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ABSTRACT

When light, hitting a mirror, scatters out of the main beam of an interferometric
gravitational-wave detector, then makes its way back into the beam via reflection, scatter-
ing, and/or diffraction off the LIGO vacuum pipe, baffles, or mirrors, it produces a slight
phase shift in the main beam’s light. Wiggle of the main beam and vibrations of the
vacuum pipe and baffles cause this phase shift to oscillate, simulating a gravitational wave.
The dominant contributions to this gravitational-wave noise are here computed; and those
computations are used to suggest constraints on the design of the baffles for the LIGO. If
these constraints are followed, there is no reason to expect serious problems with light
scattering in the LIGO, even in very advanced detectors of the highest currently projected
sensitivities. By contrast, without baffles there would be severe and perhaps insurmount-
able light-scattering noise.
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L. Overview 3

I. Overview

This document is divided into three main sections: Section [I presents the recommended constraints on
baffle design that come out of the scattering calculations. Section 11 presents the results of the scattering cal-
culations: the spectral density /i (f ) of the gravitational-wave noise due to the dominant scattering processes,
and a set of simple formulae that can be used to compute scattering noise from these and other processes.
Section IV sketcties the details of the scattering calculations.

11. Recommended Constraints on Baffle Design and Other LIGO Features.

1. Baffle Spacing and Heigit

The most severe scattering noise in the absence of baffles comes from light that leaves one mirror and
travels down the vacuum pipe, reflecting many times off the pipe walls, until it reaches the other mirror. It is
essential that the baffles stop all such light.

The larger the angle © that a light ray makes to the pipe’s central axis, the greater the number of
reflections it will undergo in traveling from one end of the pipe to the other, and the greater will be the power
lost from the ray to scattering and absorption at each reflection. Correspondingly, there is a maximum angle
6, such that for 6 > 6, light is strongly attenuated in traveling from one end of the pipe to the other, while for -
8 < 9, it is weakly attenuated. The turn on of attenuation as 0 increases through 6, is very shai'p; see Eq.
(2.3) below. The baffles must be designed to stop (almost) all ﬁght with angles 8 < 9,; light with © > 0, will
get adequately attenuated without the help of baffles. If the pipe is corrugated, then 8, will be approximately
equal to the "Rayleigh angle" below which the tops of the corrugations look like an excellent mirror:

A g 1.5cm
0.4pm a
Here A is the wavelength of light used, 2mta is the wavelength of the corrugations, and it is assumed that the
corrugations have an amplitude (half the peak-to-trough distance) of a. If the pipe is not corrugated, then 6,
will be somewhat larger than (2.1). Rai Weiss (private communication) shows that for stainless steel and for
the least attenuated polarization component of the light, and for angles © <« n/2, the fraction of the photons
lost in each bounce is 0.55 © and correspondingly, the fraction that survive is 1-0.550. Since the total number

of reflections in going from one end of the pipe to the other is no less than L 8/2R where L is the length of the
pipe and R is its radius, the fraction of the photons that survive the entire trip is

%
2

1A
0, ~0g = [—(;—J =0.6x1072 2.0

(1-0.550)- 7 = exp| ~L& (2.2)
‘ 36R|’
which cuts off very sharply at
8, =4V3.6R/L =0.1. (2.3)

For 9 =0.1 the attenuation is 10® in energy (10* in amplitude. which is the relevant thing for scattering noise
I ): for ©=0.05 the attenuation is only 107 in energy (10 in amplitude). Tor further details see a lorthcoming
report by Weiss. It will he important in the design of the baffles to have a tairly accurate estimate of 6, Such

an estimate and methods of minimizing 6, are being developed by Weiss.

