3.40))

(3.54) 2= (1—2M*R)y4—1.

We found in Sect. 3'5.1 that (1--2M*/R) is necessarily greater than zero
for a configuration of hydrostatic equilibrium. Consequently, the red-shift
is never infinite. BoNDI (1964, 1965), by a very careful and elegant analysis
of the TOV equation of hydrostatic equilibrium, has put much more stringent
limits on 2. (See also BUCHDAHL (1959), a forerunner of Bondi’s work.) For
all configurations which are in principle physically realizable (o*>p*>0 every-
where; cf. end of Sect. 2'2.1). BownDpI finds

(3.55) M*/R<0.432, 2<1.71.
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If, in order to avoid Taylor instabilities (see ¢.g. CHANDRASEKHAR (1961)),
one imposes the additional restriction that p* be monotonic decreasing from the
center of the star to the surface, then one obtains (Bonpt (1964, 1965))

(3.56) - M*/R<0.390, =z<1.14.

In most realistic situations one actually has p*<1e* (cf. HTWW, Chapter 10)
and an adiabatic or subadiabatic temperature gradient (ef. Sect. 8'2.8). When
this is the case, Bondi’s analysis yields the limits

(8.57) M*/R<0.310, 2<0.63.

Although the red-shift of a photon originating at the surface of any equi-
librium configuration is limited by 2 <<1.63, the red-shift of a photon—or,
more realistically of a neutrino—which originates at the center can be arbitrarily
large. An expression for the red-shift of such a neutrino is (cf. egs. (3.53) and
(3.11-3, 4))

R

(3.58) z=(1—2M*R)} exp[f(g* + p*)~(— dp*/dr) dr]— 1.

For configurations of arbitrarily high central pressure, this red-shift is arbitrarily
large.

8'5.6. Spectrum of the stellar radiation. Having forgone any
attempt to describe the stellar atmosphere (cf. Sect. 3°'3), we have placed a bar-
rier betwaen ourselves and a defailed knowledge of the spectrum of the light
radiated by a relativistic star. However, simple physical considerations, as
well a8 astronomical observations, reveal that the spectrum is roughly that of
2 black body. By equating the total nonneutrino luminosity at the surface of
the star, L7(R) — LM*(R), to the integrated intensity, 4wR2o* T*4, of a black
body of temperature T} and surface area 4mR?, we obtain for the « effective
tempsratura » which characterizes the star’s black-body radiation

(3.59) TF ={(LF — LO*)r-a/(4nR? %)}t .

This is actually the effective temperature as seen by an observer near the
surface of the star. For an observer very far away the light will be red-shifted
by a factor

(3.60) z=AAA=exp[— D(R)]~1=(1—2M*/Ryt—1.

This red-shift of wavelength preserves the (roughly) black-body form of the
speetrum but lowers the temperature, which characterizes the spectrum, from
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(5.61) (Black-body temperature)* - (1 2M*)’! {[Lr* —LF,"’*] r
. as seen at r = co ’ k dario* Jreo)

To verify this, combine eqs. (3.11-5, 6) and (3.59) with the Planck distribution
law for black-body radiation.

3'5.7. Injection energy and convection (*). Let an astrophysicist
far from a stellar equilibrium configuration create 3A baryons and drop them,
along with an additional mass-energy Wy, down an idealized pipe, which is
inserted into the star, to a colleague situated at radius ». Require that the nu-
clear abundances of the 34 baryons be the same as the abundances at radius
r in the star. Have the colleague at r: 1) catch the falling baryons, thereby
extracting their kinetic energy of fall, Wy,; 2) use the energy WJ 4 Wi, to
compress and heat the 34 baryons to the local thermodynamic conditions, and
to insert them from the pipe into the star; 3) throw the excess mass-energy
back up the pipe to the astrophysicist far away. The total mass-energy used
up in this process, as measured by the distant astrophysicist, is called the injec-
tion energy at r and is equal to the change, 3 M*, in the total mass-energy of the
star which results from the addition of the 34 baryons at » (conservation of total
mass-energy). Let us calculate 3 M*:

The total mass-energy which the distant astrophysicist drops down the pipe
is po 3A -+ Wy, where u} is the average rest mass of the baryons created. When
the colleague at r catches the 34 baryons and excess mass W, they have a
total energy of (cf. eq. (3.3))

Weo = pig 84 + W§ + Wi, = (ug 34 - W) exp[— D(r)] .
Hence, the kinetic energy which he extracts is
Wi = (U 84 + W5 )(exp[— @] - 1).
The colleague at r uses Wy, + W to heat and compress the baryons to local

thermodynamic conditions and to push aside enough fluid in the star to make
room for the new baryons. Heating and compression require

es.t + compress [ (7')/% 7') ALLB ] SA

(*) The analysis of this Section is patterned after a similar analysis by WHEELER
(HTWW, p. 20) for zero-temperature configurations.



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 207
while opening up a space in the star requires

Wo;en = p*(r)[SA/”(r)] .
Hence, the excess energy which the colleague at » must throw back up the pipe is

W’etcess at r - W:)k + 1I7liki.u - (WY;“ + W* + Wr*

compress open ) -

= (W5 + ug 34)e™® — (0* 4 p*)(34/n)

According to the equation of energy red-shift (3.3) the colleague at » must con-
vert a portion (Wi ..)(1—exp[®(r)]) of this excess mass-energy into the
kinetic energy of his throw in order to get the rest of the excess mass-energy
back up to the distant astrophysicist. Thus, the distant astrophysicist receives
an excess mass-energy of only

W::{cess at o — Wetcesa at r exp [¢(T)] = 117: + /,l; SA - (Q* + p*) n—l 6¢ SA *

The total mass-energy required to create the 34 baryons and perform the injee-
tion process is thus

excess at o

(3.62) SM* = [g*(r) + p*(r)][n(r)]~ exp [D(r)]84 = (p*/dn).exp [D(r)]S54 .

SM* = WE + utdA — W2

This result has a simple interpretation: (0g*/on),84 is the local increase in
mass-energy at r which results from adding 34 baryons; and exp [®(r)] is the
fraction by which this mass-energy at r is red-shifted when it is brought out to
radial infinity, where SM* is measured.

The injection energy, 8 M*, generally depends upon the radius, r, at which
the 34 baryons are.injected. From the way in which we calculated injection
energy, it is clear that 8 M* will be independent of r if and only if baryons can
be moved about freely in the star without any expenditure or release of energy
—it.e. if and only if the star is in marginal convective equilibrium.

Let us verify that the condition 3M* = const. is, indeed, equivalent to
the adiabatic-gradient criterion (Sect. 3'2.8.) for marginal convective equili-
brium:

OM* = const<s=[(g* + p*)/n]e® = const<=In(p* + p*) — Inn + & = const ,
<= (0* + p*)~'(de*/dr + dp*/dr) — n'dn/dr + dD/dr =0,
<= (g% + p)(de¥/dr + dp*/ar) — nt dnjdr — (¢* + p*)tdp*/dr = 0,
<>do*/dr = (g* + p*)n'dn/dr<=>de*/dr = (Qo*/on).dn/dr

<>the thermodynamic gradients are adiabatic.
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The value of the constant injection energy for a configuration which is every-
where isentropic (marginally convective) is most conveniently calculated at
the star’s surface

(3.63) SM* = u}(R)[1 — 2 M*/R}3A .

This completes our discussion of general properties of nonrotating equilibrium
configurations. Before moving on to a discussion of stellar stability (Sect. 4)
and of specific stellar models (Sect. 5 and 6), we shall describe briefly the little
which is known about rotating, relativistic equilibrium configurations.

3'6. Rotating equilibrium configurations.

3'6.1. Rotation in general relativity. The relativistic gravitational
field of an axially-symmetric rotating equilibrium |configuration [is conve-
niently described in terms of four gravitational potentials y(r, 0), K(r, 0), w(r, 0),
N{(r, 0), which determine the geometry of space-time through the line element

(3.64) dst= (N2— w?K?r28in%0)de?— e dr2—
— r2K3(d0%+ sin% 0 de?) — 2w K2t sin® 6 dedt .

Here (t, r, 0, ¢) are a particular, geometrically selected set of space-time co-
ordinates which, for the special case of zero rotation, reduce to the spherical
co-ordinates used to describe nonrotating equilibrium configurations.

The gravitational source equations and the equations of hydrostatic equi-
librium for rotating configurations have been worked out by HARTLE and
SHARP (1966) and by many others; but they are so complicated that no phys-
ically interesting solutions to them have yet been found.

Even the partial differential equations for the exterior gravitational field
are almost unmanageable. Only one physically interesting solution to them is
known—that of KErr (1963, 1965) (See also CARTER (1966) and BovYmEr and
LinpyuisT (1966).) Kerr’s solution is the external gravitational field for a
limited class of rotating equilibrium configurations. BoYER (19654, b) has studied
some of the properties of those rigidly rotating equilibrium configurations which
would generate Kerr’s gravitational field, but the precise forms of the internal
solutions are unknown (*). Other contributions to our understanding of the
external gravitational fields of rotating configurations have come from PaApa-
PETROU (1953, 1966).

(*) DorosHEEVICH, ZEL'DOVICH and Novikov (1965) incorrectly argue that no
rotating configuration could generate Kerr’s gravitational field unless the fluid in its
interior performed a circulatory motion in addition to rotating. Their argument is
based upon the false belief that Kerr's metric contains nonremovable off-diagonal terms
in addition to gs. (Cf. BoYER and LiNDQUIST (1966).)
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Because the equations which govern rotating configurations are so intractable
analytically, attempts to construct numerical solutions will soon be initiated.
The construction of numerical solutions should not be too much more difficult
in general relativity than in Newtonian theory because the number of inde-
pendent variables is the same—two.

HARTLE and SHARP (1965, 1966) have recently constructed a mass-energy
variational principle for rotating configurations, which is analogous to the va-
riational principle of Sect. 3'5.3 for nonrotating configurations, and which may
be of considerable value in the construction of numerical solutions to the
equations of rotation. This variational principle states that the equilibrium
states of a uniformly rotating perfect fluid are those configurations which extremize
the total mass-energy with respect to pertubations that a) are adiabatic, b) Leep the
total angular momentum fized, and c) conserve the total number of baryons.

As a special case of the Hartle-Sharp work on rotation, HARTLE (1966)
has studied in some detail the effects of small amounts of rotation on relativistic
configurations of hydrostatic equilibrium.

3'6.2. Rotation in the post-Newtonian approximation. The post-
Newtonian approximation has been used frequently since 1925 to study the
effects of rotation upon equilibrium configurations of perfect fluid and upon
their-external gravitational fields (see e.g. AKELEY (1931), CLARK (1947, 1948,
1950), CHANDRASEKHAR (1965¢), FOWLER (1966), ROXBURGH (1965), DURNEY
and ROXBURGH (1965)).

Those post-Newtonian studies which perhaps are most interesting from an
astrophysical standpoint are the recent analyses by FowLER (1966), by Rox-
BURGH (1965), and by DURNEY and ROXBURGH (1965) of -the relationship
between angular velocity, binding energy, and stability for rotating configu-
tions; and the analysis by CHANDRASEKHAR (1965¢) of the shapes of rotating
configurations. Since Fowler’s work is available in this volume, we shall describe
only Chandrasekhar’s results. '

Consider a star with uniform density of mass-energy, o*, in uniform rotation
about an axis of symmetry. Newtonian theory reveals that Maclaurin spheroids
are possible equilibrium configurations for such a star. CHANDRASEKHAR has
used his post-Newtonian tensor virial theorem to show that post-Newtonian
gravitational forces will pull the equator of such a spheroid in toward its center.
The order of magnitude of the reduction in eccentricity is indicated in Table 1T,
where we compare the eccentricities expected from Newtonian theory with
those predicted by post-Newtonian theory, for a spheroid with density of
mass-energy o, angular velocity w, total mass-energy M, and equatorial radius
B (7). Note that the fractional post-Newtonian correction to the eccentricity

(*) For the precise physical meaning of the post-Newtonian quantities o and R,
(2 and a, in Chandrasekhar’s notation) see CHANDRASEKHAR (1965b, ¢).

14 — Rendiconti S.I.F. - XXXV,
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is proportional to 2GM/c2 R, = 2 M*|R,,. This is a particular case of a fre-
quent phenomenon in post-Newtonian theory: fractional post-Newtonian cor-
rections to the Newtonian stucture of a star are usually proportioned to 2.M*/R.

TaBLE II. — The effects of post-Newtonian gravitational forces on the eccentricity of a
Maclawrin spheriod (°).
wz/.ﬂGQ 2GM/czReq €Newton Opost-Newton
0.02146 0.01 1 0.20000 0.1996
0.02146 0.1 i 0.2000 0.196
|
0.27734 0.01 i 0.700 0.698
0.27734 0.1 | 0.70 0.68
(%) Baped on an exact formula due to CHANDRASEKHAR (1965c¢).

3'7. Summary. — The principal conclusions from our discussion of equilibrium
stollar configurations are these: The structure of a nonrotating equilibrium
configuration is determined by 16 4 3.8 'qua,ntities, where N is the number
of different nuclear species present: the gravitational potential, @; the mass-
energy inside radius », m*; the number of baryons inside radius r, a; the density
of mass-energy, o*; the pressure, p*; the number density of baryons, n; the
density of internal energy, ¢*; the entropy per baryon s*; the temperature,
T*; the total luminosity (energy flux), L}; the neutrino luminosity, L™*; the
radiative absorption coefficient, x5; the thermal conductivity, A¥; the rate of
thermonuclear energy generation, ¢*; the rate of energy release into neutrinos,
qa; the average baryonic rest mass, us; the nuclear abundances, Z,, ..., Zy;
the nuclear chemical potentials, g7, ..., fy; and the rates of change of nuclear
abundances, of, ..., «y. These quantities are all functions of a radial co-ordi-
nate, r, defined such that 4mr? is the surface area of a sphere about the center
of the star. Equations (3.11) are 16 43N equations of stellar structure which
uniquely determine the distributions of the 16 + 3N structural parameters
once sufficient initial data are given. These equations also govern the evolution
"of relativistic stars.

Some important properties of nonrotating equilibrium configurations are
the following: 1) The geometry of space-time about an equilibrium configuration,
as given by the line element (3.1), can be represented pictorially by the bowl-
like embadding diagram of Fig. 1. 2) This geometry (or gravitational field)
causes a red-shift of photons emitted from the surface of the star. The red-
shift is greater the more compact the star; but for no equilibrium configuration
can it ever exceed (AA/A) =1.71. 3) The total mass-energy of an equilibrium
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configuration is an extremum with respect to adiabatic, radial perturbations,
4) An equilibrium configuration has injection energy independent of radius if
and only if it is in marginal convective equilibrium.

The relativistic theory of rotating equilibrium configurations has not yet
been developed. However, it is known that 1) uniformly rotating configurations
have extremal mass-energy; and 2) post-Newtonian gravitational forces tend
to reduce the equatorial bulge of a rotating star.

4. - Stability of equilibrium configurations.

We now turn our attention from the theory of the structure of relativistic
stellar models to the theory of their stability against small perturbations. We
shall first discuss nonradial perturbations, about which very little is known;
and then we shall review the extensively-developed theory of radial perturb-
ations.

4'1. Nowradial perturbations of nonrotating configurations. — The analysis of
small, nonradial motions of a star about its equilibrium configurations is so
difficult that only recently has the Newtonian theory been developed into a
fairly definitive form (LEDOUX and WALRAVEN (1958), CHANDRASEKHAR and
LEBOVITZ (1964), CHANDRASEKHAR (19644), and LEBOVITZ (19654, b)); and the
general relativity theory is as yet nonexistent. The relativistic theory, when
it is developed, will be far more complicated than the Newtonian theory because,
according to general relativity, a star in nonradial motion should emit gravita-
tional waves.

One would like to gain some insight into the effects of general relativity
on nonradial perturbations without becoming enmeshed in the complications
of gravitational radiation theory. This can be done by going to the jpost-New-
tonian approximation, where radiation is not present (cf. Sect. 2'3.5). CHAN-
DRASEKHAR (19654, b) has given a definitive post-Newtonian treatment of non-
radial perturbations of equilibrium configurations. The most interesting and
useful results of his analysis are these: As in Newtonian theory, so alsoin the
post-Newtonian approximation 1) all of the nonradial normal modes of a star are
stable if and only if the temperature gradient is everywhere [subadiabatic;
2) there exist nonradial normal modes of zero frequency if and only if the tem-
perature gradient is adiabatic over some finite region of the star; 3) there exists
at least one unstable nonradial normal mode if and only if the temperature
gradient is superadiabatic over some finite region; and when this is the case there
is at least one unstable normal mode for each valué, 1> 1, of the spherical-
harmonic index.
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Because a superadiabatic temperature gradient is the criterion for con-
vective instability, the above theorems state, in effect, that in post-Newtonian
theory the instability of any nonradial normal mode of oscillation goes hand-
in-hand with convective instability somewhere in the star. In most stars
any convective instability which arises in the course of stellar evolution—
and with it the associated dynamical instabilities— will be quickly removed
by convective motions in the interior. Consequently, for most post-Newtonian
configurations the only types of dynamical instability which are of any con-
sequence are the radial instabilities discussed in the next Section.

Whether the remarkable Newtonian and post-Newtonian tie-up between
dynamical, nonradial instabilities and convective instabilities holds also in
general relativity is now unknown. It would not be surprising if this tie-up
were to break down in the presence of very strong gravitational fields.

42. Radial perturbations of nonrotating configurations (*). — The theory of
small radial motions of a star about its equilibrium configuration is unaffected
by the complications of gravitational radiation because, just as a spherical charge
distribution cannot radiate electromagnetically, so a spherical mass distribution
cannot radiate gravitationally. The absence of gravitational waves has made
possible a detailed development of the theory of radial perturbations of non-
rotating, relativistic stellar models (ZEL'DOVICH (1963b), CHANDRASEKHAR
(19645, ¢), FoWLER (1964), WRIGHT (1964, 1965), HTWW (1965), BARDEEN
(1965), CockE (1965), BARDEEN, THORNE and MELTZER (1966)). We shall
briefly describe that theory here.

There are two essentially different approaches to the study of the radial
stability of relativistic configurations. There is a dynamical approach, which
involves an analysis of the dynamies of radial oscillations; and there is a static
approach, which requires only a comparison of the masses and radii of the
members of a particular sequence of static, equilibrium configurations.

42.1. Dynamical approach to stability(*). Consider a starin small-
amplitude, adiabatic, radial motion about its equilibrium configuration. Des-
cribe the motion by &(r,t) = dr(r,¢), the radial co-ordinate displacement of
the fluid element whose equilibrium radius is », as a function of co-ordinate
time, . The total mass-energy of the perturbed star will differ from that of
the equilibrium configuration by an amount 8§ M*, which can be divided into

(*) For a more detailed review of this topic see BARDEEN, THORNE and MELT-
ZER (1966).

(**) Most of the results described in this section are due to CHANDRASEKHAR (1964b, ¢);
but the present mass-energy derivation of them is due to THORNE (see HTWW, Appen-
dix B). For a maximum-entropy derivation of these results see CocxE (1965).
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a potential part, %, plus a kinetic part, 2 *

(4.1) SM* = PHE, £ + H*[E].

A fairly straightforward ecalculation reveals (*)
F
(4.2a) PHE &) = 2| {P(rre-®8)V2 — Q(r2e=® &)} dr,

[}

(4.2b) HH[E] = 2n[W(r26—" £zdr,

where X'=3X/dr, X==0X/0t, ® is the gravitational potential of eq. (3.1) for the
equilibrium configuration, and P, Q, W are functions of the ethbrlum con-
figuration defined by
P = e*®(1 — 2m*[r)tr2 T p*
Q@ = — 46°%(1 — 2m*[r)r—3p* — 8 e3P (1 — 2m*[r)Er—2 p*(o* + p*) L
+ e3®(1 — 2m*[r)yHr-2(g* + p*)p*'2,
W= e®(1 —2m*[r)-tr—2(g* + p*) . ‘

(4.3)

Note that the mass-energy, SM*, associated with the perturbation is quad-
ratic in the amplitude of the perturbation. The vanishing of linear terms is
in accordance with the theorem of extremal mass-energy for equilibrium con-
figurations (Sect. 8'5.3). Note further that the expression for the kinetic energy
can be rewritten

B

(4.20") HHE] —f (0% + p*)(Ee®[1 — 2m*)r]- 1262 (4r2[1 — 2m*[r]H dr) =

1nert1a1 mass velocity measured in \?
- per unit volume proper reference frame

gravitational (proper )
red-shift factor volume/ *

Expression (4.1) for 3 M* can be taken as a foundation for the theory of small-
amplitude, adiabatic, radial motions about equilibrium configurations. From

(*) See HTWW, Appendix B. The analysisin HTWW is for zero-temperature config-
urations, but it can be generalized to hot configurations by replacing all thermodynamic
derivatives by the same derivatives at constant entropy dp*/do* — (Op*/0p*)., ete.
Expressions (B.26) and (B.27) of HTWW for #* and 4'* ccontain an incorrect factor
of exp [1,(0)/2] (exp [®(0)] in our notation).
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it one can derive a) a potential-energy criterion for stability, b) the equation of
motion which governs the time development of small, radial perturbations,
and ¢) the frequencies and amplitudes of the normal models of radial motion.

a) Potential-energy criterion for stability. Because spherical motions can-
not produce gravitational radiation, the total mass-energy of a radially per-
turbed configuration—and, hence, also dM*—is a constant of its motion.
Since the kinetic energy, J£™*, is positive definite and quadratic in the amplitude
of the motion, the amplitude can grow large only for those &(r, t) which make
the potential energy negative. Hence, an equilibrium configuration is stable
against small radial perturbations if and only if the potential energy, P* &, &',
associated with such perturbations is positive for all nonzero displacements, &(r).
This criterion for stability is the analogue of the criterion that a particle in
a potential V(r) in is stable equilibrium if and only if it sits at a local min-
imum of V.

Although the potential-energy criterion for stability is conceptually simple,
in numerical calculations it is considerably harder to apply and less reliable
than the criteria which arise from the static analyses of Sect. 4'2.2, 42.3, and
than the method of BARDEEN described near the end of this Section.

b) Equation of motion for arbitrary perturbations. — Consider an arbitrarily,
but radially perturbed equilibrium configuration, the motion of which is des-
cribed by & = &(r, 1). According to the Lagrangian formulation of mechanics,
the difference between the kinetic and potential energies when integrated over
time,

(4.4) o I*= ‘{f HE— P& e,

is extremized by the allowed modes of motion, & The Euler-Lagrange equation
(4.5) ' Wrze@E = [P-(ree=® &) + Qree=®&,

which results from extremizing I*, is the equation of motion that governs the
time-development of the arbitrary, adiabatic, radial perturbation.

¢) Normal modes of radial oscillation. An equilibrium configuration ge-
nerally has a discrete set of normal modes of radial oscillation,

(4.6) &(r, t) = &u(r) exp[iwnt],

which are distinguished from each other by the index n =0, 1, 2 ... (*). A par-

(*) Note that, because co-ordinate time, ¢, is measured in centimeters, the angular
frequency, }, which appears in eq. (4.6) is meagured in em-1, i.e. it is « geometrized »
as discussed in Sect. 1.
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ticular normal mode is stable (periodic oscillation) if its frequency, «., is real,
and unstable (exponential growth) if w, is imaginary. Itis convenient to order
the normal modes according to increasing squared frequency

(4.7) <ol <ol<..,

so that a star is stable against small radial perturbations if and only if its funda-
mental squared frequency, wy, is positive.

The normal-mode amplitudes: &,, are governed by an eigenvalue equation
which can be obtained by inserting expression (4.6) into the equation of
motion (4.5):

(4.8) [P-(r2e~PE,) ] + (Q + o2 W)rze=®E, = 0.

The normal modes of radial motion are those solutions to eq. (4.8) which satisfy
the boundary conditions

(4.94) Enr=0)=0
(center of star remains fixed during the motion), and
(4.9b) Ap* = — e®Pr2 [ p*(r2e=®&,) —0 as r—> R

(pressure remains zero at the surface of the star during the motion). An equi-
valent formulation of the eigenproblem 4.8, 4.9), is the following variational
principle due to CHANDRASEKAR (1964b, ¢): Among all functions &(r) which satisfy
the boundary conditions (4.9), the normal-mode amplitudes are these that extre-
mize the quantity

o f[P(’rZ e—d’f)'z — Q(r? e—d’f)ﬂ dr B PHE, E'] .

A

(4.10) )
fW(r2 e~P&)e2dr

and the corresponding squared frequencies, %', are the extremal values of w*:.

The eigenvalue problem (4.8) (4.9) for the normal radiation modesis of the
Sturm-Liouville type. Consequently, the powerful theorems of Sturm-Liouville
theory (see e.g., MORSE and FESHBACH (1953), pp. 719 ff.) are all applicable
to the normal-mode problem. In particular, we can conclude that the ampli-
tude, &.(r), of the n-th normal mode has precisely » nodes; and that between
each pair of nodes of &,(r) there is at least one node of each higher-order ampli-
tude, &(r), k> n.

There are two useful methods for calculating the amplitudes and fre-
quencies of the normal radial modes of a stellar model. One is to solve the eigen-
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value problem (4.8, 4.9) by trial-and error integrations; the other is to apply
Rayleigh-Ritz techniques (see e.g., MORSE and FESHBACH (1953), pp. 1117 ff.;
also GOERTZEL and TRALLT (1960), pp. 215-224) to the variation principle (4.10),
As a third alternative, if one only wishes to know how many of the normal
radial modes of a given model are unstable, one can use the following method
due to BARDEEN (1965): Integrate differential equation (4.8) with w¥* =0
from the center of the star, where &~ r, to the surface; and count the num-
ber, N, of nodes in the resultant function &9(r). By virtue of the relationship
between the nodes of successive eigenfunctions, the stellar model has either
N© or N4 1 unstable normal radial modes. If the surface of the stellar mod-
el is a singularity of eq. (4.8)—e.g. if I is finite and o*/p* diverges at the
surface—then the number of unstable modes is precisely N©®,

For a detailed discussion and comparison of these and other methods for
studying normal radial modes see BARDEEN, THORNE, and MELTZER (1966).

Just as one can analyse the radial pulsation of an equilibrium configuration
into normal modes

(4.11) &r,t) =3 A Ex(r)exp[ioy ],

80 one can also analyse the pulsation energy into normal-mode components—at
least so long as the configuration is stable. The total pulsation energy is equal
to the kinetic energy £ *[£] at a moment when &(r,t) = 0 (i.e. when & =0)

r
By = %*[f.]lé-o =2n E AkAnw:w:fW'(rz e &) (r2 e P&, ) dr .
k.
0

But according to the orthogonality theorem of Sturm-Liouville theory, the above
integral vanishes unless & =n. Hence, the pulsation energy can be analysed
into components

;ku]s = z Anz E]():;:‘ 3
R
ER% = 2nw1‘2fW(7'2 e ®&,)dr.

0

4'2.2. Static approach to stability for zero-temperature stars (*).
In certain eases of physical interest one can determine the precise number of

(*) The approach to stability described in this section is due to WHEELER (HTWW,
p. 60), but the precise conditions under which it is valid are delineated for the first
time here. See also BARDEEN, THORNE and MELTZER (1966); as well as MELTZER and
THORNE (1966). ‘
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unstable normal radial modes for an equilibrium configuration without inte-
grating the eigenvalue equation (4.8), and without using Chandrasekhar’s va-
riational principle (4.10). The «static analysis» which makes possible this
counting of unstable modes is applicable in one form to zero-temperature
stellar modelé, and in slightly different form to hot, isentropic models. Consid-
er first the zero-temperature case.

The thermodynamic properties of matter at absolute-zero temperature are
determined by a single equation of state (one degree of freedom)

(4.13) p* == p*(0* Zyy .ey Zx) .

In practice, in constructing zero-temperature stellar models one usually spe-
cifies the nuclear abundances Z, ..., Zy as functions of the density—e.g. by
requiring that the matter be in its absolute lowest energy state — thereby put-
ting the equation of state into the form

(4.14) p* = p*(o*, Zi[0*[, .-, Zu]o*]) = p*(0¥) .

The static approach to stability is applicable to those configurations with equa-
tions of state of this form for which no nueclear transformations occur as the den-
gity increases; ¢.e. for which

(4.15) dZ,jdo* = d4Z,/do* = ... = dZy/do* = 0 at all g*.

In the remainder of this Section we confine our attention to such configurations,
while in the next Szction and in Sect. 5°5.1 we generalize the static approach to
other types of zero-temperature configurations. '

As we shall see in Secf. 5'4.1, for matter obeying any given zero-temperature
equation of state of the form (4.14) there is a one-parameter sequence of equili-
brium configurations, which can be conveniently distinguished from each other
by the central density, o¥. The static approach to stability involves an anal-
ysis of the curve of mass, M*, vs. radius, R, for this sequence of configurations,
We adopt the convention that M* be plotted upward and R be plotted to the .
right. : .

The key properties of the M*(R) curve for configurations in which (4.15)
holds are these (see Fig. 2 for pictorialization in terms of a particular zero-
temperature equation of state, that of SKYRME (1959), CAMERON (1959), and
SAAKYAN (1963)): ‘
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a) One normal mode of radial oscillation changes stability at each peak or
valley (« critical point») in the M*(R) curve, and there are no changes of stability
elsewhere. Proof: Configurations at which one radial mode changes stability
are characterized by the fact that they possess a zero-frequency mode of radial
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Fig. 2. — The M*(R) curve for the SEYR-
ME (1959), CAMERON (1959), SAARKYAN (1963)
equation of state for matter composed of
pure neutrons. (For a specification of which
version of the S-C-S equation of state is used
here see MELTZER and THORNE (1966).) The
curve is parametrized by central density, g,,
in g/em3. The critical points at which one
normal radial mode changes stability are
identified by large black dots. The normal

radial modes are represented between each
successive pair of critical points by a set of
musical notes (ovals) with solid notes corresponding to unstable modes and open notes
corresponding to stable modes. There are no critical points below p, = 1013 g/em3 (not
shown in Figure); and we know from Newtonian theory that §-C-§ configurations of
0.~ 1g/em? are stable against all perturbations. Consequently, everywhere below
@.= 2-10% (first critical point) all normal radial modes are stable. At the first critical
point the curve bends counterclockwise and one normal mode (n —= 0) becomes unstable.
At the second critical point (g, = 2.9-10%4) the bend is clockwise, so the fundamental
returns to stability. At the third critical point (g, = 4-10%5) the bend is counterclock-
wise, so the fundamental mode becomes unstable again. At the fourth critical point
(.= 2-10"") the bend is counterclockwise so one more mode (n=1) becomes un-
stable—and so it goes.

motion——i.e. they are characterized by the existence of other « near-by » equi-
librinm configurations into which they can transform themselves without the
addition or removal of any baryons or of any mass-energy. Hence, configurations
of changing stability are configurations which lie at extremal pointsin the curves
M*(R) and A(R). However, from expression (3.63) for the injection energy
we see that an equilibrium configuration is extremal in A(R) if and only if it is
extremal in M*(R). Consequently, a necessary and sufficient condition for a
configuration of changing stability is that M*(R) be extremal. QED.

b) At a critical point of the M*(R) curve for cold configurations the mode
o} changing stability is an even mode (n =0, 2, 4, ...) if and only if the radius
R decreases with increasing central density, dR/de} <0, -in the neighborhood of
the critical point; it is an odd mode (n =1, 3,5, ...) if and only if R increases,
dR/de?F > 0. Proof: For a critical configuration the amplitude, &,(r), of the zero-
frequency mode is identical to the motion, 8r(r), which carries the star from an
equilibrium configuration on the low-density side of the critical point to one on
the high-density side
&alr)

r(r) .
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In such a motion across the critical point central density, o, increases; i.e.
the fluid moves inward near the center of the star. Hence, near r =0 &, = dr
is negative. &, = 87 can be negative also at the surface of the star (dE/do, < 0)
if and only if £ has an even number of nodes—i.e., if and only if n =0, 2, 4, ...—;
and it can be positive at the surface (dR/dg,>0) if and only if &, has an
odd number of nodes (n =1, 3, 5,...). QED.

¢) At a critical point of the M*(R) curve for cold configurations one mode
becomes unstable with increasing o, if and only if the curve bends couterclockwise;
and one mode becomes stable if and only if the bend is clockwise. Proof: This cri-
terion for the direction of stability change follows from criterion b) above,
plus the knowledge that at very low central densities—e.g. for a sphere of cold
matter the size of a basketball—cold configurations are stable against small ra-
.dial perturbations. To convince oneself that criterion ¢) is, indeed, equivalent to
b), one need only apply criterion b) to several hypothetical and as-pathologi-
cal-as-desired M*(R) curves, and recognize that the results obtained are precise-
ly those predicted by ¢). QED.

Properties a) and b), or a) and ¢) of the M*(R) curve enable one to calculate
the precise number of unstable radial modes for each equilibrium configuration
of any given zero-temperature equation of state for which nuclear abundances
are independent of density (see, e.g. Fig. 2).

4'2.3. Generalizations of static approach to stability. The
static approach to stability outlined in the last Section was derived under the
rather restrictive assumption that the nuclear abundances which enter into the
zero-temperature equation of state (4.14) are independent of density. This as-
sumption was needed, for example, to allow the inference that at a critical
point the zero-frequency amplitude, &.(r), is identical to the motion, 8r(r),
which carries a star from an equilibrium configuration on the low-density side
of the critical point to one on the high-density side.

The assumption that dZ;/de* = 0 is very severe; it is rarely satisfied in
zero-temperature situations of physical interest. Consequently, in this Section
we shall replace this assumption by others which are less restrictive.

We begin by noting that nuclear abundances never appear explicitly in the
dynamical approach to stability (Sect. 4'2.1). For zero-temperature configur-
ations the dynamical approach depends only on the equation of state p* =
= p*(o*), upon the adiabatic index I3, and upon the laws of general-relativistic
mechanics. Consequently, the assumption dZ,/do* = 0 cannot affect stability
directly; rather, it can affect stability only through the restriction

(4'16) Fl = (Q* + p*)P*—](dP*/dQ*)as given by equation of state (4.14)

which it imposes on the relation between the adiabatic index and the equation
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of state. This reasoning allows us to conclude that the static approach to stability
(properties a), b), and ¢) of the M*(E) curve as ouflined in Sect. 4'2.2) is ap-
plicable to any family of zero-temperature configurations whose equation of state
(4.14) and adiabatic index are related by (4.16).

Assumption (4.16), like (4.15), is unnecessarily severe. The zero-temperature
configurations of greatest current interest are configurations of matter catalyzed
to the absolute endpoint of thermonuclear evolution—« cold, catalyzed matter ».
(Sec Sect. 5; also, HTWW.) Nuclear abundances in such configurations vary
with density in such a manner as to keep the matterin its lowest-energy state;
t.e. 80 as to minimize the total-mass energy per baryon, o*/n, subject to fixed
baryon number density, n. For such configurations neither (4.13) nor (4.14)
is valid; but, as we shall see in Sect. 5'5.1, the static approach to stability is
still applicable—albeit in slightly modified form

42.4. Static approach to stability for hot, isentropic con-
figurations (*). JA key point in the static analysis of the last Section is this,
that the equilibrium configurations for any zero-temperature equation of state
form a one-parameter family. By contrast, the equilibrium configurations for
hot matter obeying a given fundamental equation

(4.17) o* = o%(n, $*, Z,, ..., Zy)

form an infinite-parameter family. (We saw in Sect. 8'4.3 that to fix uniquely
an equilibrium configuration one must specify in addition to the fundamental
eq. (4.17) the total number of baryons, the nuclear abundances as functions
of radius, and the radial distribution of the entropy.)

In order to develop an M*(R) analysis of stability for hot stars one must
select a suitable one-paramenter family of configurations out of this infinite-
parameter set. There are several one-parameter families for which an M*(R)
analysis can be developed; but one particular family stands out as of greatest
physical interest (**). This is the one-parameter family of isentropic (i.e. mar-
ginally convective) configurations with fixed total number of baryons and
fixed, radially-invariant nuclear abundances. Such a family of configurations
can be parametrized by the radially-constant entropy per baryon, s(r) = So3
or, more conveniently, by the central density, p,. Physically speaking, suc-
cessive configurations in such a family represent successive states of a single,
quasi-statically contracting configuration which @) is in marginal convective
equilibrium, and b) is too cool for thermonuclear reactions to take place. Stel-

(*) The results of this Section are due to BARDEEN (1965) see also BARDEEN, THORNE
and MELTZER (1966).

(*") For a discussion of other usable one-parameter famlhes and of some which are
not usable, see BARDEEN (1965).
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lar models of this type play an important role in certain theories of quasi-stel-

lar radio sources (FOWLER (1964), (1966)).

Y

Consider the one-paramater family of isentropic configurations for a given
fundamental equation (4.17), a given total number, A, of baryons, and given

nuclear abundances.
energy,

\

(4.18) — Ef = (total mass-energy) —

(rest mass) = M*

For this family construct a curve of minus the binding

— MF=M*— A,

vs. radius, R. This — Ei(R) curve, like the M*(R) curve for zero-temper-
ature configurations, plays a central role in the static analysis of stability.

(We here use — EF[R] rather than M*[R]
because the masses of the configurations
in our sequence all differ only slightly from
the constant rest mass My
M*[R]= Mg+ E3[R] ~ My .)

The key properties of the — ER(R) curve
which enter into the static analysis of sta-
bility are these (see Fig. 3 for pictorializa-
tion in terms of a hypothetical — Ef[R]
curve) :

a) One normal mode of radial oscilla-
tion changes stability at each peak or valley

w7 )E
T8 5
* / o'
b B e _———— — ]
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Fig. 3. — The —E%(R) curve for a
hypothetical equation of state. The
curve is parametrized by central den-
sity, o,. The critical points at which
stability changes occur are indicated
by large black dots. Between succes-

give critical points each solid note re-

presents one unstable normal radial

mode and the open notes represent
stable modes.

(« eritical point ») in the — E§(R) curve, and
there are no changes of stability elsewhere.

Proof. The proof is similar to that of
the analogous zero-temperature theorem. A
point of changing stability on the — E%(R) curve corresponds to a con-
figuration with a zero-frequency mode of motion. But a configuration in our
one-parameter family can have a zero-frequency mode if and only if there are
other, slightly different configurations to which it can be transformed by a
motion with these properties: 1) the motion is adiabatic; i.e. 3s*(a) = 0; 2) the
motion is irreversible—in particular, nuclear abundances do not change; 3) the
motion conserves the total number of baryons; and 4) the motion leaves the
total mass-energy unchanged. If the initial configuration is in our isentropic,
fixed-4, fixed-nuclear abundances family, then these properties of the zero-
frequency motion guarantee that the final configuration is also in our family.
Hence, the theorem is proved if we only can show that, of all infinitesimal

motions along the — E}(R) curve, those which occur at a peak or valley
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(«critical point ») are motions with the above four zero-frequency properties.
Property 4), conservation_of mags-energy, guarantees that the zero-frequency
motions occur at critical points. "But do all motions across critical points have
the 4 properties? They clearly satisfy properties 2), 3), and 4). That they
also satisfy property 1) can be seen as follows: The change in total-mass energy
in moving across a critical point is the negative of the heat radiated

(4.19) 0=3M*=—3Q* = —qu*e‘p da = —fT*Ss*e"da.

Here 3¢* is the heat radiated per baryon, ¢® is the red-shift factor (@[ o] = 0),
and a is the number of baryons inside a given shell of matter. Because the initial
and final configurations are both isentropic, 3s* is independent of radius and
can b2 pulled out of the integral

A
(4.20) 0= ss;‘fT* ®da .

0

Equation (4.20) guarantees that 3s;=0; hence, condition 1) is satisfied by
motions across critical points. QED.

b) At a critical point of the — EX(R) curve the mode of changing stability
is even (n=0, 2,4, ...) if and only if the radius, R, there decreases with increasing
central density, AR[/do} < 0; itisodd (n =1,3,35,...) if and only if R increases,
dR[/dg; > 0. The proof is identical to that for the zero-temperature case
(Sect. 42.2). ‘

¢) At a eritical point of the — E5(R) curve one mode becomes unstable with
increasing o, if and only if the curve bends clockwise there; one mode becomes
stable if and only if the bend is counterclockwise. (That the correlation between
stability and direction of bend is different here than in the zero-temperature
case should not be disturbing; after all, the sequence of configurations considered
here is very different in character from the zero-temperature sequence.) Proof
of theorem: This criterion for the direction of stability change follows from cri-
terion b), plus our knowledge that configurations of every low central density
(very large radius; Newtonian theory applicable) are stable if they have
— Ej <0 and unstable if — Ef >0. QED.