These considerations, together with a calculation of the dominant scattering noise effects in the pres-
ence of baffles (Secs. III.C and IV.C below) produce the following recommendation for constraints on the

heights and spacings of the baffles:

Recommendation 1. Consider any point at the end of the pipe, at which the center of a mirror might be
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Fig. 2.1. The encounter of a ray that has angle 8 with a pau' of baffies. The distances d; and d; must satisfy
dyrdy> 128H.

placed. Consider any straight ray eminating from that point in any direction that makes an angle <0,
with the pipe’s central axis (Fig. 2.1). Follow that ray down the pipe, letting it penetrate straight through
any baffles it encounters and reflecting it specularly off the wall at each wall encounter. The baffles
must be so designed that the ray at least twice — once pear the first end of the pipe and once near the
second end — encounters a pair of baffles in the manner of Fig. 2.1; and in ea®h of these encounters the
points at which the ray penetrates the baffles must be at distances d, and d, below the baffle tops such
that'd +d, > 28H . Here 8H is a height safety factor that appears in the diffraction calculations. Those
calculations suggest that 34 = 1 cm is a reasonable value. Of course, rays that never encounter the pipe
are not subject to the above constraint; and rays that encounter it only once are required to have only
one encounter of the type shown in Fig. 2.1. No baffles should be closer to any detector mirror than 10
meters. [Note: The requirement for two encounters of the type of Fig. 2.1, one near each end of the
pipe, requires for its implementation twice as many baffles as would be needed if one such encounter
were sufficient. If the cost of the baffles is inordinately high we could consider relaxing the requirement
back to one such encounter, and insist that it occur near the comer mirror. For a discussion of the
dangers inhereat in such a decision, see Sec. 1.C.]

The following is a suggestion of how to implement this recommendation; see Fig. 2.2: Begin at the
plane of the corner mirror and move into the vacuum pipe some (arbitrary) small distance /, — but a distance
of at least 10 meters and at least as large as (the closest an interferometer beam is likely to come to the pipe
wallv@,. At this location place the first baffle. Thereafter, for a distance 2R /9, down the pipe place baffles
with heights and spacings governed by the following law: If 4, is the height of baffle n and s, is the spacing
between baffles n and n+1, then

H, +H, >0,s,+20H . (2.4a)
(Provision is made here for the possibility that one might want to vary the haffles’ spacings so as to put the
bafties at particularly convenient locations, and correspondingly ope might want to vary the batfle height.)
This first series of baffles, which terminates after a distance 2R /8, . is desiened to intercept in the manner of

Fig. 2.1 all'rays with 8 = 6,. Thereafter, moving on down the pipe. the hafHle spacing can gradually increasc:
Baffle n at a distance d, from the first batfle, and baffle n+l at d, ., = 1, +s, must have heights and separa-

tions given by

Hy+H 0 > s “Z2R+26H . (2.4b)

Once the middle of the pipe has been reached. this sequence of balfles stops. Then, if the requirement is
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Fig. 2.2 A possible implementation of Recommendation 1 on baffle heights and spacings.

relaxed to only one encounter of the type of Fig. 2.1, no baffles are needed in the outer haif of the pipe. If,
however, the recommendation of two such encounters is followed, then one must begin once more at the outer
end of the pipe and build two sequences of baffles in the same manner as above [Eq. (2.4a) for a distance 2R,
then (2.4b) to pipe’s middle].

The total number of baffles in this implementation is readily shown to be, if bgffles are put in both ends
of the pipe as recommended, ‘

T L8,
N,,—H_SH[IHn[ R H , (2.5)

where H is the mean baffle height and S5H is the height safety factor. For a smooth pipe with 8, =0.1 this
formula gives N, = 146[5 cm/(H{ ~8H )]. For a corrugated pipe with 8,=0.01 it gives ¥, =90[5 cm/(H =3H )).
If we are willing to live dangerously and baffle only the inner half of the pipe. the number of baffles is reduced
to N, =73[5 cm/(H —-8H )] for a smooth pipe and N, = 45[5 c/(H —38H )] for a corrugated pipe.

R R/J';?
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Fig. 2.3 Because of their 45-degree inclination, the baffle faces reflect light into transverse directions (long-dashed lines),
where in a sequence of bounces off the vacuum pipe walls most of it gets absotbed. The probability JP/d Q for light to be
scattered off the baffle and back to the mirror from which it came (dotted lines) should be made as small as possible,
without undue cost, by appropriate choice of the baffle material and surfacing.