Properties a) and b), or @) and ¢) of the — Ef(R) curve enable one to
calculate the precise number of unstable radial modes for each member of any
sequence of isentropic equilibrium configurations which all have the same total
number of baryons, 4, and the same radially-invariant nuclear abundances.
This method of diagnosing stability has been used quite extensively by FOWLER
(1964, 1966) and by BARDEEN (1963).
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4'3. Stability properties of nonrotating configurations. — Let us now turn
our attention from the general theory of radial perturbations in relativistic stel-
lar models to some of the more important results which have been obtained from
that theory.

43.1. General relativity as a catalyzer of instabilities. A
number of investigations of stellar stability have revealed that relativistic
gravitational forces cause radial instabilities in stellar models which, according
to Newtonian theory, would otherwise be stable. The most striking examples
of general-relativistic instabilities come from the post-Newtonian approximation,
where relativistic forees, which have a totally negligible effect upon the struc-
ture of a star, can make it unstable against small radial perturbations. Fowr-
ER (1964, 1966) and CHANDRASEKHAR (1965d) have independently developed
post-Newtonian criteria for the onset of general-relativistic instabilities. Chan-
drasekhar’s analysis, which is based on the post-Newtonian limit of the varia-
tional principle (4.10), reveals this, that a post-Newtonian stellar model with
adiabatic index, I}, independent of radius is unstable if and only if its mass,
M#*, and radius, R, satisfy

(4.21) R<2M*K/(I',— 4/3).

Here K is a constant usually between 0.5 and 1.5, which depends only on the
Newtonian structure of the star. Fowler’s analysis, which is based not upon
the dynamic approach to stability but on the static —Ej(R) approach, yields
a similar result. This result plays an important role in Fowler’s supermassive-
star model for quasars (see lectures in this volume).

43.2. Manyfold instability of superdense stars. The M*R)
and — EZ(R) curves of Fig. 2 and 3 both spiral in toward a limiting point as
central density mounts toward infinity. This spiraling is a signal that the con-
figurations of higher and higher central density are more and more unstable.
" Dmrrriev and Houiw (1963), HARRISON (1965) and WHEELER (HTWW,
Chapter 5) have shown independently that such bigh-density spiraling of
the M*(R) curve, and the consequent onset of higher- and higher-order insta-
bilities, are characteristic of zero-temperature configurations for a wide range
of equations of state. More particularly, for any equatibn of state which ap-
proaches the form

(4.22) p* = (y —1)o*, y = const ,
at high density, the M*(R) curve approaches the high-density spiral

M*— M3 = Cyo;=*"cos [§f1In o] + 04] ,

(4.23)
R — R, =C,of*cos [3B1lng; + 8,1,
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where Oy, Cg, 0y, 0z, «, and f are constants, and

11 9 1
’ ﬁ:[ _____ ] ’ Oy #~ 0r .

3
(4.24) a=5— 5T

Similar formulae could be worked out for the — ER(R) curves of hot, isen-
tropic stellar models.

The static approach to stability, when applied to formulae (4.23) for the
spiraling M*(R) curve, tells us that zero-temperature configurations of high
central density (o.=10'° g/em?; ¢f. Sect. ) have

(4.25) greatest integer less than {(8/27)In(o./0,)}

unstable normal radial modes, where g, is a constant. For realistic equations
of state (Sect. 5, Fig. 4)

(4.26) 0o~ 10® g/cm? .

Expression (4.25) for the number of unstable normal radial modes can also
be derived by the dynamic approach to stability (see MELTZER and THORNE (1966)
Sect. 3-d).

&'4. Stability of rotaiing stellar models. — Thus far we have confined our at-
tention to the stability of nonrotating stellar models. The only relativistic sta-
bility analyses performed to date on rotating stellar models are the post-
Newtonian considerations of FowLER (lectures in this volume), of ROXBURGH
(1965), and of DURNEY and ROXBURGH (1965). The approaches used in these
references are essentially generalizations of the post-Newtonian limit of the
dynamic analysis of Section 42.1.

4'5. Summary. — The principal conclusions from our discussion of stellar
stability are these: The relativistic theory of radial perturbations of nonro-
tating equilibrium configurations is well understood. There are two approaches
to radial stability—a dynamic approach, based on the equations of motion and
energy properties of radial perturbations; and a static approach, based on mass-
radius curves for certain sequences of equilibrium configurations. From each
of these approaches one can obtain several different methods for studying the
normal radial modes of a relativistic stellar model. The resultant methods
were briefly described here and are catalogued and compared in detail by BAr-
DEEN, THORNE, and MELTZER (1966). Applications of these methods reveal
1) that general relativity catalyzes radial instability in stellar models, and 2)
that stellar models of very high central densiﬁy have many unstable normal
radial modes.
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The relativistic theory of nonradial perturbations of nonrotating configur-
ations has been developed only in the post-Newtonian approximation. In
that approximation all nonradial dynamical instabilities are accompanied by
convective instabilities and can be eliminated by efficient convection.

The only relativistic stability analysis of rotating configurations which has
been performed to date is the post-Newtonian, « dynamic analysis » of FOWLER,
RoxBURGH and DURNEY.

5. — White dwarfs, neutron stars, and hyperon stars.

We now have at our disposal all of the tools necessary to permit the detailed
analysis of specific stellar models. There are two types of stellar configurations
in which general relativity should play an important role: configurations near
the endpoint of thermonuclear evolution (white dwarfs, neutron stars, hyperon
stars); and supermassive configurations (M =10°Mg). This Section and the
lecture by Finzi (1966) are concerned with the former type of corvfiguration,
while Sect. 6 and the lectures by FoWLER (1966) are concerned with the latter.

5'1. Matter near the endpoint of thermonuclear evolution. — In discussing
configurations near the endpoint of thermonuclear evolution we begin with
a brief description of the matter from which they are made. By «matter of
baryon number density =, catalyzed to near the endpoint of thermonuclear evo-
lution »—catalyzed matter for shorti—we mean matter at density # in which the
nuclear abundances, Z,, ... Zy, are such as to absolutely minimize the total mass-
energy per baryon, ¢*/n. Such matter is in thermonuclear equilibrium; no rest
mass-energy can be converted into thermal energy by any nuclear reaction. This
does not mean, however, that no energy can be extracted from a sample of such
matter. There may be thermal energy in the sample; hence the phrase « ... cata-
lyzed to near the endpoint of thermonuclear evolution ». - 'When a sample of
catalyzed matter does not contain any thermal energy it is called cold cata-
lyzed matter. For a careful and comprehensive discussion of the concept of cold
catalyzed matter see HTWW, Chapter 9.

51.1. Thermodynamics of catalyzed matter. In situations of
interest to us here the density of thermal energy, &5, of a sample of catalyzed
matter is always very much less than the density of total mass-energy

(5.1) & L 0%

and the thermal pressure is very much less than the pressure associated with
the zero-point motion of the electrons and nuclei. Consequently, to a high degree

15 - Rendiconti S.I.F. - XXXV,
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of approximation the equations of state p* = p*(n, T*, Z,, ..., Zy) and o* =
= o*(n, T*, Z, ..., Zy) are independent of temperature. They are also independ-
ent of Z,, ..., Zy since the nuclear abundances are uniquely fixed once the baryon
number density, =, is given.

Gy [P T Ty Z) = (0, 0, ) oy Zaln) = )
' o* = o¥(n, T*, Z,, ... Zy) = 0*(n, 0, Z,[n], ..., Zs[n]) = o*(n) .

The simplified equations of state (5.2) are related by the first law of thermo-
dynamics as embodied in the equation

(5.3) dg*/dn = (¢* + p¥)/n .

(This relation follows from eq. (2.12) with ds* =0, plus the relation > gxdZ,=0.
The latter relation is valid for all changes [dZ,, ..., dZ,], in chemical compo-
sition, which are compatible with the conservation laws of elementary particle
physics, because we are dealing with matter at the endpoint of thermonuclear
evolution in which no nuclear reactions can release energy.)

Relation (5.3) together with a single equation of state—o*(n), p*(n) or p*(g*)—
uniquely fizes any two of the quantities (0*, p*, n) in terms of the third. Through-
out our work we shall (arbitrarily) use p* = p*(p*) as our « primary» equa-
tion of state. '

Although temperature, T*, has no (significant) effect on the density of mass-
energy or on the pressure of catalyzed matter, it is a very important determinant
of the density of thermal energy

(5.4) &y = e5(0%, T*) >0 when I* —0 .

In discussing stellar configurations of catalyzed matter we shall confine our
attention to the thermodynamic parameters n, p*, o*, T*, and &5: If we wished
we could also consider the entropy per baryon, s*; the total internal energy, ¢*;
the average baryonic rest mass, us; the nuclear abundances, Z,, ..., Zy; the
nuclear chemical potentials [}, ..., A;; and the baryon chemical potential,
a* which is defined by (cf. HTWW)

(5.5) &* = de*/dn = (¢* + p*)/n.

However, for clarity of presentation we shall exclude these supplementary pa-
rameters from discussion.

51.2. Equation of state of cold catalyzed matter. The equa,;
tion of state of cold catalyzed matter, p* = p*(o*),—which is also the equa-
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tion of state of catalyzed matter (no temperature dependence)—has been cal-
culated theoretically in various regions of density by a large number of workers
including CHANDRASEKHAR (1935, 1939); OPPENHEIMER and SERBER (1938);
OPPENHEIMER and VOLKOFF (1939); SCHATZMAN (1956); HARRISON, WAKANO
and WHEELER (1958) see also HTWW, Chapter 10; CAMERON (1959); SALPETER
(1960); AMBARTSUMYAN and SAAKYAN (1960); SAAKYAN (1963); SAAKYAN and
VARTANYAN (19634, b); SAAKYAN and CHUBARYAN (1963); TSURUTA (1964);
TSURUTA and CAMERON (1965, 1966a); GRATTON and SZAMOSI (1964); BARKER,
BHATIA, and SzAMOSI (1966); BAHCALL and WoLr (1965b); and others.

The various calculated equations of state for cold catalyzed matter are in
good qualitative agreement, but quantitatively there are some rather important
differences, especially at densities g =102 gfem3. Crucial differences between
‘the proposed equations of state are most clearly brought out not by curves of
pressure vs. density, but by curves of the «adiabatic index »,

(56) )’eqn state == (Q* + P*) p*_l(dp*/dg*)u given by equ. of state 3

vs. density, p*. Such curves are shown in Fig. 4 for several of the more recent
and plausible equations of state. (Ignore for the present the right half of Fig. 4.)
The differences between the four curves of yeq state ¥8. 0* are indicative of the
present uncertainty in our knowledge of the equations of state of cold, catalyzed
matter.

The equations of state of Fig. 4 can be understood by following the trans-
formations which occur as an imaginary, small sample of cold catalyzed mat-
ter is compressed to higher and higher densities. At each stage in the com-
pression all thermonuclear reactions in the sample must be catalyzed to their
endpoints, and the resultant thermal energy must be removed.

At densities below o~ 10° g/cm?® only the H-W equation of state attempts
to be accurate; no effort was taken to make the other three equations of state
accurate here because such «low » densities are of little importance for super-
dense stellar configurations. In this low-density region our sample of cold,
catalyzed matter is in the form of **Fe, the most tightly bound of all nuclei.
At o = 7.86 g/em® the pressure is zero, but the velocity of sound (cf. eq. (2.10))

(5.7) vy = p*(e* + p*)7 I = p*(@* + P*) 7 Yean state

is finite. Consequently, peq state i infinite. As the sample of matter is compres-
sed from 7.86 g/cm?® to 10°g/em?, the pressure is provided less and less by solid-
state forces; more and more by the degenerate *Fe electrons. Consequently,
Yean state decrease from co toward 3, the value for a nonrelativistically degenerate
Fermi gas.
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Fig. 4. - 4) Several
proposed equations
of state for matter
at or near the end-
point of thermo-
nuclear evolution,
and B) the -cor-
responding equili-
brium configura-
tions. The four
equations of state
shown are 1) H-W:
Harrison - Wheeler,
see HARRISON, Wa-
KANO and WHEELER
(1958), also Chap-
ter 10 of HTWW;
2) 8-V: Saakyan-
Vartanyan, see Saa-
KYAN and VARTA-
NYAN (1963a, b;
1964), also Saa-
KYAN and CHUBA-
RYAN (1963); 3) V3

and 4) V,: Levinger-Simmons} V3,{and V, see Tsuruta (1964), Tsurura and CaME-
RON (1965a, 1966a). For each equation of state we plot the «adiabatic index » of
eq. (5.6) against density of mass-energy, ¢; and we parametrize each curve by p/c?

measured in g/cm?3.

The nuclear constitution of the matter for each equation of state

is indicated as follows: Fe, 56Fe nuclei; A, nuclei more neutron rich than *Fe; e, elec-

trons;

n, free neutrons; p, free protons; p, p-mesons;

H, hyperons.

The Saakyan-

Vartanyan equation of state is not available in the literature in tabular or analytic

form for g < 3-10'% g/em3.

For discussion of equations of state see Sect. 5'1.2. The

equilibrium configurations are represented by curves of total mass-energy, M*, vs.
(co-ordinate) radius, E. These M*(R) curves are parametrized by central density, o,
measured in g/cm3. The musical notes beside the M*(R) curves indicate stability against

small radial perturbations:
while the open notes represent stable modes.

Each solid note represents one unstable normal radial mode
One normal mode changes stability at

each peak or valley (circled dots) of the M*(R) curves. For a discussion of the equilibrium
configurations see Sect. 54.1.
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Above o = 10° g/em? all four equations of state attempt to be accurate (*);
and they are in good agreement up to ~ 10!% g/ecm3. Between 10° and 107 g/cm?
the pressure-providing electrons gradually become relativistically degenerate,
and Yee state approaches 5in a manner first described by CHANDRASEKHAR (1935).
Above p =1.4-107 g/em? the rest mass of 62 3;Fe nuclei plus the rest mass of
44 electrons plus the rather large Fermi kinetic energy of 44 electrons exceeds
the rest mass of 56 5 Ni nuclei. Consequently, as our sample of matter is com-
pressed past o =1.4-107 g/fcm?® the nuclear reaction

(5.8) 62 %Fe 4 446~ — 56 5aNi _

must be catalysed to its endpoint. As the compression continues beyond this
point, the rising electron Fermi energy induces new nuclear reactions similar
to (5.8) but involving different nuclei. In these reactions more and more elec-
trons are swallowed up to form new nuclei, which are more and more neutron
rich. If electrons were not being swallowed up by nuclei, Vean state WOUld hold
steady at § (relativistic Fermi gas) throughout the region o> 107 g/em?®. Howev-
er, the gradual removal of electrons causes pressure to increase more slowly with
density than it would otherwise, and thereby keeps yegetste TOughly constant,
not at %, but at ~1.26. Such is the situation until the compression pushes
our sample of matter up to o = 3:10"! gfem3. At this density the nuclei are
so highly neutron rich (*33Y) that neutrons begin to drip off of them. When
neutron drip is initiated at o = 3-10" g/em3, most of the remaining electrons
are suddenly swallowed up very rapidly with increasing density by the . drip-
ping nuclei. Consequently, as density increases through the region o~3 to
4-10'" g/cm?, the degenerate electron pressure— and, hence, also the total pres-
sure—remains almost constant; and Yemstate plumets to ~ 0 and remains there.
Above ~ 4-:10' g/fem® the rising neutron degeneracy pressure becomes of the
same order as the electron pressure, and then much larger. Consequently Yeq state
rises, reaching ~ § (nonrelativistically degenerate neutron gas) at 0~1013 g/em?,

In the density region above 102 g/cm? there are serious diserepancies among
the equations of state of Fig. 4, and hence great uncertainties in our knowledge
of the behaviour of cold catalyzed matter. Between 10'® and 10¢ g/cm? the few
remaining nuclei all break up into their constituent 'nucleons—primarily neu-
trons—; and the sample of matter therefore becomes a mixture of degenerate
neutron, proton, electron—and, at higher densities, muon and hyperon—gases
interacting by nuclear and electromagnetic forces. Because nucleon-nucleon

(*) The 8-V nuclear abundances in this density region are actually not those of
cold, catalyzed matter; they are the slightly different abundances which one would
expect of matter which has had only ~ 101 years to reach thermonuclear equilibrium.
The effect upon the equation of state of this failure to be at the absolute endpoint of
thermonuclear evolution is small.
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interactions are only poorly understood, the equation of state of such a mixture
is only poorly known. In the region =103 g/em?® the four equations of state
of Fig. 4 are based upon four different assumptions about the nature of nucleon-
nucleon interactions:

The H-W assumption—which is probably incorrect—is that the effects of
nucleon-nucleon interactions and of hyperon formation on the equation of state
are negligible. Consequently, according to the H-W analysis, Yeqn state 18 2 (non-
relativistically degenerate neutron gas) between p a~ 10'® and g ~ 105 g/cm?;
and it drops toward # (relativistic degeneracy) above 10 g/cm?.

The 8-V equation of state assumes nucleon-nucleon interactions which
are largely attractive below o~ 3-10'%2 g/em?® but very repulsive above this
density. Consequently, the S-V value of e siate i8 less than § at g < 3-1012 g/em?;
but as the sample of matter is compressed beyond this density, Ve state ShOOUS
up to ~2.6 and then gradually falls back toward 2.0. At very high densities
the S-V equation of state, p* = p* (yemnstate = 2.0) is the stiffest one compa-
tible with the velocity of light (cf. eq. (5.7)) (*).

The V;z and V, equations of state, like 8-V, involve nucleon-nucleon inte-
ractions which are at first mildly attractive, but then at higher densities, very
repulsive. This explains the initially low (<<§) values of Yeanstate 11l The region
¢ > 102 g/em?, and the subsequent sudden rise of 9.4 state 10 about 3.0. For
Vg the repulsive nuclear forces occur at much higher densities (smaller nucleon-
nucleon separations) than for S-V or V,. The empirically-derived V; and V,
nuclear interaction potentials are based upon faulty assumptions at o>
> 3-10'¢ g/em?® and therefore lead to a speed of sound exceeding the speed of
light. In order to avoid this conflict with causality the calculated equations of
state are cut off when p* becomes eqlial to o* ; and p* = 0* (Ve state = 2.0)
is assumed from there on to the highest densities.

It should be emphasized that at densities p>10'® g/cm® unsolved problems
of-elementary-particle physics prevent us from having confidence in any proposed
equation of state for cold catalyzed matter.

In his lectures in this volume SzAMo0SI (1966) discusses in detail the formalism
used to calculate equations of state in the region ¢>10!2 g/cm?, the phenomenon
of hyperon formation which occurs at ¢ >1.1-10%% g/cm?, and the details of
several equations of state, including V; and V,.

51.3. Density of thermal energy. For catalyzed matter at densi-
ties above ~10% g/cm3, the thermal energy is concentrated partially in the

(*) Until recently it was generally believed that p* = 0*/3 (Veun state — 5) Was the
stiffest high-density equation of state compatible with the laws of physics. However,
Zer'DovicH (1961) has shown that the equation of state P* = p* (Veun state = 2.0;
sound velocity = light velocity) is in principle attainable.
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thermal tails of the Fermi energy distributions of the degenerate electron and
baryon gases, and partially in the kinetic motion of the nondegenerate nuclei.
From Fermi-Dirac theory one can show (cf. CHANDRASEKHAR (1939) p. 394) that
the specific heat per particle, at constant volume, of a degenerate Fermi gas is

(5.9) 60 = (w212 ) (uB/p3) T .

Here k is Boltzman’s constant, y is the Fermion rest mass, pr is the Fermi
momentum at the top of the degenerate sea, and Ey = (prc? -+ p2ct)} is the
corresponding Fermi energy including rest mass. By integrating this specific
heat per particle over temperature and summing over all of the Fermi gases
present (electrons, neutrons, protons, muons, various hyperons), and by adding
the thermal energy density of the nondegenerate nuclei, we obtain for the
density of thermal energy as a function of total density of mass-energy and
temperature (*)

H(e*, T%) = B T* + HonT*,

a1
(6-10) BH(e*) = (12 3 me¥) B M 15

Here n,(0*) is the number density of fermions of type j, while pF_, and Ex_,
are the corresponding Fermi momentum and total Fermi energy, and bn is
the number density of nondegenerate nuclei. Equation (5.10) is expressed in
geometrized units.

Corresponding to any proposed equation of state p*(o*) for cold, catalyzed
matter there is a well-determined thermal function f*(p*), which can be cal-
culated from eq. (5.10)

As density decreases from ~10% g/em® toward 0, the orbital electrons of
the iron nuclei gradually cease to form a degenerate Fermi gas, and eq. (5.10)
gradually ceases to be correct. Since this low-density region is of physical
interest only for descriptions of the very thin surface layers and atmospheres of
superdense stars, and since the surface layers and atmospheres are actually not
catalyzed to near the endpoint of thermonuclear evolution (see, e.g. TSURUTA
and CAMERON (1966b)), we shall forgo any attempt to improve upon eq. (5.10)
at low densities.

(") GinzBUrG and KirzeNITS (1964) have suggested that the nucleon thermal
.excitation spectrum at high densities (p=10® g/em?®) might resemble a gas of super-
conducting electrons, rather than being continuous. If such is the case, then Bxpres-
sion (5.10) will not describe correctly the density of thermal energy.
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5'2. Equations of stellar structure. — Having completed our description of the
theory of matter near the endpoint of thermonuclear evolution, we now turn
our attention to the equations which govern the structure of stellar configurations
of such matter. The lack of influence of temperature upon the equation of
state, p*(o*), of catalyzed matter results in a separation of the 16 4 3N coupled
equations of stellar structure (3.11) into three more or less independent groups:

The first group—the primary structure equations—consists of three coupled
equations for density of mass-energy, o*, pressure, p*, and mass, m*, as functions
of co-ordinate radius,

(5.11a) p* = p*(e*),
(5.11d) m* = | dmr2 o*dr ,
[

dp* _ (e* £ p*)(m* + dmrp¥)
dr r(r— 2m¥*) )

(5.11¢)

Equation (5.11a) is the equation of state of catalyzed matter; (5.11b) is the mass
equation (3.11-2); and (5.11¢) is the TOV equation of hydrostatic equilibrium
(3.11-3). In studying configurations of catalyzed matter one usually chooses a
particular value of the central density, gf= g*(r =0) and then numerically
integrates eq. (5.11) outward from r =0 to the point at which p* reaches
zero, which is the surface of the star. The values of » and m* at the termina-
tion point are the stellar radius, R, and the total mass-energy, M*,

If, in addition to ¢*, p*, and M*, one is also interested in the gravitational
potential, @, of eq. (3.1), the number density of baryons, n, or the number
of baryons, a, inside radius r, he can calculate them by integrating the following
secondary structure equations along with the primary equations (5.11):

(5.12a) AD/dr = — (g* + p*)~'(dp*/dr),  B(r=R)=1In(1—2M*/R)},
(5.126) dn/dg* = n/(¢* + p¥)

(5.12¢) a :f47'n‘2 n(l — 2m*[r)tdr .
(1}

Equation (5.12a) is the source eq. (3.11-4) for @; and its boundary condition,
which is derived from eq. (3.40), is chosen so as to make @(r = oo0) = 0. Equa-
tion (5.12b) we have met previously as (5.3); and (5.12¢) is the baryon number
equation (3.11-1). Note that equations (5.12a,b) can be integrated in terms
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of the equations of state to give

°(r)

In(1 — 2 M*/R)*— f (o* + p*)tdp*

(5.12a") D(r) :

[
In(1 — 2 M*/R)},
, _etp —fp’ ar” ]— (0* +p*)e?
(5.125") "=TE0) eXP[ o* +p*] ph(0)[1—2M*R]’
[}
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r<R,

r>R,

Here u#(0), the average baryonic rest mass at zero density, is (1/566) X (the mass
of an *Fe atom). Equation (5.12b'), when rearranged slightly, becomes a state-
ment of the constancy of the injection energy for configurations of catalyzed

matter (cf. eq. (3.62)) (*).

There is no mention whatsoever of temperature or of thermal energy in the
primary or secondary structure equations (5.11), (5.12). If one is interested
in the thermal properties of a configuration of catalyzed matter, he must
integrate, in addition to eq. (5.11) and (5.12), the thermal structure equations:

a) Differential equations for thermal structure

d(L}e?) 4772 e® (de:
5.13 = = T
(5.134) dr (1 —2m*/r)¥\ dt )’
d(LM* 2®) 47rr2 €22
135 . = X
(5.13b) dr (1— 2m*jr)t 7w
d(T™e?®) 3 wkp* (Lf — L) e®
13 = r r 1—92m*Iryt ~
(5.13¢) dr 16g* T*3 4re ( m*/r)
~ 0 in regions where electrons or baryons are degenerate,
1 1 3p* A¥
P AT
R
(5.13d) Ut f et P (1 — 2m* ) r

]

(*) Strictly speaking, the injection energy is not quite constant unless the thermal

energy, ¢%, is distributed isentropically—which it is not in highly conducting superdense
stars. However, deviations from constant injection energy will be of the order of £5/o*

which is extremely small.
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b) Gas characteristic relations

(5.14a) & = &5(0%, T*) = f*(0*) T** + $bnT*,

(5.14b) % = 2;(¢%, I'") ~ oo in regions where electrons or baryons are
degenerate,

(5.14¢) %y = %nl0*, T,
(5.14d) I = 45(e*, T%) .

All of the quantities appearing here are defined and discussed in Sect. 8 except
the density of thermal energy, ¢, which was discussed in Sections 5°1.1 and 51.3;
and Uz, the total thermal energy of the configuration. U? is defined as the total
mass-energy which observers at r = co can collect from the star’s photon
and neutrino radiation, as the star cools from its present state to zero tempe-
rature.

Equations (5.13a, b) are the equations of thermal equilibrium (3.11-5,6) with
¢* and dn/d¢ set equal to zero (no thermonuclear energy release or change of
density with temperature for catalyzed matter.) Equation (5.13¢) is the equation
of energy transport (3.11-7a) specialized to the- case of no convection. Con-
vection does not oceur—except, perhaps, in the very thin, nondegenerate sur-
face layer and atmosphere—because the high thermal conductivity of the de-
generate electron and baryon gases maintains a temperature gradient well
below the adiabatic limit. Expression (5.13d) for the total thermal energy
is simply the integral, over the proper volume of the configuration, of the den-
sity of thermal energy red-shifted to account for the energy used up by photons
and neutrinos as they climb out of the star’s gravitational field. The gas char-
acteristic relations (5.14) are expressions in terms of density and temperature
for the thermal energy density, ey, the thermal conductivity, A¥, the radiative
absorption coefficient, sy, and the rate, ¢,, at which thermonuclear reactions
convert thermal energy into outgoing neutrinos.

The thermal-structure equations (5.13), (5.14) are 8 coupled equations for
the 8 quantities L7, L¥*, T%, Uy, 7, A%, 5%, and g¢},. These equations must
be subjected to the boundary conditions (cf. Sect. 3'3)

(5.15) L¥0)=0, L®0)=0, T*R)=0.

Note that in the equations of stellar structure (5.11)—(5.15) for configura-
tions of catalyzed matter no mention is made of the parameters &*, s*, ¢*,
Zyy ooy Ziny fiyy oy flyy 01y ooy 0y, Which enter into the more general structure equa-
tions (3.11). The parameters ¢* and «, ..., oy are zero in catalyzed matter since
no nuclear energy generation can occur there; the nuclear abundances Zsy ey Zy
and chemical potentials aJ, ..., fy, are not needed once the equation of state
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p*(0*) and the thermal function f*(¢*) have been calculated; the density of
internal energy and the entropy per baryon, &* and s¥, are omitted because
they play no important role in configurations of catalyzed matter.

5'3. How to construct stellar models. — To construct a model of a star near
the endpoint of thermonuclear evolution and follow its subsequent ‘thermal
evolution one might proceed as follows: 1) Specify the central density, of. 2) In-
tegrate the primary and secondary structure equations (5.11) and (5.12) by the
method described between those equations. 3) Take as the external gravita-
tional field the Schwarzschild solution of Sect. 3'4.1. 4) Specify an initial
temperature distribution, 7*(r), satisfying T*(r = R) = 0. Solve the thermal
equations (5.13) and (5.14) subject to boundary conditions (5.15) for the par-
ameters L¥, L, ¢¥, defjdt, Uz, A%, x5, 40, This solution can be effected by
a straighforward numerical integration from the center of the star to the sur-
face. 6) Calculate a new value of the temperature at a later time, A¢, frcm

(5.16) T*(r, At) = T*(r, 0) -+ {28*(0*[r]) T*(r, 0) + §bn(r)}{de*(r, 0)/dt} At

(cf. eq. (5.14a)). 7) Repeat steps 5) and 6) until the stellar model has cooled to
zero temperature.

In practice this computational method cannot yield very reliable results
for the thermal evolution of a superdense star, since it assumes that the pres-
sure, p*(o*), is independent of temperature in the nondegenerate surface layers
as well as in the main body of the star. A more nearly correct treatment (see,
e.g., SCHATZMAN (1958), and TsuruTA and CAMERON (1966b) for Newtonian
versions) would treat the thin surface layers by means of a temperature-depend-
ent equation of state and would make use of the theory of stellar atmogspheres.

5'4. Structure and properties of configurations of catalyzed matter. — We now
have at our disposal all the tools necessary to an analysis and discussion of the
structure and properties of configurations of catalyzed matter. In the next few
Sections we shall examine the hydrostatic structure, the thermal structure,
and the stability of such configurations.

54.1. Hydrostatic structure. Aside from thermal properties, which
are considered in the next Section, to each proposed equation of state for catalyzed
matter there corresponds a one-parameter family of equilibrium configurations.
Once the central density has been specified, an integration of the primary and
secondary structure equations uniquely fixes a configuration’s mass, radius,
and gravitational field, and its distributions of pressure, density, and baryons (%).

(*) The uniqueness of this determination depends upon the assumption that the
equation of state, p*(o*), is monotonic. That this is necessarily so is shown by HTWW,
p 102-104.
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The main features of the one-parameter family of equilibrium configurations
for a given equation of state are most clearly depicted by a curve of total mass-
energy, M*, vs. radius, R, parametrized by central density, ¢*. Such curves are
shown in Fig. 4 for the H-W, 8-V, Vs, and V, equations of state. The rather
uniform shape of these four M*(R) curves can be understood as follows:

Consider the transformations undergone by an imaginary configuration of
cold catalyzed matter, as baryons are added to it or taken away in just the
right manner to keep it at the endpoint of thermonuclear evolution. The pro-
cess of adding and removing baryons could be accomplished, for example, by
the idealized routine described in Sect. 8'5.7. Note that because of the constancy
of the injection energy (*) it does not matter where in the equilibrium configu-
ration the baryons are added; the addition of 34 baryons is always accompanied
by a mass increase of

G171 SM* — pi(R)[L— 2 M*/R]ESA .

(Cf. eq. (3.63).) Here uj(R) is (1/56) X (mass of a *Fe atom).

At a central density of 7.86 g/cm® the equilibrium configuration which we
wish to follow is a ball of **Fe, the size of an apple. As more and more *Fe
atoms are added to the ball, its central density, mass, and radius become
larger and larger, until a configuration of g, =3-10% g/ecm?®, M = 0.011 M,
and B =1.8:10*km is reached. (This configuration and all those of lower
central density are too small to show up in Fig. 4.) At this point gravitational
forces are becoming so strong that the addition of more *Fe nuclei causes the
radius, R, to decrease rather than increase. This is roughly the beginning of
the region of white dwarf stars (**).

As more *Fe nuclei are added to push the central density beyond 3-10° g/em?
and higher, the equilibrium configuration becomes more and more massive,
its radius gets smaller and smaller, and internal gravitational forces become
stronger and stronger. In the meantime, inside the configuration the orbital
iron electrons become highly degenerate and begin to react with the *Fe nuclei

(*) See footnote (*) on p. 233.

(**) The white dwarfs which occur in nature are not catalyzed to near the endpoint
of thermonuclear evolution because the reaction rates for the formation of neutron-rich
nuclei at white dwarf temperatures and pressures are considerably slower than 10-1¢ per
nucleus per year. However, the difference in nuclear composition between real white
dwarfs and configurations of catalyzed matter has only a small effect on the equation
of state. Consequently, realistic white dwarf models—as exemplified, e.g., by the S-V
configurations of Fig. 4 (cf. footnote (*) on p. 229)—are not too different from the con-
figurations of catalyzed matter discussed here. For further discussion see, e.g., SAL-
PETER (1961), and HaMADA and SALPETER (1961).



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 237

to form neutron-rich nuclei (ef. Sect. 51.2). Eventually a critical point
(first peak of M*[R] curve; g, ~ 10° g/em3; M ~ 1.2 Mg, R ~ 3000 km; A ~
&/ 1.4-10% baryons) is reached, at which point gravitational forces are so
strong that the addition of one more baryon would force the configuration to
collapse. This point is called the LHWW (Landau-Harrison-Wakano-Wheeler)
crushing point; and the critical mass av this point is often called the Chandra-
sekhar limit.

Since the addition of one more baryon at the LHWW crushing point would
induce gravitational collapse, one must now begin to remove baryons from the
configuration in order to move it through equilibrium states of higher and higher
central density. With the removal of baryons beyond the LHWW point the
mass and radius decrease, the central density increases, and—according to
the static approach to stability (Sect. 42.2 and 55.1)—the fundamental mode
of radial pulsation of the configuration becomes unstable. The configuration
remains unstable against small radial perturbations as more and more baryons
are removed until the second critical point in the M*(R) curve is reached at
0.~ 5-10"3 g/ecm?3. (We ignore the two intermediate critical points for Vs and V,
configurations, which signal the onset and removal of instability of the first
harmonic of radial pulsation.) As baryons are removed and central density
increases through the unstable region 16°<p,<5-10'3, the cold catalyzed mat-
ter in the interior of the configuration is transformed from electrons plus neutron-
rich nuclei into a mixture of degenerate neutron, proton, and electron gases. The
peculiar behaviour of the equation of state as these nuclear transformations
occur is largely responsible for the peculiar form of the M*(R) curve in this
density region.

At the second critical point (minimum of M*(R) curve; « HWWpoint ») the
removal of any additional baryons will force the configuration to explode or
collapse. In order to move onward through equilibrium states of higher density
one must now add baryons to the configuration; and this addition of baryons,
according to the static analysis of stability, will make the fundamental mode
of radial pulsation stable.

The stable equilibrium states through which the configuration now passes as
baryons are added to it are called neutrons stars because the main constituents
of the configuration are neutrons. (Because hyperons are also present in abund-
ance for g,>10! g/cm3®, the term hyperon stars is sometimes used as well.)
The neutron stars extend from the HWW minimum of the M*(R) curve at
0. A~ 5-10% g/em?® the maximum at o, &~ 5-10'®*. This second maximum (third
critical point) is called the « LOV crushing point» (LOV = LANDAU, OPPEN-
HEIMER, VOLKOFF). Here, as at the LHWW ecrushing point, one must cease
adding baryons and begin to remove them, in order to avoid collapse and to
move the configuration along the M*(R) curve toward sfill higher central den-
sities.
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As baryons are removed to compress the configuration beyond the LOV
crushing point, the fundamental mode of radial pulsation becomes unstable.
The continued removal of baryons brings the configuration to a fourth critical
point—a minimum in M*(R)—beyond which baryons must be added, and at
which the first harmonic of radial pulsation becomes unstable. There follow
an infinite sequence of critical points as the M*(R) curve spirals inward toward
a limiting state of infinite central density but finite mass and radius. At each
critical point one more mode of radial pulsation becomes unstable (counterclock-
wise spiral). In the region p,210" g/em? the spiraling M*(R) curve is described
analytically by eqs. (4.22)-(4.24).

Because the above behavior is common to all four M*(R) curves of Fig. 4,
we have confidence that this behavior correctly describes configurations
of matter near the endpoint of thermonuclear evolution. (In connection
with this, see MISNER and ZAPOLSKY (1964).) However, there are several im-
portant differences among the four curves, which reflect gaps in our under-
standing of configurations of catalyzed matter. These differences occur primarily
in and above the neutron star region, where uncertainty about the nature of
nucleon-nucleon interactions makes our knowledge of the equation of state
unreliable. Roughly speaking, the lower the density at which repulsive nuclear
forces become important and the stronger those forces are, the larger are the
typical and maximum masses for neutron stars. Widely differing assumptions
about repulsive nuclear forces lead to masses at the LOV crushing point which
vary from ~ 0.65 Mo to ~2.0 M. In Table IIT we present the mass, radius, and
central density of the most massive, stable neutron star (LOV point) as predicted
by a number of different equations of state. The maximum mass of a stable
neutron star is an important determinant of the fates of the collapsed cores of
supernovae (cf. FINZI (1966), WHEELER (1966)). The larger the maximum mass,
the more frequently neutron stars will be formed in supernova explosions.
The smaller the maximum mass, the more frequently the cores ot supernovae
will undergo catastrophic gravitational collapse to a general-relativistic sin-
gularity (see Sect. 7).

Each equation of state for cold catalyzed matter proposed thus far has
yielded only two regions of stable equilibrium configurations—the white-dwarf
region and the neutron-star region. However, it is conceivable (J. A. WHEELER,
private communication) that elementary-particle processes not now understood
might lead to a third region of stability at central densities o, 10" g/cm?,
Although such a possibility is conceivable, it seems unlikely. At these very
high densities the adiabatic index required for stability against radial pertur-
bations probably exceeds 2.0, whereas causality (speed of sound less than speed
of light) demands that I and yemase e < 2.0 at these densities.

For a much more extensive discussion of the hydrostatic properties of stars
near the endpoint of thermonuclear evolution see HTWW,
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TABLE II1. — Characteristics of the neutron star of maximum mass (L-O-V crushing point)
as predicted by various equations of state (%).

‘ Cent'ral Number Mass | Radius
Equation of state and references (°) density, | baryons, M/My | R (km)
o (gfem?®)| A/Ag
Ideal neutron gas (no hyperons or nuclear inter-
actions): OPPENHEIMER and VOLKOFF (1939),
InMAN (1965). 3.9-10%% | 0.738 0.712 | 9.27
Ideal neutron, proton, and electron gases (no
hyperons or nuclear interactions). H-W: HAR-
RISON, WAKANO, WHEELER (1958); HTWW. | 6.0-10% | 0.704 0.683 | 8.39
Ideal baryon gas (nucleons and hyperons but
no nuclear interactions): AMBARTSUMYAN and
SAAKYAN (1960, 1961). 2.3-1018 NA 0.634 | 11.0
Real nucleon gas (nuclear interactions but no
hyperons):
1) SKYRME (1959), CAMERON (1959), SaAKY-
AN (1963), INMAN (1965), TsSURUTA (1964) (°)
cut-off at p* = o*/3 4.5-1015 | 1,98 1.61 8.2
cut-off at p* = g* 4.8-1015 | 2.08 1.70 7.7
2) SALPETER (1960) NA NA NA NA
3) AMBARTSUMYAN and SAAKYAN (1960, 1961) | 8 -1015 NA 1.05 6.5
4) GRATTON and SzaMosI(1964), PACINI (1965) (%) | 6 - 1015 NA 0.85 8.1
5) INMAN (1965), case c. 2.2-101% | 1.19 1.14 13.1
6) INMAN (1965), case d. 2.0-10%% | 1.71 1.60 13.0
Real baryon gas (nuclear interactions and
hyperons):
1) S-V: SaAKYAN and VARTANYAN (1963a, b;
1964) 3.7-101% | 1.75 1.55 9.19
2) Levinger-Simmons Vz: TSURUTA (1964),
TsurUTA and CAMERON (1966a) (%)
cut-oft at p* = g*/3 1.1-101 | 1.15(%) | 0.926 | NA
cut-off at p*=p 1.1-10%% | 1.202 (%) | 0.973 | 5.103
3) Levinger-Simmons V,: Tsurura (1964),
TsuruTA and CAMERON (1966a) (°)
cut-off at p* = o*¥/3 2.9-10% | 2.28 (%) | 1.914 | NA
cut-off at p* = g* 3.0-10%% | 2.317 (%) | 1.953 | 9.8
(*) For comparison, at the LHWW crushing point (maximum white-dwarf mass)
2 ~1-10g/em?®; Ajdp ~ M/M@® ~1.2; R ~3000 km. In the table « NA » meang not available.
(°) For discussions of equations of state see lectures by Szamos1 (1966),
(°) Equation of state arbitrarily set to p* = 0*/3 or »* = ¢* when that polnt is reached
Bo a8 to avoid velocity of sound exceeding velocity of light.
(%) This number is rest mass (cf. eq. (3.15)) in units of M@, rather than 4/4¢p.
() These numbers are for hard-core nucleon-nucleon repulsion at #, = 0.4 -10-'* om,
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54,2, Thermal structure. In discussing the thermal structure of con-
figurations of catalyzed matter, we shall concentrate our attention on stable
configurations—white dwarfs and neutron stars.

General relativity has only negligible effects upon the structure, both hydro-
static and thermal, of white dwarf stars. For this reason white dwarts are nor-
mally studied within the framework of the Newtonian approximation. For
Newtonian treatments of the thermal structure of white dwarfs see, e.g.,
SCHATZMAN (1958), SCHWARZSCHILD (1958), and MESTEL (1965).

The thermal structure of neutron and hyperon stars was first investigated
by CHIU (1964), by CHIU and SALPETER (1964), and by MoRTON (1964) in con-
nection with the possibility that X-ray emission from young neutron stars might
be observable at the earth. More recent studies have been made by ELLIs (1965),
by BancALL and WoLF (19654, ¢), by FINzI (1965a), and by TSURUTA and CAME-
RON (1965a, 1966b). For a review see the lecture of FINZI (1966).

In all of these studies Newtonian theory was used for simplicity, since the
accuracy desired was less than the 5 to 309, error which results from neglecting
general relativity. However, in future calculations general-relativistic effects
will probably be taken into account by means of the thermal-structure equations
(5.13) (5.14), augmented by a more realistic analysis of the surface layers and
atmosphere (cf. end of Sect. 53), which are typically only a few meters thick.

5'5. Stability and pulsations of configurations of catalyzed matter. — We turn
now from the equilibrium structure of stars near the endpoint of thermonu-
clear evolution to a discussion of their behavior under small radial perturba-
tiong, including: a «static» analysis of stability; numerical calculations of -
normal-mode frequencies and eigenfunctions; and the damping of pulsations.
In this discussion of stability and pulsations we shall usually simplify mat-
ters by speaking in terms of cold catalyzed matter. This is allowable because
the pulsation frequencies and eigenfunctions for configurations of catalyzed
matter, like all other hydrostatic and hydrodynamic properties, are tempe-
rature-independent.

55.1. The static analysis of stability. The static, M*(R) approach
to stability, as outlined in Sect. 4'2.2 and 4°2.3, is not applicable directly to
configurations of cold, catalyzed matter because neither condition (4.15) nor
(4.16) is satisfied by such configurations. In this Section we will modify slightly
the M*(R) approach to stability to make it applicable to configurations of cata-
lyzed matter. But before presenting the modified analysis, we must elucidate
several key features of such configurations.

One key feature is this, that the adiabatic index I3 for configurations of cold,
catalyzed matter is not a unique function of density, p*. Rather, I depends
upon the frequency of the stellar pulsations, [w]‘, as well as upon g*. So long
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as 1/ [w[ is large compared to the relaxation times, #..:, 0f the nuclear reactions
required to keep the pulsating matter at the endpoint of thermonuclear evolu-
tion, the nuclear reactions proceed to completion as rapidly as the density
changes. Hence,

Fl(lw]7 Q*) = Yean state(Q*)

5.18
( (l) = (Q* + p*)p*'—l(dp*/dg*)as given by ean of state Whenlw |—1>>trelax .

On the other hand, when 1/|w| is small compared t0 .., nuclear reactions occur
hardly at all. Consequently,

(5-18b) Fl(lwly Q*) == '}}no reactions(g*) = (Q* + P*) p*_l(ap*/ag*)mnstmt ZysZgsniZN 0

when ||~ <& e -

In the intermediate case, where 1/|w| is of the same order as frp,, I} is a
complicated function of |w|, which might even be taken as complex—I] =
= I1" 4 iI'1"—to account for pulsation damping by nuclear reactions. How-
ever, we shall temporarily ignore any imaginary part of I, leaving the discus-
sion of pulsation damping to the end of this Section and to Sect. 5°5.3.

There is an important relationship between the values of I for various fre-
quencies: Consider a small sample of fluid at the endpoint of thermonuclear
evolution. Let the volume of the sample be V, and its pressure be p,. Compress
the sample to volume V,— AV, where AV <« V,, at a rate of fractional vo-
lume change

A(V[Vy)/dt = — |o] .

According to the first law of thermodynamics the accompanying increase in
total mass-energy of the sample is

Vo—AV

(5.19) AE* = -fp*dv = prAV[1+ (IY2)(AV V) -...],

where I3 is the adiabatic index at density g, = o*(p;) and frequency [w].
The increase in mass-energy, AE*, evidently depends by way of I on the speed,
lw], with which the compression is performed. The slower the compression,
the more nuclear reactions will proceed to completion; and, hence, the smaller
will be AE*. On the other hand, according to eq. (5.19), the smaller AE* i,
the smaller is ;. These relations are possible only if I3(g*, |»|) is a non-
decreasing function of |w]|. Hence, I} must take on its minimum value at
lo| =0 and its maximum value at || = co.

(5'20) yeqn state <Fl( ICU I, Q*) <yno reactiona «

16 — Rendiconit S.I.F. - XXXV,
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Next consider a particular configuration at the endpoint of thermonuclear
evolution. The squared angular frequency of its #-th normal mode, o}, can
be calculated correctly from the dynamical approach to stability if and only if
the correct adiabatic index, I'(|wl|, o*), is used. If, instead, we were to use
I} = Yeqastate O I} = Vo reactions; W€ would obtain incorrect squared frequencies,
o} [eqn. state] or w; [no reactions]. The inequality (5.20) between I'i, peen states
ANd Yao resctions 1MPOSES a similar inequality between the correct squared fre-
quency, oy, and the incorrect ones:

(5.21) w} [eqn state]<wi<wi[no reactions].

Proof of inequality (5.21): Let wh[y(p*)] be the squared frequency of the
n-th normal mode of our particular configuration under the assumption that
I, = y(p*). It is sufficient to show that, for any hypothetical adiabatic index
y(0*) and some other very slightly larger index I = y(p*) + dy(0*), we neces-
sarily have

(5.22) o[y + dy]1> wi[y].

To prove this, we can apply standard, nondegenerate perturbation theory (*)
to the eigenvalue eq. (4.8), thereby obtaining

(3.23) @R[y +0%y]— iyl =
R
fe“‘p(l — 2m*[r)y tr2 p*§y(r2e~? ) 2dr

=° - O[(8y)?] .
Wi(rre=2&,)2dr

=

=

Here &, is the eigenfunction corresponding to wi[y]. Because 3y is very small
and positive, the right-hand side of eq. (5.23) is positive. QED.

‘We now have the tools required for a proof that a modified form of the static
approach to stability (Sect. 4'2.2) is applicable to the (one-parameter) family
of configurations at the endpoint of thermonuclear evolution. Our proof is
based upon Fig. 5, where we show two portions of the dependence upon central
density, o, of the n-th squared frequency, w3. 1f the adiabatic index I'(|w], 0*)
were equal t0 yenetate (€4. (5.18a)) at all frequencies, wi would have the g.-de-
pendence shown by the curve labeled wr[eqn. state]; andif I} were always equal

(*) For an account of perturbation theory see, e.g. MATHEWS and WALKER (1964),
Chapter 10. An alternative proof of (5.22), in which no infinite series such as (5.23)
arise, can be based on the Rayleigh-Ritz method for solving the variational equation
(4.10). Tor an account of the Rayleigh-Ritz method see BARDEEN, THORNE and M=zLT-
ZER (1966).
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0 Yo reactions (€Q. (5.18D)), wi would follow the curve «?[no reactions]. However,
I, varies with frequency between the LHmits Y state 304 Yuo reactionsy 50 accord-
ing to eq. (5.21) w; moves about in the region between the limiting curves

I I

2 . 2 .
w, I:I')O I‘E‘GCNOI’)S] w, I:no r‘eact/ons]

. ol '<<t /
AN /
L \ / 4
« < .|Stable stable
3 unstable unstable

A

w: [e qn s{ate:|
1
[

u: [eqn state] \\

gc~cr~it—1 c—crit—=2

e, e

Fig. 5. — Stability:behavior of the normal modes of radial pulsation of configurations of
catalyzed matter near a critical point of the M*(R) curve. (Schematic.) The squared
angular frequency, 2, of the mode of changing stability is shown as a function of
central density, g,, in the neighborhoods of two typical critical points, g1, and o, cre.z-
At 9g.crizy the n-th normal becomes unstable with increasing central density. At g,.cms.e
it becomes stable. In the transition regions, |w| '~ f,5:, pulsations are often damped
extremely rapidly by nuclear reactions (*); and consequently, w2 is a complex func-
tion of p,, rather than real as idealized here.

wi(eqn. state) and w?[no reactions]. At low frequencies, where there is sufficient
time for nuclear reactions to occur as the star pulsates, o} coincides with wi[eqn.
state]; at high frequencies it coincides with wi[no reactions]; and at interme-
diate frequencies it moves from one curve to the other. ’
At least this is the situation when pulsation damping has negligible effects
upon the normal-mode eigenfunctions and frequencies. However, in the tran-
sition region, |w.|™~ trus,—and only there— the reactions which attempt to
keep nuclear abundances at the endpoint of thermonuclear evolution can damp
pulsations at a rate of the order of or larger than the pulsation frequency ().

(*) The transition regions, |w,|"'~#,.., of greatest physical interest occur near
the LHWW point (maximum white-dwarf mass) and HWW point (minimum neutron-
star mass), where the fundamental mode changes stability. (The LOV point is not of
interest here because near that point w; [no reactions]= o? [equation state].) Let

we= w§” +1iog" in these transition regions, and for simplicity focus attention on the
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Consequently, in the transition region o, is actually a complex function of g,,
with an imaginary, damping part which may be large compared to the real part.

The static approach to stability, a generalization of which we wish to obtain,
would be applicable if I were equal t0 yeqn state &b all frequencies (cf. Sect. 4°2.3).
Hence, the static approach predicts the stability behavior of the (incorrect)
curve w*[eqn state]; it predicts that the n-th normal mode is stable for central
densities p, < Qc.crit-r O Q¢ = Qcecrit-n but unstable for o,>> gc.crity OT 0, << Op.crit-s
(cf. Fig. 5) The actual behaviour of the n-th normal mode is only slightly dif-
ferent from this prediction: For g, << gc.crt OT Q> Qc.crit-a; the n-th mode is
stable; but for g,> ge.critr OF 0o << Qccritz; it 18 both stable and unstable—i.e.
in these regions there are several normal radial modes of order #, correspond-
ing to different adiabatic indices; and some of these modes are unstable, while
others are stable.

These observations allow us to conclude that the static approach to stability
is applicable to the (one-parameter) family of configurations atl the absolute end-
point of thermonuclear evolution if it is restated in the following slightly modified
form: Construct a curve of total mass-energy, M*, plotted upward vs. rad-
ius, R, plotted to right. This curve has the properties a), b), and ¢) of Sect. 42.2;
and, in addition, it has the following property: d) In the neighborhood of a peak
or valley (critical point) of the M*(R) curve the squared frequency, wy, of the mode
of changing stability, behaves as indicated in Fig 5. A configuration near the cri-
tical point, 0.cut, may have several normal modes of order m. If the configuration

gtable side of the critical point. One can show by the following analysis that at the center
of these transition regions g, the damping rate, is much larger than oi®, the pulsation

frequency. The proof proceeds by contradiction: Assume that ol < o when
0 A (feax)"t. At this frequency pulsations will drive all nuclear reactions nearly to
completion each time the star is in a state of maximum compression or expansion.

In driving the reactions to completion the star converts

AE* i (A/2) [(P*/’")(Vno reactions ~ yeqn sta.te)(3§//r)2]&vg over star
(P: /9:) M* [('}’no reactions ™ Yean state)(é//r)z]avg over star

of its pulsation energy to heat and outgoing neutrinos (cf. eq. (5.19)). But the total
pulsation energy is (cf. eq. (4.12))

*
E puls

~ M* CO: ZRZ [(f/’l‘) 2]&v¢ over star *

Consequently,
w{'ll)/w:'lmw AFJ"{/E’;;:HKV (P: /9:)(0trela.x/R)2 (yno reactions 7 7eqn sta.te)avg .
For configurations near the LHWW and HWW points we have (cf. Fig. 4 and Sect. 55.2)

(yno reactions — Yean stﬂ.te) 2 0013 (Ctx'elax/la)2 2 1017’ (_p:/Q:) 2 10_4' Hence’ wél)/wéﬂ) 2 1011' Bllt
this contradicts the assumption that off < wf® QED.
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s on the stable side of 0,.on, all of its modes of order n are stable; but if it is on
the unstable side, at least one of its order-n modes is unstable.

In Sect. 5'4.1 we discussed the implications of this M*(R) stability analysis
for configurations of catalyzed matter. Our main conclusion was that there
are only two types of stable configurations: white dwarfs and neutron stars.

55.2. Frequencies and eigenfunctions of normal radial modes.
Although the « static » analysis has revealed to us the number of unstable normal
radial modes of each configuration of cold catalyzed matter from g, = 7.86 g/cm?
to g, = oo, it cannot tell us the frequencies or shapes of the normal modes,
except at critical points of the M*(R) curve. To obtain such gquantitative in-
formation between critical points one must use the « dynamic» approach to
stability as described in Sect. 4'2.1.

i I
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—10 : \\\’/ 410 o
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Fig. 6. — Squared angular frequencies as functions of central density for the lowest four
normal radial modes of H-W-W configurations of catalyzed matter. (Based on MELTZER
and THORNE (1966).) The right-hand vertical scale involves the pulsation period,
7,= 27w, for stable modes and the e-folding time, z,=1/|w|, for unstable modes.
The solid curves represent the correct squared frequencies, while the thin dashed curves
represent o2 [eqn. state] (cf. Sect. 55.1). The solid horizontal curves, which hug the
o?=0 axis between 2.5-10% and 1.3-10°g/cm?3, represent the transition from w? [no
reactions] to o} [eqn. state] and have amplitude-dependent periods and e-folding times
=10 years. The horizontal curves between 2.1-10!2 and 2.7-10!3 g/em® have amplitude-
dependent periods and e-folding times > 100 days. In these transition regions pulsation-
damping by nuclear reactions is very large (cf. footnote (*) on p. 243). At central
densities below 10® g/cm® and above 10 gfcm?, w2 [no reactions] is very nearly equal
to w? [eqn. state].
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MELTZER and THORNE (1966) have recently calculated, by the dynamical
approach, the squared frequencies and eigenfunctions of the lowest four radial
modes of the H-W-W configurations of cold catalyzed matter (cf. top Section
of Fig. 4). The results of those calculations are shown in Fig. 6. Because the
typical pulsation periods and e-folding times are much shorter than the relaxa-
tion times for nuclear reactions (|w|™! < twas), the squared frequencies are
almost everywhere equal to w3 [no reactions]. Only very near the w? =0 axis
—at |w| <10-/y for the white-dwarf region; |w|<1/100 days for the neutron-
star region—does w3 make the transition from ©%[no reactions] to wi[eqn. state].
As a consequence, the unstable white dwarfs of 2.5-10% <, <1.3-10° are ac-
tually metastable—but « molasseslike » because of pulsation damping (*)—with
e-folding times »10' years; and the neutron stars of 2.1-10" <, <2.7-10%
are metastable but molasseslike, with e-folding times 100 days. The periods
and e-folding times of the metastable configurations are amplitude-dependent
a8 a result of the dependence of nuclear reaction rates upon pulsation ampli-
tude (cf. MELTZER and THORNE (1966), Appendix A).

According to Fig. 6 the period of the fundamental mode of a white-dwarf
star is typically ~ 10 s, while the fundamental period of a neutron star—in
the absence of nucleon-nucleon forces—is ~ 10-2 s.When nucleon-nucleon for-
ces are included in the equation of state, the neutron-star fundamental period
is reduced to ~0.3-10-3s (TSURUTA, WRIGHT, and CAMERON (1965); Tsu-
RUTA (1965); MELTZER and THORNE (1966)).

Figure 6 shows only the beginning of the high-density region, o, >10'° g/cm?
in which more and more normal radial modes become unstable with inecreasing
central density. Equation (4.25) for the number of unstable modes in this region,
when adapted to the H-W equation of state, reads

number of unstable modes =

(5.24) = greatest integer less than { log 0. — 9.3} ,

87 logye

= greatest integer less than {0.63 log g, — 9.3}.

MELTZER and THORNE (1966) have calculated the eigenfunctions, &,(r), of
the H-W-W normal radial modes corresponding to the frequencies of Fig. 6.
In the white-dwarf region and in the upper neutron-star region (g, =1-10'® g/cm?®)
the fundamental mode is very nearly homologous,

(5.25) ’ Ey(r) oC 1

(*) See fotnote (*) on p. 243.
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and the harmonics are somewhat sinusoidal. However, for most unstable config-
urations and for neutron stars of central density p, <3-10 g/em*(M <0.4M )
the normal-mode eigenfunctions are far from homologous or sinusoidal.

55.3. Pulsation energy and the damping of normal radial
modes. A numerical evaluation of eq. (4.12) by MELTZER and THORNE (1966)
reveals that, in the absence of nucleon-nucleon interactions, a stable neutron
star pulsating in its nearly homologous fundamental mode will have a pulsation
energy of

(5.26) Eous &~ 1-10%2(&[r)2 erg .

Here (£/r) is the relative amplitude of pulsation. Nucleon-nucleon interactions,
which increase the frequency of pulsation by a factor ~ 3, increase the pulsa-
tion energy by a factor ~ 32 ~ 10 (cf. eq. (4.12)). Hence, a more realistic
estimate than (5.26) is

(5.27) By ~ 1-10%(&)r)2 eTg .

For comparison, the total mass-energy of the sun is Mge? = 1.8-10° erg.

That the pulsation energy of a neutron star formed in a supernova explosion
might be very large was originally reasoned from rough Newtonian considerations
by HoYLE, NARLIKAR, and WHEELER (1964); by FinzI (1965b); and by CAME-
RON (19654, b); and each of these physicists suggested astronomically observable
consequences of such large pulsation energies. For a review, see the lecture by
Finz1 (1966); also WHEELER (1966).

Whether neutron-star pulsations are astrophysically important depends
upon how rapidly and by what means they are damped. Among the mecha-
nisms which may damp the pulsations are 1) the modified URCA reactions

(5.28) n+n-—>n+ptet+v, n+p+e—>n+n+tv,

which are driven by the rising and falling Fermi energies (FInzr (1965, 1966);
MELTZER and THORNE (1966); HANSEN (1966)); 2) reactions analogous to (5.28)
involving y~ and X7; 3) shock waves generated in the stellar atmosphere by the
pulsations (FINzI (1965b), CAMERON (19656)) ; 4) hydromagnetic waves generated
in the stellar magnetic field by pulsations (CAMERON (1965, b)); 5) electromag-
netic waves emitted by the vibrating magnetic field and the surrounding
plasma (CAMERON (1965b)); 7) coupling of the normal radial modes to nonradial
modes as a result of rapid stellar rotation, and the consequent damping by
viscous forces and by gravitational radiation (ZEe and WHEELER (1966);
WHEELER (1966)). The relative importance of these various mechanisms in
stable neutron stars has yet to be determined for certain. However, the cal-
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culations of ZEE and WHEELER (1966) and of WHEELER (1966) suggest that, un-
less the neutron star can get rid of most of its angular momentum during
the first few hours after formation, gravitational radiation will damp the nor-
mal radial modes to negligible amplitudes in a time of the order of a day.

5'5.4. Nonradial pulsations of neutron stars. Thus far we have
considered only the radial pulsations of neutron stars. Since the catastrophic
collapse of the stellar core, which, according to present theory (cf. COLGATE
and WHITE (1964, 1966)), initiates a supernova explosion, will rarely if ever
be completely symmetric, the resultant neutron star will pulsate nonradially
as well as radially. However, according to calculations of ZEE and WHEELER
(1966), gravitational radiation will damp out the nonradial modes in a fraction
of a minute, leaving only radial pulsations behind.

5'6. Summary. — In Sect. 5 we have applied the tools developed in earlier
Sections to the study of configurations of matter catalyzed to near the end-
point of thermonuclear evolution. The equation of state of such matter,
p*=p*(g*), is independent of temperature under conditions of physical interest;
and, as a consequence, the equations of stellar structure simplify considerably
to the form (5.11)—(5.15). The hydrostatic structure of each solution to these
equations is uniquely determined by a single parameter—e.g. the central den-
sity, o,; but the thermal structure evolves with cime in a manner determined
by the (arbitrary) initial temperature distribution.

The equation of state of cold, catalyzed matter and the corresponding equi-
librinm configurations are shown in Fig. 4. There are two types of stable con-
figurations: white dwarfs, which are made of heavy nuclei plus a degenerate
‘electron gas, and which have densities <10°g/cm?; and neutron stars, which
are made of a mixture of interacting neutron, proton, electron, and hyperon
gases and have densities between 102 and 10 g/ecm®. The maximum mass of
a white-dwarf star is ~1.2Mg, while that of a neutron star is not known
for certain but lies between 0.7 and 2.0 M.

A modified form of the static approach to stability reveals that the normal
modes of radial pulsation change stability in the strange manner of Fig. 5 at
critical points of the M*(R) curve. The pulsation periods of white-dwarf stars
are ~10 s, while those of neutron stars are ~0.3-10-%3. Neutron stars can
store a sizable fraction of their rest mass in the form of radial pulsations; but
nonradial pulsations are damped out in a fraction of a minute by gravitational
radiation.

Observational aspects of neutron star theory are reviewed in the lecture
of Finz1 (1966) and in the article of WHEELER (1966); and the equation of
cold catalyzed matter at high densities is the subject of Szamosi’s (1966)
lectures. ‘
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6. — Nondegenerate stellar models.

The analysis of equilibrium configurations of catalyzed matter (Sect. 5)
was considerably simplified over the general theory of stellar structure (Sect. 3)
by the fact that the equation of state, p* = p*(¢*, T*), for catalyzed mat-
ter is independent of temperature. When we turn our attention to configura-
tions of nondegenerate matter, the assumption that p*(g¢*, T*) is independent
of T* is no longer tenable; and, consequently, the equations of thermal struc-
ture do not decouple from the equations of hydrostatic structure.

Does this mean that, in order to learn something of the structure of non-
degenerate stars in general relativity, one must integrate the 16 + 3.N structure
equations (3.11) coupled together into one grand differential system with singu-
larities of the equations at both the center and the surface of the star? No; for-
tunately, a method which dates back to the nineteenth century and is associa-
ted with such names as LANE, RITTER, and EMDEN enables one, under certain
restrictive circumstances, to decouple the hydrostatic and thermal equations from
one another even in highly nondegenerate configurations. This method effects such
great simplifications, and the alternative of working with the full structure
equations is so formidable, that all studies of specific nondegenerate, relativistic
stellar models performed to date have utilized it.

Here in Sect. 6 we shall present the general relativistic form of the method
for decoupling the thermal and hydrostatic equations; and we shall briefly
describe the various relativistic stellar models which have been constructed by
means of it.

6'1. Method for decoupling thermal and hydrostatic equations. — Consider an
equilibrium configuration made of matter which obeys the two equations of
gtate

(6.1) p* =p*n, T*, Z,, ..., Zy) o* = o*(n, T* Z,y.cr Zy) -

The full equations of stellar structure (3.11) will determine the hydrostatic
and thermal structure of the configuration once the gas characteristic rela-
. sions (3.11-10)—(3.11-16 + 3N) and sufficient initial data (cf. Sect. 3'4) have
been specified. However, one sometimes knows ab initio that the particular
energy transport-mechanism at work in the star will produce a temperature
distribution, T*(r), which is related in some well-determined way to the distri-
bution of baryons, n(r) A

(6.2) T*(r) = T*[n(r)];

and one knows that the nuclear abundances, Z,, ..., Z,, are related to the
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number density of baryons in some particular way
(6.27) Zy(r) = Zy[n(7)] .

When such relations are known to hold, one can combine them with the equa-
tions of state (6.1) to obtain relations between pressure and mass density and
between pressure and number density

(6.3) p*=p*e*), n=n(p*.

Since the effects of temperature upon the «hydrostatic » parameters (p*, o*, n)
are thereby eliminated, the equations of stellar structure now separate cleanly
into hydrostatic equations and thermal equations.

The hydrostatic equations, which can be integrated without any further
considerations of temperature or of energy transport, and which have no sin-
gularity at the surface of the star, are nearly the same as those used for confi-
gurations of catalyzed matter. They are

a) Primary-structure equations
(6.4a) p* = p*(0*) (pressure-density relation (6.3)),
(6.4b, ¢) same as (5.11b, ¢).

b) Secondary-structure equations

(6.5b) n = n(p*) (relation (6.3)),

(6.5a, ¢) same as (5.12a, c).

Once the hydrostatic structure equations have been integrated, the tem-
perature distribution, 7*(r), is determined by eq. (6.2). The luminosity, L*(r),
isthen determined by the energy-transportequation (3.11-7) and by the equation
of thermal equilibrium (3.11-5), which together must be compatible with the
assumed temperature-density relation (6.2). '

6'1.1. Configurations of perfect gas as an example. (Refer-
ence: TOOPER (1965).) Tor a perfect gas of constant average baryonic rest
mass, pz, constant ratio of specific heats, Iy, and constant ratio, b, of number
density of free particles to number density of baryons, the equations of state
are

(6.6) pr=bnT*, g*=pin+ (Fi—1)buT*.

In an equilibrium configuration of such a gas a mixture of convective and
radiative transport will sometimes lead to the temperature-density relation

(6.7) T*[T¢ = (n/n)'™ ,



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 251

where N is a constant, and where T and n. are the central temperature and
central density of baryons. For example, efficient convection would lead to
the temperature distribution (6.7) with ¥ = (I,— 1)~ (cf. eq. (3.37b), in
which we here put Iy = Iy = I, = I,). By combining (6.7) with (6.6) we
obtain the relations

(6.8a) p* = p¥(n/n )t

(6.8b) o = pin(p*[pd YV + (I, — 1)1 p*,

which permit the equations of hydrostatic structure to decouple from the equa-
tions of thermal structure.

6'2. Relativistic polytropes. — In the Newtonian theory of stellar structure
the polyiropic pressure-density relation,

(6.9) p/pe. = (0/e)*™™,

is a good approximation to many realistic situations. The most reasonable
relativistic generalization of this relation is eq. (6.84). The alternative pos-
sibility

(6.10) p*Ioy = (%)

is unacceptable for two reasons: 1) at very high densities (6.10) leads to a velo-
city of sound exceeding the velocity of light; and 2) realistic physical situations
rarely lead to relations of the form (6.10), except in the Newtonian realm.

In Newtonian theory the polytropic relation (6.9), together with the hydro-
static equations

T

(6.11) m =f4nrz edr , dp/dr = — Gom/r?,

0

is sufficient to permit the computation of the hydrostatic structure of a stellar
model. However, in general relativity the polytropic relation (6.8a), together with
the hydrostatic equations (6.4b, ¢) and (6.5, ¢), are not sufficient to determine
the hydrostatie structure. One also needs a relation between p* and g*. We
shall here adopt the convention that, when p* and ¢* are related by an equation
of the form (6.8b), and when p*(n) has the polytropic form (6.8a), then the
resultant equilibrium configurations will be called relativistic polytropic models—
or relativistic polytropes for short.

Relativistic polytropes arise not only as equilibrium configurations for a
perfect gas; they also arise in other contexts—e.g. as approximations to neutron
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star configurations (GRATTON (1964d), TOOPER (1965)) and as approximations
to certain massive stars in which radiation pressure is not negligible compared
to gas pressure (IBEN (1963), BARDEEN (1965), GRATTON and GIANNONE (1965),
TOOPER (1966)).

At first sight relativistic polytropic models appear to form a five-parameter
family of equilibrium configurations; they depend upon the polytropic index,
N, the adiabatic index, I',, the ratio of central pressure to central rest-mass
density,

(6.12) ot =pflugn, ,

the central density of rest mass-energy, uin,, and the baryonic rest mass, p%. In
actuality only three of these five parameters —XN, I',, and o*— enter into nu-
merical integrations of polytropic models. The baryonic rest mass, u%, is easily
removed from the equations of hydrostatic structure since it merely determines
the constant ratio of the stellar rest mass to the total number of baryons,
M /A =py, as well as the constant ratio of density of rest-mass energy to
baryon number density, ujn/n = u}. The central density of rest mass-energy
can also be removed from the structure equations, by choosing (an,)~t or some
multiple of it as the unit of length in terms of which all other quantities are
measured (*).

6'3. Stellar models considered in the literature. — Rather than present here the
numericalsolutions of the structure equation (6.4), (6.5) for relativistic polytropes
and for other nondegenerate stellar models, we shall give a brief « guide » to
some of the literature where such solutions can be found.

Relativistic polytropes have been studied by many physicists in several
different contexts: BARDEEN (1965, 1966) has studied a number of particular
polytropic models with various values of N, I',, and o* in connection with his
interest in the relationship between binding energy and stability. ToorEr
© (1965) has presented a systematic treatment of isentropic polytropes—i.e,
polytropes for which Iy =1 + 1/N. GRATTION (1964a, b, ¢, d; 1965), and GRAT-
TON and GIANNONE (1965) have systematically studied polytropes with I, — &
in connection with the structures of neutron stars and of supermassive stars.
TooPER (1966)—see also FOWLER (1964, 1966) for the post-Newtonian ap-
proximation—has presented a complete account of polytropes of order N =3
in connection with the theory of massive stars.

(*) As has been emphas1zed by BARDEEN (1965), the scale-invariance which permits
one to eliminate :“B" from the equations of hydrostatic structure is present whenever
eqs. (6.3) can be put into the dimensionless form _p*/,uBn = f(g*/,uBnc) and n/n,=
= g(o*/upm,). Hele f and g are functions which may involve a* = p* */unn, but must
not involve p* 5 @b, or n, in any other way.
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In addition to polytropes, several other nondegenerate, relativistic stellar
models are treated in the literature: IBEN (1963) has studied massive hydrogen
configurations with allowances in the equation of state for the effects of electron-
positron pair formation. Iben’s models are very nearly polytropes with
I',=3%. TooPER (1964) has systematically treated the 3-parameter family of
isentropic configurations for which

(6.13) pXpd = (¢*[el)H™,  dnjdg* = n/(g* 4 p*) .

A variation on these configurations of TooPER, which is presented by GRaT-
ToN and GIANNONE (1965), avoids the difficulty of sound velocity exceeding
light velocity at high densities. This variation is based upon the pressure-den-
sity relations

= { Ko*1+1im if p* < (1/3K)N ,

(6.14) 0*/3 4 it o*> (1/3K)",
dnjdg* = n[(e* + p*) .

6'4. Summary and commentary. — The relativistic equations of stellar

structure are greatly simplified by assuming that the mechanism of energy
transport produces a temperature distribution related in some unique way
to the distribution of baryons, 7* = T*%(n). When such a relation is avail-
able, it can be used to eliminate temperature from the equations of state,
The hydrostatic equations of stellar structure are then temperature-indepen-
dent and can be integrated on a computer very easily.

This simplified method of studying stellar structure has been used in all
investigations made until now of nondegenerate relativistic configurationss
In Sect. 62 and 6’3 we presented a brief survey of the various models which
have been studied to date.

Although this method of studying stellar structure may seem somewhat
ad hoc and unphysical, it can often be used to obtain semiquantitative informa-
tion about situations of interest. It was particularly useful during the pre-1940
period, when the foundations of the Newtonian theory of stellar structure were
being laid; and it is performing a similarly valuable role today in the birth
and infancy of the relatistic theory of stellar structure. However, we must
emphasize that, one can rarely if ever place confidence in the quantitative details
of (hopefu]ly) realistic stellar models constructed by the above method, until
after he has checked the details of those models by numerical integration of the
full equations of stellar structure (3.11).
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7. — Gravitational collapse to infinite density.

7'1. Inevitability of collapse for massive stars. There is no equilibrium state
at the endpoint of thermonuclear evolution for a star containing more than about
twice the number of baryons in the sun (A > Ap,,~2A4g). This is one of the
surprising—and disturbing— consequences of the discussion in Sect. 5 of con-
figurations of catalyzed matter (cf. especially Fig. 4). Stated differently: A
star with 4 > Ap..~ 24 must eject all but A4,,, of its baryons—e.g., through
nova or supernova explosions — before settling down into its final resting state;
otherwise there will be no final resting state for it to settle down into (*).

What is the fate of a star which fails to eject its excess baryons before near-
ing the endpoint of thermonuclear evolution? For example, after a very mas-
sive supernova explosion, what will become of the collapsed degenerate-neutron
core, which contains more than A... baryons* Such a supercritical mass can-
not explode, since it is gravitationally bound and it has no more thermonu-
clear energy to release. Nor can it reach a static equilibrium state, since there
exists no such state for so large a mass.. There remains only one alternative;
the supercritical mass must collapse, and collapse, and collapse, until it has
reached infinite density and zero volume— or until the laws of classical general
relativity break down and new, yet-to-be-discovered, quantum-gravitational
forces halt the collapse.

The phenomenon of catastrophic gravitational collapse as described by clas-
sical general relativity will be the subject of this, the last major Section of these
lectures. Throughout our discussion of collapse, except in the closing paragraphs,
we shall ignore all quantum-gravitational effects.

72. Hydrodynamic equations for a collapsing star. — Because of the severe
computational difficulties posed by nonspherical collapse, the hydrodynamic
equations which govern relativistic collapse have been developed in explicit
form only for situations with sphericalrsymmetry. Within the framework of
spherical symmetry PoDURETS (1964a), MISNER and SHARP (1964a, b) BAR-
DEEN (1964, 1965), and FIRMANI (1965) have all independently developed the
equations for adiabatic collapse into forms suitable for numerical integration;

(*) The final resting state described here, being the lowest energy state for 4.,
baryons, is a nonrotating configuration. A rofating star, which has burned all its fuel
and contains more than A.,. baryons, can reach an equilibrium state, if its angular
momentum is large enough, and if the magnetic field does not halt the rotation (HoyLE,
NarLIKAR and WHEELER (1964)). However, the amount of rotation necessary to stabilize
a star much larger than A4, is great enough that some, if not most of the supercritical
stars in our universe are probably doomed to the catastrophic collapse which is
described in the following pages.
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MisNER (1965), and HERNANDEZ and MISNER (1966) have derived two alterna-
tive but equivalent forms for the equations of collapse with escaping neutrinos;
MisNER and SHARP (1965, 1966) have derived the equations for collapse with
energy transport by photon diffusion, and with nuclear-energy generation; and
GINZBURG and OZERNOY (1964) have discussed the behavior of a star’s magnetic
field during collapse. In addition to this work on specifically spherical problems,
the general-relativity theory of radiative transfer in more general dynamical
situations has been developed by BARDEEN (1965) and by LiNpQUIST (1966).

Thus far the exact equations of collapse, as analysed analytically in the
above references and by numerical integrations elsewhere (PoDURETS (1964¢),
BARDEEN (1965), FIRMANT (1965), and most extensively MAY and WHITE (1964),
(1966)), have yielded little new insight into relativistic collapse. They have
tended, instead, to confirm quantitatively the qualitative picture of collapse
which was first brought to light by the pioneering work of OPPENHEIMER and
SNYDER (1939). OPPENHEIMER and SNYDER discussed in detail the «free-fall »
collapse of a spherical configuration in which gravitational forces completely
overwhelm pressure forces. In the next few Sections we shall present a some-
what modernized version of the analysis of OPPENHEIMER and SNYDER, and we
shall subsequently demonstrate that the qualitative features of this analysis
cannot be modified by the presence of pressure forces inside the collapsing star.

T'3. Free-fall collapse (*).

73.1. Birkhoff’s theorem. Before restricting our attention to the
free-fall collapse of OPPENHEIMER and SNYDER, we must discuss an important
feature of spherical collapse in general: The geometry of space-time surrounding
a collapsing, nonradiating, spherical configuration, like that around an equilibrium
configuration (Sect. 8'4.1 and 38'5.1), is the Schwarzschild geometry

(7.1)  ds?= (1 — 2M*/r)dez — (1 — 2 M*/r)~ dr* — r2(d6? + sin®fdg?) .

This result is called Birkhoff’s theorem since it was first demonstrated by BIRK-
HOTFF (1923) pp. 253-256. (For an alternative proof see ToLMAN (1934a), Sect. 99.)
Although Birkhoff’s theorem is strictly valid only in the absence of radiation,
it remains very nearly valid so long as the energy density in the radiation field
is not strong enough to modify appreciably the geometry—i.e., so long as the
mass-energy radiated during the collapse is small compared to the star’s total
mass-energy (**).

(*) 1 am indebted to Prof. J. A. WHEELER for many enlightening discussions of the
ideas in Sect. 7.3.

(**) We shall delay until Sect. 7°5.1 a discussion of stars which radiate a large fraction
of their mass as they collapse. ;
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Birkhoff’s theorem is easily understood on physical grounds: Consider an
equilibrium configuration which is unstable against gravitational collapse and
which, like all equilibrium configurations (cf. Sect. 8'4.1), has the Schwarzschild
geometry as its external gravitational fleld. Perturb this equilibrium confi-
guration in a spherically-symmetry way so that it begins to collapse radially.
The perturbation and subsequent collapse cannot affect the external gravita-
tional field because, just as Maxwell’s laws prohibit monopole electromagnetic
waves, so Binsteins’ laws prohibit monopole gravitational waves. There is no
possible way for any gravitational influence of the radial collapse to prdpaga’oe
outward. '

73.2. Free-fall collapse as depicted in Schwarzschildfco-or-
dinates. One most readily and directly confronts the novel aspects of relativ-
istic collapse by examining the time evolution of the radius, R, of a freely col-
apsing configuration. (R is defined by 4nR? =[surface area of collapsing
star]; i.e., R is the value of the Schwarzschild radial co-ordinate, », at the sur-
face.) Consider for definiteness a configuration with negligible internal pres-
sure, which begins at Schwarzschild co-ordinate time ¢ = 0 in a momentarily
static state. Let the initial radius be R, and the total mass be M*, As the con-
figuration collapses, its surface falls freely in the external Schwarzschild geom-
etry. Consequently, the energy red-shift eq. (3.3) is applicable to any particle
of matter on the surface of the star. When applied to such a particle, the red-
shift equation yields the following relation between the velocity of collapse of
the surface,

(7.2) vf = ¢ ?(1 —2M*/R)*dR/dt = (1 — 2M*/R)"dR/dt,
and the gravitation potential, @ = }In(1 —2M*/R), at the surface:
(7.3) (1 — %2 *¢® = const = exp[D(r = R,)].

By rearranging this equation, one obtains a differential equation for the radius
of the freely collapsing configuration as a function of (co-ordinate) time, ¢

dE 2M* (R, + 2M*
. — = —=—1 — .
(7.4) dz (R,-—2M*) (R ) (1 E )
The solution to this differential equation is most easily expressed in terms of
a parameter #:

R = (Ry2)(1 + cosn)

(Ry/2M* — 1) +-tg (77/2)]
(R,j2M* — 1)} —tg (n/2)

+ 2M*(R,/2M* — 1)} + (R4 M*)(n + siny)] .

(7.5a) 1 — o In[
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The Schwarzschild co-ordinate time, ¢, to which R is here related, is not the
proper time which would beé measured by the clock of an experimental astro-
physicist standing on the surface of the collapsing star. Rather, the astrophys-
icist’s comoving clock would read

1*;[[(1 _QM*/R) der— (1 — ‘-)M*/R)“ldRz]i;

1.e., it would read
(7.5b) 7* = (proper time on surface of star) = (K}/8M*)(5 - siny) .

Equations (7.5) for the radius of a freely collapsing star as a function of
time have a strange behiavior: one might have expected the star to collapse
to zero volume (R —0) after the elapse of a finite Schwarzschild coordinate
time, t. However, as t becomes larger and larger, dR/d¢ gets smaller and
smaller; and in the limit { — oo [tg(5/2)—> (R:/2M* — 1)}], R decreases asymp-
totically to 2.M*

(7.6) R(t = co) = 2M* .

Simultaneously, proper time as measured at the surface of the star approaches
the finite value

R} {4 M* 2 M*\
v $3 — — -1 .
(7.7) T (tﬁoo)—(SM*) cos ( 2, 1)+R,(1 i ) .

As proper time, t*, continues to increase beyond the value (7.7), the star con-
tinues to collapse (R decreases below 2M*), but the Schwarzschild co-ordinate
time, f, now decreases rather than increases. Finally, after the elapse of a
perfectly finite proper time,

(7.8) (R = 0) = 1*(n = 1) = (R3S M*),

the surface of the star has collapsed to a single point (R = 0). The corres-
ponding final value of the co-ordinate time, ¢, is

(7.9) tH(R = 0) = 2w M*(R,/2M* — 1)}1 -~ R,/AM¥) .

This behavior of radius, R, as a function of co-ordinate time ¢, and proper
time, 7%, is exhibited graphically in the left half of Fig. 7 for a freely collapsing
configuration of initial radius R, =10M*. (Such an initial condition is repre-
sentative of unstable, high-density configurations of catalyzed matter.)

17 — Rendiconti S.I.F. - XXXV,



258 K. S. THORNE

= oo

=477 M*

tm*

2 .
riM* u
a) b)
Fig. 7. — The free-fall collapse of a star of initial radius R, = 10M* as depicted alter-
natively a) in Schwarzschild and b) in Kruskal co-ordinates. The region of space-time
ingide the collapsing star is. stippled, while that outside is not. Only the geometry of
the exterior region is that of Schwarzschild; for a discussion of the interior geometry
see Sect. 7°3.6. The curve which separates the stippled and unstippled regions is the
world line of the surface of the collapsing star. This world line is parametrized by
proper time, z*, as measured by an observer who sits on the surface of the star; and
light cones, as calculated from ds?= 0, are attached to it. Notice that, although the
shapes of the light cones are not all the same relative to Schwarzschild co-ordinates,
they are all the same relative to Kruskal co-ordinates. This is because light rays travel
along 45 degree lines in the u-v plane (dv= 4 du), but they travel along curved
paths in the r-f plane. The Kruskal space-time diagram shown here is related to the
Schwarzschild diagram by eqs. (7.10) and (7.11) plus a translation of Schwarschild
time: t -t 42.8 M*. It is evident from these space-time diagrams that the free-fall
collapse is characterized by a constantly diminishing radius, which drops from 2 = R,
to R=0 in a finite and short comoving proper time interval, Ar* = 35.1 M*. The
point R=0 and the entire region r= 0 outside the star make up a physical « singu-
larity » at which infinite tidal gravitational forces—according to classical, unquantized

general relativity—can and do ¢rush matter to infinite density.

73.3. Free-fall collapse as depicted in Kruskal co-ordinates.
The above description of the collapse of a freely falling star is quite pathological
in the neighborhood of (B =2M*, ¢t = + oo). Is the strange form c¢f the
Schwarzschild space-time diagram (left half of Fig. 7) at this point, and for
R <2M*, an indication of some strange new force which acts upon the star
here? Is space really as badly twisted up near (R = 2M*, = oo) as the left
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half of Fig. 7 would indicate? No. Physically speaking, there is nothing at
all pathological about the geometry of space-time or the behavior of the star
at (R =2M%*, t = co). The pathology is all in the Schwarzschild co-ordinates
(t,7,0,9) which we have used to describe the external gravitational field;
and it is easily removed by transforming to a new, better-behaved co-ordinate
system.

Several different co-ordinate systems have been used in the literature to des-
cribe in a reasonable manner the Schwarzschild space-time geometry which
surrounds a collapsing star. The one most widely adopted in recent years is
that of KRUSKAL (1960) (see also FULLER and WHEELER (1962)). Kruskal
introduces new «time » and «radial » co-ordinates, v and %, which are related
to the Schwarzschild ¢ and » by

w = (r/2M* — 1)} exp [#/4 M*] cosh (t/4 M*)

for r>2M*,
v = (r/2M* — 1)t exp[r/4 M*] sinh (¢/4 M*)

(7.10)
w=(1—r/2M*)} exp[r/4 M*]sinh (¢/4 M*) .
v = (1 —r/2M*)} exp[r/4 M*] cosh (¢4 M*) , for r <2.M*.

In terms of Kruskal co-ordinates the Schwarzschild geometry (7.1) is deseribed by
(7.11a) ds? = f2(dv? — du?) — r2(d02 4 sin2 0d¢?) .

Here 7 is the Schwarzschild radial co-ordinate, which can be expressed in terms
of uz— vz by

(7.11b) (r/2 M* — 1) exp [7/2M*] = u? — v?;
and f2 is defined in terms of » by
(7.11¢) 2 = (32 M*3ryexp[— rj2 M*] .

In the right half of Fig. 7 the free-fall collapse of a star with initial radius
;= 0M* is shown relative to the Kruskal co-ordinate system. Note how
reasonably the world line of the star’s surface behaves in this Kruskal space-time
diagram. The co-ordinate pathologies at » = 2 M* have been removed entirely.
Several features of the Kruskal diagram for free-fall collapse should be
emphasized: 1) In the Kruskal u-v plane curves of constant Schwarzschild radius,
r, are the hyperbolae v — u? = const; while curves of constant Schwarzschild
time, #, are the radial lines v/u = const. 2) The pathological « point » (r = 2.M*,
t = oo). of the Schwarzschild diagram becomes the null (dsz =0) line u=v
in the Kruskal diagram. 3) Light rays travel along 45 degree lines—du = 4 dv—
in the Kruskal diagram. In this sense the Kruskal diagram is a close analogue
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of space-time diagrams of special relativity. 4) Although the Kruskal diagram
is admirably suited to the description of the geometry of space-time near the
surface of a collapsing star, it gives a somewhat pathological description of
the region r>> M* far from the star. In this far distant region, where space-
time is very flat, one would like the u-v co-ordinate lines to form an inertial
frame of reference (inertial in the sense of special relativity); but they do not.
5) Although it is possible for aman in a rocketship to remain at a constant radius
outstde r = 2 M* by pointing his rocket away from the star and firing his engines
with an appropriate thrust, such a rocketeer cannot remain at a constant
radius inside r = 2M*. No matter how hard he fires his rockets, a rocketeer
must always move along a timelike world line; but inside r=2M* (v> u)
world lines of constant radius are spacelike. Hence, once a rocket ship follows
the collapsing star in past r = 2M*, it can never escape being pulled on in
to r=0. 6) This plight of the foolish rocketeer shows that, although the Schwarz-
schild geometry is static as seen by a certain family of observers (observers
at fixed radius r) in the region r > 2 M*, there are no observers who see it
as static in the region r << 2.M*.

Because of the key role played in the theory of collapse by the gravitational
radius, R, = 2M*, of a star, it is of interest to examine the mean density of a
collapsing st#r as it passes through its gravitational radius. Roughly speaking,
the mean density at R = R, is

(7.12) o* ~ 3M*[AnR; = 3/32nM*? |
or, in conventional units,
(7.12") 0 ~1.8-10%(Mo/M)? g/cm? .

Note that, although this density at the gravitational radius is above nuclear
densities for a one-solar-mass star, it is only 1 g/em for a supermassive star of
M=10°Me.

7'3.4. Nature of the singularity at » =0. The region » == 0 of the
Schwarzschild geometry, into which the surface of a collapsing star contracts,
is called a « general-relativistic singularity ». That this singularity is not merely
a co-ordinate pathology as was the region r = 2M* in the Schwarzschild pic-
ture can be verified by examining the plight of an experimental astrophysicist
who stands on the surface of a freely falling star as it collapses to R =0.

Asg the collapse proceeds toward R = 0 the various parts of the astrophys-
icist’s body experience different gravitational forces. His feet, which are on the
surface of the star, are attracted toward the star’s center by an infinitely moun-
ting gravitational force; while his head, which is farther away, is accelerated



THE GENERAL-RELATIVISTIC THEORY OF STELLAR STRUCTURE AND DYNAMICS 261

downward by a somewhat smaller, though ever rising force. The difference
between the two accelerations (« tidal force ») mounts higher and higher as the
collapse proceeds, finally becoming infinite as R reaches zero. The astrophysi-
cist’s body, which cannot withstand such extreme forces, is stretched between
head and foot to infinite length as E drops to zero.

But thisis not all. Simultaneous with this head-to-foot stretching, the astro-
physicist is pulled by the gravitational field into regions of space-time with
ever-decreasing circumferential area, 4mr2. In order to accomplish this, tidal gra-
vitational forces must cbmpress the astrophysicist on all sides as they stretch
him from head to foot. The circumferential compression is actually greater
than the longitudinal stretching, so the astrophysicist, in the limit R — 0, is
crushed to zero volume and infinite length.

- One can easily write down formulae to describe the stretching and compres-
sion of the astrophysicist after his body forces are overwhelmed by the gravi-
tation forces. In this last stage of collapse each baryon in the astrophysicist’s
body falls freely toward » =0 albng a path which, in the Schwarzschild space-
time dia‘gram (left half of Fig. 7) has almost constant Schwarzschild time co-
ordinate, {. The astrophysicist’s feet touch the star’s surface at one. particu-
lar value of ¢—say ¢ = ¢{,—while his head moves along the curve f=1t,>t,.
Consequently, the length of the astrophysicist’s body increases according to
the formula

(7.13(1/) lAtroph = [‘—‘ gtt(R)]* [t;,, - tf] = [2M*/R]i.[th - tf] oC R—‘* oc (Tcol]a]ne - T)—i .

Here 7 ={— ¢! f (9r)idr + const] is proper time as it would be measured by
the astrophysicist if he were still alive. The gravitational field also constrains
the baryons of the astrophysicist’s body to fall along world lines of constant
6 and ¢ during the final stages of collapse. Consequently, his cross-sectional
ar2a decreases according to the law

(7-13b) AAstroph = [gae(R)gw(R)]*AeA‘POC R2ec (Tcollapse - T)% .

By combining eq. (7.13a,b) we see that the volume of the astrophysicist’s
body decreases, during the last fow moments of collaspe, according to thc law

(7-130) VAstroph = lAntmphAAstroph oc R% oC (Tcouapse - T)-

This crushing of matter to infinite density by infinitely large tidal gravita-
tional forces can occur not only at the surface of the collapsing star; it can
also occur at any other point along the r =0 singularity of the external
gravitational field. Hence, any foolish rocketeer who ventures below the radius
r = 2.M* of the external gravitational field is doomed to destruction.

In Sect. T'7 we shall discuss briefly the modifications which quantum-gravi-.
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tational effects may impose on this classical picture of the crushing of matter
to infinite density by tidal gravitational forces.

7'3.5. Free-fall collapse as seen by an external observer. Now
that we have examined relativistic collapse as seen by an experimental astro-
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Fig. 8. — Kruskal diagram of the commu-
nication between a collapsing star of initial
radius B; = 10 M* and a distant astronomer.
As in Fig. 7, the interior of the star is stip-
pled, but the exterior, Schwarzschild region
is not. The wavy 45 degree lines represent
the paths of radial light rays sent by an as-
trophysicist on the star’s surface to the dis-
tant astronomer. The world lines of the stel-
lar surface and of the astronomer are pa-
rametrized by the proper times at which
the light rays are emitted and received.
Light rays emitted after the star collapses
through R == 2 M* get caught in the singu-
larity at r=0.

physicist on the surface of a collaps-
ing star, let us next analyse it from
the point of view of an astronomer
who observes the collapse from a
great distance. Suppose that the as-
trophysicist on the star sends a series
of uniformly spaced signals to the as-
tronomer to inform him of the pro-
gress of the collapse. These signals
propagate along lightlike 45 degree li-
nes in the Kruskal u-v space-time dia-
gram of Fig. 8. The signals originate
on the world line of the stellar surface
and they are received by the distant
astronomer when they intersect his hy-
perbolic world line, » = const=> M*.
As the star collapses closer and closer
to its gravitational radius, R = 2.M*,
the signals, which are sent at regu-
larly spaced intervals according to the
astrophysicist’s clock, are received by
the astronomer at more and more wi-
dely spaced intervals. The astronomer
does not receive a signal emitted just
before the gravitational radius, B =
= 2M*, is reached until after an in-
finite amount of time has elapsed; and
he never receives signals emitted after
the gravitational radius has been pas-
sed. Those signals, like the astrophy-
sicist who sends them, get caught and
destroyed in the singularity atr = 0.

Hence, to the distant astronomer, the collapsing star appears to slow down
as it approaches its gravitational radius, light from the star becomes more and
more red-shifted, and clocks on the star appear to run more and more slowly.
It takes an infinite time for the star to reach its gravitational radius; and, as
seen by the distant astronomer, the star never gets beyond there.
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From the Kruskal diagram and eqs. (3.52) and (7.10), one can calculate the
red-shift of radially travelling photons received from the center of the star’s
disk by the distant astronomer during the very late stages of collapse. One
finds that the ratio of wavelength received to wavelength emitted is

(7.14) Aw/4s = const X exp [7% /4 M*],

where 7%, is proper time as measured by the very distant astronomer. Notice
how short the e-folding time is

(7.15) Tevtouting = 4G M[c® = 1.968-10~(M /M o) s .

Formulae (7.14) and (7.15) are valid not only for a freely collapsing star, but also
for a collapsing star of large internal pressure; and they are valid not only for
radially travelling photons emitted from the surface of the star, but also—with
a different multiplication constant—for neutrinos emitted from the star’s
center (*).

Neutrinos from the star’s center all travel radiallyoutward along paths which
are not bent by the gravitational field. Consequently, the neutrino luminosity
during the late stages of collapse decays according to the law

(7.16) L™ = const xexp{— 7% /2 M*].

One factor of exp[t% /4 M*] comes from the red-shift of each neutrino, and the
other comes from the increasing time interval between arrival of neutrinos.
This formula was first derived by ZEL'DovicH and PODURETS (1964).

The luminosity decay of light from the surface of the collapsing star is not
80 easily calculated. In addition to the red-shift and the increase in time
between photons, which entered into eq. (7.16), one must consider :1) the bend-
ing of nonradial light rays in the star’s gravitational field; 2) the aberration of
light rays not emitted precisely radially; 3) the inability of a photon to escape
from the star’s gravitational field to infinity unless it is emitted from the star’s
surface within an angle

(7.17) Brnax ¢ (R[2M* — 1)

of the vertical, a8 seen in the proper reference frame of a man standing on the
star’s surface; and 4) the fact that a photon emitted in a nonradial direction
requires longer to reach the astronomer than one emitted radially. Effects 1)-3)
tend to increase the rate of luminosity decay, while effect 4) tends to decrease

(*) For a more detailed discussion of most of the material in the remainder of this
Section see the review by ZEL'DoVICH and Novikov (1964).
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the decay rate. PODURETS (1964b), who has examined all these effects, finds
that 4) outweighs 1)-3) and thereby results in a decay of light from the star’s
surface of

T

. PR
(7.18) L = const X exp [— 5\7—5 2M*] ,

which is more gentle than the decay (7.16) of neutrinos from the star’s center.

In any realistic collapse situation the decaying photon luminosity from the
collapsing star would probably be masked by light from the lagging or explo-
ding stellar atmosphere. However, predictions such as the above could be tested
quite easily by a physicistin a space-ship near a collapsing star many thousands
—or millions or billions— of years after the collapse was initiated. By this time
the star would be a very black sink for photons and matter, observable only
by virtue of its gravitational field. The physicist, having discovered such an
invigible sink, could determine whether it was a collapsing star or a cold, dead
neutron star by dropping a radio transmitter radially into the gravitational
field. 1f the transmitter stopped functioning abruptly at a frequency red-shift
of ~10Y%, the physicist would know it had hit the surface of a neutron star.
On the other hand, if the received intensity died out and was red-shifted expo-
nentially with time, the object would be a collapsing star. During the late stages
of fall the red-shift would be governed by eq. (7.14), while the intensity decay
would obey

(7.19) Limdto — const X exp[— % | M*],

(cf. ZEL'DOVICH and NoVIKOV (1964), eq. (15.11)). This intensity decay is
steeper than L™ of eq. (7.16) by virtue of the effects of 1) and 2) (cf. preceding
Section) upon photons emitted very nearly, but not quite, radially. Such photon
are received by the detection antenna because of its finite size.

73.6. Interior of a freely collapsing star. Thus far we have
concentrated all of our attention on the surfaces of collapsing stars and on their
external gravitational fields. We now turn to an examination of the interior
regions. Rather than calculate from seratch the time evolution of the interior,
we shall limit ourselves to a description of the results of such calculations for
a particularly simple case: that of a freely collapsing star of initially uniform den-
sity. The collapse of such a configuration was originally analysed by OPPEN-
HEIMER and SNYDER (1939), but the description presented below is due primarily
to BECKEDORFF and MISNER (1962) and to BECKEDORFF (1962) (*). As the de-

(") For descriptions of this homogeneous interior solution from different points of
view, and of other dinhomogeneous interiors, see Torman (1934b), DaTT (1938),
KLEIN (1961), ZEL'DOVICH (1962, 1963a), HoYLE, FowLER, BURBIDGE and BUR-
BIDGE (1964), McViITTIE (1964), CALLAN (1964), and HTWW, pp. 125-134.
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seription which follows requires a prior familiarity with Friedmann’s closed
cosmological model, we shall begin with a brief review of it. For further details
see, e.g. TOLMAN (1934a) parts IIT and IV, especially pp. 426-7; also LANDAU
and LIrscHITZ (1962), pp. 375-384.

The Friedmann universe has the space geometry of a 3-sphere. (A 3-sphere
is the analogue in one higher dimension of the surface of an ordinary sphere.)
In terms of hyperspherical co-ordinates (yx, 0, ¢) and a time coordinate », the
Friedmann geometry is described by

(7.20) ds?= a?(n)[dn® — dy? — sin? y(d6? -+ sin20de?)] .

Einstein’s field equations demand that the radius, a, of the Friedmann universe
be the following function of time:

(7.21) a = (a,/2)(1 + cosn) .

The density of mass-energy in the Friedmann universe is uniform and is related
to the time-dependent radius by

(7.22) o* = 3/(8na?) .

The material particles in the Friedmann universe always remain fixed with
resp2ct to the hyperspherical co-ordinates (yx, 0, ¢), and the pressure always
remains zero. Only the radius and density of the universe vary with time.
Notice from egs. (7.21) and (7.22) that the universe begins ( = — z) in a sin-
gular state of zero radius, zero volume, and infinite density. As co-ordinate
time, 7, increases from — x to 0, the upiverse expands to a maximum radius,
a=a,; and as 7 increases on past 0 to -+, it recontraets to a singular state
ofinfinite density. Proper time as measured by a clock attached to the stationary
matter is related to co-ordinate time by

(7.23) T* =fa(n) dn = (a/2)(n + siny) .

Consequently, the total proper-time lapse from the creation of the universe to its
destraction is 7*(m) — t*(— @) = ma,. The time evolution of the Friedmann
universe could be illustrated by a series of embedding diagrams of the hyper-
surfaces of constant co-ordinate time, 7. If one rotational degree of freedom
—q for example—were suppressed from the embedding diagrams, they would be
simply a succession of ordinary spherical surfaces, which begin with radius
a =0, expand to a = a,, and then contract back to a = 0.

To see the intimate relationship between a freely collapsing star of initially
uniform density and the Friedmann universe, imagine the following surgical
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operation: 1) Take a Friedmann universe of radius a = a, at its moment of
maximum expansion, # = 0; and slice off and discard the region 2o < x <,
where y, is some angle less than =/2. 2) Take a Schwarzschild geometry of
mass M* = (ay/2) sin® y, at the moment ¢ = 0; and slice off and discard the
region 7 < R; = a,sin y,. 3) Glue the retained pieces of Friedmann and Schwarz-
schild geometry together smoothly along their cut surfaces. The resultant object
will be a momentarily static star of uniform density

(7.24a) 05, = 3/(8na3) ,
of mass
(7.24b) M* = (a,/2) sindy, ,

and of radius

(7.24¢) R; = a,sin y, .

An embedding diagram for this momentarily static, initial configuration is
shown in Fig. 9 (curve A-A’-A”" of history A-B-C-D, rotated about its vertical
axis). The spherical cup, 4-A’, of this embedding diagram is the interior of the
star and comes from the truncated Friedmann universe. The parabolic funnel,
A’-A", which is capped by the spherical cup, is the external gravitational field
and comes from the truncated Schwarzschild geometry.,

Suppose that our patched-together star is released from its momentarily
static state at # = 0 and allowed to collapse. How will its geometry and den-
sity distribution evolve with time? According to the calculations of OPPENHEIMER
and SNYDER the interior, truncated Friedmann universe and the exterior, truncated
Schwarzschild geometry evolve just as though they had never been cut up and patch-
ed together. In the interior region, the geometry as a function of 7 is described
by eqs. (7.20) and (7.21), and the density remains uniform, increasing with time
in accordance with eq. (7.22). The surface of the star, % = %o, at which the join

“to the exterior Schwarzschild geometry is made, moves through the Schwarz-
schild space-time along the curve (7.5), which we have already discussed in
great detail. Note that the time co-ordinate, », which is used to describe the
Friedmann interior (eqs. (7.20) and (7.21)) is identical to the parameter, #, used
in describing the motion of the star’s surface in the Schwarzschild geometry
(eq. (7.5)).

In Fig. 9 we exhibit a space-time diagram for a freely collapsing star of
R,/ M* = 2[sin? y, = 3. This space-time diagram makes use of two co-ordinate
patches: a Friedmann patch for the interior region, and a Kruskal patech for
the exterior region. A photon, «, is emitted from the surface of the star and
another, 3, is emitted from the center just before collapse begins; and they both
travel radially outward to r = co. A third photon, y, is emitted radially from
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the center of the star at the last possible instant before it would be doomed
to be caught in the singularity. Photon y travels radially outward through the
star and crosses its collapsing surface at the moment when R =2M*, y then
remains at » = 2 M* forever, gince it cannot move quite rapidly enough to escape

Friedmann

history A-8~C-D

Arr At a
a g > gn
Ar A 8 ﬁyﬁg'
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A 8
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Tig. 9. — Space-time diagram and embedding diagrams for a freely collapsing star of
uniform density with initial radius R,= 3M*. The space-time diagram consists of
two co-ordinate patches: a Friedmann patch to cover the interior of the star and a
Kruskal patch to cover the exterior. The join between the Friedmann and Kruskal
patches, as regulated by egs. (7.5) and (7.10), is indicated at several points by the
letters A’, B’, W’ and ('. The paths of several light rays, which are emitted from the
center of surface of the star as it collapses, are shown as wavy 45 degree lines labeled
with Greek letters. The r = 0 singularity into which the star collapses is indicated by
saw teeth. Embedding diagrams are shown corresponding to 2 different ways of viewing
the star’s collapse—history 4-B-C-D and history A-W-X-Y. These embedding diagrams
are skeletonized in that they must be rotated about their vertical axes in order to become
2-dimensional surfaces analogous to Fig. 1. The several photons emitted from the center
or surface of the star are indicated in the embedding diagrams by small circles. Notice
that the hypersurfaces of which embedding diagrams are given intersect the singularity
only tangentially. We do not consider here hypersurfaces which intersect the singularity
at a finite angle in the u-v plane because such spacelike hypersurfaces cannot be embedded
in a Euclidean space. Instead, a Minkowskian space (indefinite metric) must be used.
For a discussion of embedding diagrams in Minkowskian spaces see THORNE (1965a).
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from the star’s gravitational field, nor quite slowly enough to be pulled into the
singularity. A fourth photon, 0, and a fifth, &, are emitted from the center of the
star after the moment of no escape. Photon & emerges from the star before
being erushed, but it gets pulled into the singularity shortly thereafter. Photon
€, on the other hand, cannot even reach the star’s surface before being erushed.

73.7. Embedding diagrams for free-fall collapse. Thus far we
have described the geometry of space-time around and inside a collapsing star
primarily in co-ordinate-dependent terms. Let us now use the technique of
embedding diagrams to picture that geometry in a co-ordinate-independent
manner. :

We will need a sequence of embedding diagrams, each corresponding to the
geometry of a spacelike hypersurface to the future of the preceding one, in order
to describe the time development of the collapse geometry. But how are the
hypsrsurfaces to be chosen? In Newtonian theory or special relativity, and also
in the case of a general-relativistic equilibrium configuration (Sect. 8'5.1) one
chooses hypersurfaces of constant time. But in dynamical regions of a curved
space-time no naturally perferred time co-ordinate exists. This situation forces
one to make a totally arbitrary choice of hypersurfaces for use in visualizing the
time development of geometry, and to keep in mind how very arbitrary that
choice was.

In Fig. 9 we use two very different choices of hypersurfaces to depict the
time development of the geometry of a particular freely collpasing star. In
both of these representative histories the initial configuration, 4-4'-4’, is the
one which we constructed by patching together momentarily static Friedmann
and Schwarzschild geometries. . History A-B-C-D depicts the time develop-
ment of this initial 3-geometry as sampled by a succession of hypersurfaces
which have constant Friedmann time, %, in the interior region. As depicted in
this history, the interior region remains always a spherical cup of half angle z,,
but it contracts from radius R =a, siny, to R =0 as time increases. The
matter in the star is all crushed to infinite density simultaneously when R reaches
zero, and the external Schwarzschild « funnel » develops a cusplike singularity
at that point. As time increases further, this cusp pulls the region » <2 M* of the
funnel into r =0 at such a fast rate that the outward-traveling photon & is
gobbled up and crushed.

The collapse geometry as sampled by hypersurfaces 4-W-X-Y looks quite
different from that revealed by A-B-C-D. As time passes, a neck develops in
the geometry just outside the surface of the star. This neck becomes tighter
and tightar and then pinches off, leaving the star completely isolated from the
rast of the universe, and leaving a deadly cusplike singularity in the exterior
geometry where the star used to be. The isolated star, in its own little closed
universe, continues to contract until it is crushed to infinite density; while the
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external geometry begins to develop another neck, and the cusp quickly gobbles
up photon 4. ‘

The extreme difference between histories A-B-C-D and A-W-X-Y serves
as a warning that only a small part of the dynamics of collapse can be captured
by embedding diagrams or by an examination of representative 3-geometries.
The dynamics is four dimensional; but embedding diagrams only sample two-
or at best three-dimensional projections of it.

T'4. Spherical collapse with internal pressure forces. —So far as the external gra-
vitational field is concerned, the only difference between a freely collapsing star
and a collapsing, spherically-symmetric star with internal pressure is this, that
the surfaces of the two stars move along different world lines in the exterior
Schwarzschild geometry. Because the exterior geometry is the same in both
cases, the qualitative aspects of free-fall collapse as described in Sects. T3.1 through
7'3.5 (and also the quantitative equations (7.1), (7.6), and (7.10)—(7.19)) can be
carried over directly to the case of nonnegligible internal pressure. For example, the
vast difference between what is seen and experienced by a man on the surface
of the collapsing star and what is seen by a distant observer is preserved.

An important and fascinating question to ask is this: Can large internal pres-
sures in any way prevent a collapsing star from being crushed to infinite density
by infinite tidal gravitational forces? From the Kruskal diagram of Fig. 8 it is
evident that, once a star has passed inside its gravitational radius (B <<2.M¥),
no internal pressures, regardless of how large they may be, can prevent the
star’s surface from being crushed in a singularity. The surface must move
along a timelike world line, and all such world lines inside » = 2M* hit r = 0.
BARDEEN (private communication) has shown that, for spherical collapse,
ingide the gravitational radius pressure forces are not only powerless to prevent
the star’s surface from being crushed; they also cannot prevent any part of the
interior from being crushed. The entire star is doomed once it has passed the
gravitational radius.

The interior dynamics of spherically collapsing stars with pressure are not
so well understood as the exterior dynamics. However, major advances in our
understanding of the interior dynamics are now being made by means of nu-
merical computations and analytic analyses (for references see Sect.7'2); and in
these computations and analyses no surprising new features have been encount-
ered which did not occur in the simple, uniform-density, free-fall collapse of
Sect. 7°3.6 and 7°3.7.

T7'5. Collapse in totally realistic situations. Until recently it was often argued
(see, e.g., Lirscurrz and KHALATNIKOV (1963)) that the general-relativistic
singularity at » = 0 was a feature p=culiar to spherically symmetric collapse,
s0 that small deviations from spherical symmetry could prevent a singularity
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from arising and could thus save a collapsing star from being crushed to infinite
density. Recent analyses have revealed, however, that those arguments were
incorrect: Gazneral-relativistic singularities are an essential and (almost) un-
avoidable aspect of gravitational collapse once the collapse has proceeded past
the gravitational radius, R = 2M*, or past the analogue of R = 2M* for non-
spherical bodies. Let us review the analyses which lead to this conclusion, and
make the conclusion more precise.

75.1. Trapped surfaces and the evolution of singularities. I
spherically-symmetric collapse the external, Schwarzschild gravitational
field is divided into tweo regions of very different character by the «event
horizon » r =2M*. The region inside r = 2M* can be distinguished from the
exterior region by either of two properties. The first, a global property, is this,
that after the surface of a collapsing star has passed into the region r << 2 M*,
the star’s surface cannot escape being crushed in a singularity of infinite tidal
gravitational forces. The second distinguishing property of » <2 M* is a local (or
quasi-local) property: A bundle of radial light rays inside » = 2 M* is convergent
(the light rays move closer together as they propagate) whether it is an « out-
going » bundle or an «ingoing » bundle (cf. Fig. 8). Is the global property of the
evolution of a singularity related in any intimate way to the local property of
convergent outgoing and ingoing light rays?! By posing this question and
answering it affirmatively, PENROSE (1965) has made one of the greatest con-
tributions in the history of general relativity.

PENROSE begins by generalizing the property of convergent outgoing and
ingoing light rays to asymmetric regions of space-time. His generalization is
motivated by a close examination of the 2-dimensional, spherical surfaces

(7.25) (r = const << 2 M*, t = const) = (4 = const, v = const > u)

in the Schwarzschild geometry. When related to these 2-surfaces the property
of convergent light rays states: Light rays emitted from one of these 2-surfaces
in the perpendicular, outward direction converge toward each other as they propagate;
and inward light rays perpendicular to the 2-surface also converge. PENROSE
calls any closed 2-surface, spherically symmetric or not, which has this property
a trapped surface; and he suggests that asymmetric regions of space-time which
contain trapped surfaces are analogous to the region r << 2M* of the Schwarz-
schild geometry.

The analogue between regions of space-time containing trapped surfaces and
the Schwarzschild region r <<2M* is made explicit by the following theorem,
which is Penrose’s most important result (we state the theorem in more physical,
but less precise language than that of Penrose): Consider a star undergoing com-
pletely realistic gravitational collapse (i.e., asymmetric collapse with rotation,
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radiation, magnetic fields, shock waves, etc.) in a universe which has the following
properties:

1) The universe is open; i.e., on some initial spacelike hypersurface it
has infinite area (*).

2) Along every timelike world line in the wniverse the future direction is
uniquely distinguished from the past.

3) At each point of spacetime the density of mass-energy as measured by
an arbitrary observer in his own proper reference frame is nonnegative.

4) General relativity is the correct theory of gravitation.

If a trapped surface evolves during stellar collapse in such a universe, then either
or both of the following must occur subsequently:

a) A general relativistic singularity evolves. This singularity need not be
characterized by an infinite density of mass-energy, but it must be a region
beyond which either photons or matter—and probably both—cannot continue
to exist (**)

or

b) another universe suddenly attaches itself to the star’s universe.
(Equivalently, but in more mathematical terms, the star’s universe does not
possess an initial Cauchy hypersurface) (***).

Tais theorem establishing the intimate connection between trapped surfaces
and singularities is extremely powerful. Only two modifications would be needed
to enable us with confidence to infer that singularities necessarily follow the
evolution of a trapped surface in our own universe: the elimination of condition
1) and the elimination of possibility 5) as an alternative to a). PENROSE (pri-
vate communication) believes that it may, indeed, be possible to eliminate 1)
by a reformulation of the proof of the theorem; but he is not optimistic about
eliminating b) as an alternative to a).

(") This assumption was not stated explicitly in Penrose’s (1965) paper, but he
points out in a private communication that it is necessary to his proof.

(**) For examples of particularly strange types of singularities see SHEPLEY (1964;
1965a, b), as well as the description by TAauB and MiSNER (1966) of the join between
the Taub universe and the NUT universe. For discussions of the ways in which magnetic
fields in collapsing bodies affect the structure of the singularities, see KHALATNI-
KO0V (1965) and THORNE (1964).

{(**") For examples in which botk b) and a) follow the evolution of a trapped surface
see the extemsion by GraveEs and BRILL (1960) of the Reisner-Nordstrom solution,
and the extension by Boyer and LinpquistT (1966) and by CARTER (1966) of the Kerr
solution. ‘
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7°'5.2. Small deviations from spherical symmetry. According to
the analysis of Penrose, the evolution of a trapped surface during gravitational
collapse is a key indicator that something strange will subsequently happen to
the geometry of spacetime—that either a singularity will halt the collapse, or
that another universe will attach itself to ours, or both. Hence, at this point
in the discussion we should ask whether trapped surfaces are a typical feature
of stellar collapse, or whether they are peculiar to the case of spherical symmetry.

That trapped surfaces are somewhat typical has been shown recently by
DOROSHKEVICH, ZEL'DOVICH, and NoVIKOV (1965) by means of an analysis
of small perturbations of a collapsing star from spherical symmetry. Their
argument, in rough outline, is as follows: In the idealized case of spherical sym-
metry a collapsing star feels no special or peculiar forces as it passes through
its gravitational radius B = 2M*. Consequently, there should be no peculiar
forces available at R = 2M* to magnify enormously small initial deviations
from spherical symmetry; the deviations, if sufficiently small initially, will
remain small until after R = 2M* is passed. But small perturbations in the
neighborhood of R = 2M* cannot prevent the evolution of a trapped surface
(for proof see DOROSHKEVICH et al.). Hence, a collapsing star, which is initially
nearly spherical and has only a little angular momentum, generates trapped sur-
faces during the late stages of collapse.

DORESHKEVICH ¢t al. not only prove that trapped surfaces evolve during
slightly aspherical collapse; they also discuss the evolution of nonspherical and
rotational perturbations during the collapse. Most interesting of allis their
discovery that, as the star approaches its gravitational radius, all multipole
perturbations in the gravitational field seen by an external observer die away
to zero; whereas rotational perturbations remain finite,

7°6. Gravitational collapse to a singularity in other contexts. — According to
general-relativity theory, gravitational collapse to a singularity is not a pheno-
menon confined to massive and supermassive stars. Rather, it is a phenomenon
which easily can occur in-any large aggregate of matter—in galactic nuclei,
in quasi-stellar sources, in the universe as a whole, ete. For example, collapse
to a singularity—or the time-reversed explosion from one-— is a feature com-
mon to almost all relativistic cosmological models (see, e.g., SHEPLEY (1964,
1965a, b), HAWKING and BLLIS (1965), HAWKING (1965, 1966), GEROCH (1966)).
That there is an intimate relationship between the collapse of a cosmological
model and the collapse of a star is hinted at by the analysis of Sect. 7°3.6. (See-
also HTWW, pp. 137-141.)

Gravitational collapse to a singularity can occur, in principle, in small ag-
glomerations of matter as well as in large ones. However, when the mass of a
configuration is less than Myoyv~1.5Mg, the collapse must be initiated not
by classical processes, but by the quantum-mechanical tunneling of a potential
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barrier. For a discussion of this phenomenon and of the fantastically slow
rates associated with it, see HTWW.

Collapse to a singularity can occur even in the absence of matter if space-
time is sufficiently curved intrinsically, or if it contains enough gravitational
radiation. For a discussion see WHEELER (1964b).

. T7. The issue of the final state (*). — The crushing of matter to infinite
density by infinite tidal gravitational forces is a phenomenon with which one
cannot live comfortably. From a purely philosophical standpoint it is difficult
to believe that physical singularities are a fundamental and unavoidable feature
of our universe. On the contrary, when faced with a theory which predicts the
evolution of a singular state, one is inclined to discard or modify that theory
rather than accept the suggestion that the singularity actually occurs in nature.
_ Such was the case with Rutherford’s theory of the atom, which was needed to
explain o«-scattering experiments, but which predicted the evolution of a phys-
ical singularity—the spiraling of orbital electrons into the atomic nucleus as a
result of radiation reaction. It was to avoid this singularity and thereby explain
atomic spectra that BoHR suggested quantizing the energy states available
to orbital electrons. Just as quantization of classical mechanics prevented phys-
ical singularities from evolving in Rutherford’s atom, so quantization of general-
relativity theoty may prevent physical singularities from evolving in gravita-
tional collapse.

.That quantum-gravitational effects must play an important role in the very
late stages of collapse is evident on two grounds: 1) When densities in excess
of 10* g/cm?® are reached, the radii of curvature of space-time become [smaller
than the Compton wavelengths of elementary particles (cf. Sect. 21); and, con-
sequently, the intrinsic properties of elementary particles are modified by tidal
gravitational effects. 2) The gravitational field, like all fields, must undergo
quantum fluctuations; and the characteristic size of gravitational fluctuations
is the Planck length

(7.26) L* = (AG/[c*)t = 1.616-10~3% cm

(see WHEELER (1962) pp. 76-77). Surely such fluctuations in the geometry of
space-time will have a profound effect upon the dynamics of collapse when the
collapse has proceeded so far that the radii of curvature of space-time are of
the order of L*! Note that this stage of collapse oceurs at a density of

(7.27) o** ~ (radii of curvature)~ L*,
o ~10%g/em?.

(") The ideas in the first three and the last two paragraphs of this section are due
primarily to J. A. WHEELER; see WHEELER (19645) and HTWW, pp. 138-147.

18 — Rendiconti S.I.F. - XXXV,
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In what manner will quantum gravitational effects modify the classical
picture of collapse to a singularity? This question cannot be answered with
confidence until the foundations of the quantum theory of gravitation are well
understood. However, it seems probable, in analogy with familiar quantum-
mechanical scattering problems, that the quantum theory of catastrophic collapse
will be characterized, not by a singular final state as is the classical theory, but by
a probability amplitude for this, that, or another physically reasonable outcome,

Already in the development of the quantum theory of gravitation, highly
idealized calculations by DEWrTT (1966) and his students indicate that this
probability-amplitude picture of collapse is reasonable: DEWITT e¢f. al. have
partially solved, in two different ways, the problem of quantizing the gravi-
tational field of the Friedmann universe, and both of their partial solutions sug-
gest that the probability amplitude for the contracting universe to «bounce »
in this, that, or another manner, rather than be crughed to infinite density,.
is very high—perhaps unity. However, because the quantum effects which
cause the bounce do not become important until a density of the order of
10% g/em? is reached, little or no information could be transmitted from the col-
lapsing phase of the universe, through the quantum bounce, and into the re-
expanding phase.

From thesge results of DEWITIT ef. al. it seems reasonable—though far from
necessary!—to expect that the transformation of catastrophic collapse into
catastrophic explosion may be a general feature of the quantum theory of
gravitation. If go, does this mean that an external observer, who watches a
star collapse toward its gravitational radius and then waits sufficiently long,
will see the star suddenly explode back out? No! There is a large region of
space-time separating the event horizon, » = 2M*, of the Schwarzschild geo-
metry from the quantum region

(7.28) 7S Tqusatum ~ 10~2°( M| M o)t cm .

(Note: 7 < 7quntum i the region where the radii of curvature of space-time,
(r*/M*)%, are of the order of or small compared to the Planck length, L* =
=1.616-10-33 cm.) In the region 7guamtam €7 <<2M* stellar dynamics are go-
verned by the familiar laws of classical general relativity. However (cf. Fig. 8),
a star cannot explode outward from the quantum region, through this classical
region of trapped surfaces, and into the outside universe, except by reversing
its direction of motion in time; and a time-reversed, exploding star would appear
to an external observer to be a collapsing antistar (whatever that is). Conse-
quently, it is difficult to understand how a quantum-mechanical reversal of
collapse in the region 7 < 7quumem could cause a star to explode (in the conventional
sengse of the word «explode ») back out, through the event horizon r = 2M*
which swallowed it in the collapsing phase. More reasonable is the suggestino
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that quantum effects cause a collapsing star to bounce and then re-explode, not
back to where it came from, but into another region of the universe (multiply-
connected space-time geometry; difficulties with causality), or into some other
universe (‘). However, the peculiar and ill-understced nature of quantized
space-time may well invalidate any description such as this of the outcome of
collapse.

The above considerations are indicative of the deep problems of principle
posed by the phenomenon of gravitational collapse. Some of the other issues
raised by this confrontation between classical gravitation theory and the funda-
mental principles of quantum theory are discussed by Wheeler (1964b, 1965)
and by HTWW (especially pp. 138-147). These quantum-gravitational issues
include: the breakdown of the classical concepts of space and time; the question
‘of whether the law of baryon conservation has any meaning within the context
of collapse; the phenomenon of dynamical changes in the topology of space-time;
and the relationship between elementary-particle physics and the quantum
theory of gravitation.

In the words of Wheeler (1964b), p. 501. « There have been few occasions
in the history of physics when one could surmise more surely than he does now,
in the case of gravitational collapse, that he confronts a new phenomenon, with a
mysterious nature of its own, waiting to be unraveled. »

(*) For further discussions along this line see Novikov (1964).
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