2. Shape and Reflectivity of the Faces of the Baffies.

The faces of the baffles should be highly reflecting aod should be inclined at an angle of about 45
degrees to the vacuum pipe wall. This will enable them to reflect most of the scattered light into transverse
directions, thereby preventing it from subsequently reaching either mirror. except by one or more scatterings:

see Fig. 2.3. Stated more precisely:

Recommendation 2. (i) The scattering probability dP/d Q =dol/dSulA is defined to be the cross sec-
tion d o for a unit area dA of baffle to scatter light into a unit solid angle 4. This scattering probability
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should be made as small as possible, without undue expense, for light that comes in from a mirror (hit-
ting the baffle surface at 45 degrees to its normal), and is scattered back toward that same mirror. (ii)
The baffle shape and tolerances on its shape should be chosen to guarantee that the total amount of light
that is reflected (specularly) off the baffle and that subsequently makes its way back to the mirror by any
route whatsoever (e.g., via the dashed lines of Fig. 2.4) is less than the amount that is scattered directly
off the baffle and back to the mirror (dotted lines in Fig. 2.3). [Note: This is especially important for
baifles near the ends of the pipe, and less so for baffles farther from the ends; see the discussion of baffle
scattering in Sec. I[1.D.]

This probably will not be difficult to achieve. It will constrain, for example, the sharpness of the baffle edges
and the precise angle of the baffle faces to the vacuum wall (e.g. 45.5 degrees versus 46 degrees) and toler-
ances oo that angle.

....1——-—.—:‘ .%. . Q* * kw s“’
i i = 4

~

Fig. 2.4 Severnl routes by which light that reflects (mther than scatters) off a baffle can subsequently make its way back to
a mirror. The baffle shape and tolerances should be specified so as to guarantee that the total amount of light that gets back
to the mirrors by such routes is less than the amount that is scattered directly back from the baffles (dotted route in Fig.
2.9,

3. Shape of the baffle edges.

Cadez, Saulson, Weiss, and I have discussed at various times the desirability of making the edges of the
baffles jagged, i.e. giving them quasi-random variations in height with amiplitudes of a few millimeters and
wavelengths as short as is convenient. The purpose of this jaggedness is to randomize the phase of light that
diffracts off the baffle edge,} thereby lessening the gravitational-wave noise that results from such light. It
turns out that jaggedness has a significant beneficial effect only in the case of mirrors that are within a distance
~YAL =4cm of the center of the pipe’s cross section (see Sec. IV.E for details); and even then the random-
ness of phases introduced by irregularities in the mirrors, the photodiode, and the shape of the vacuum pipe
might be sufficient to protect adequately against coherent effects without the additional help of jaggedness.
However, it is not certain that this is the case. Therefore, I am led to the following recommeadatioa:

Recommendation 3. I recommend that the edges of the baftles b made jagged rather than smooth.
The jaggedness should consist of height variations with rms peak-to-peak amplitudes

A0
N 2mm{ » L ‘c"']. (2.6

= 2R = 12pum dian R

Here A is the longest wavelength of light expected to be used in the LIGO. The beight variations can be
random or regular; it does not matter which. What is important is (i) that they have the shortest
wavelength that can be achieved without great effort, preferably << 1 cm; and (ii) that they contain as
little longer wavelength component as can be achieved without great effort. [Note: If future calculations
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suggest that one should worry about phase coherence for mirrors far from the center of the pipe, as well
for those close to the center, then to protect against it the rms amplitude AH of height variations should

be 3 times larger than (2.6).]

4. Straightness and Roundness of the vacuwm pipe.

It is not desirable for the pipe to be perfectly straight and round. The reason is that for a straight, round
pipe and for mirrors near the pipe’s center, light that scatters off one mirror and then propagates to the other
mirror via an even number of reflections off the pipe wall will get focused and amplified in the reflections by a
net factor that can be as large as 2R/YAL =30 in amplitude (1000 in energy). To prevent this, there must be
fluctuations in the straightness at least, and if convenient also in the roundness (Sec. IV.B). On the other hand,
if the fluctuations are too great, then they will amplify certain types of scattering noise (Sec. II1.C). This leads
to the following recommendation:

Recommendation 4. A "longitudinal curve” on the vacuum pipe’s wall is defined to be the intersection
of that wall with any plane containing the straight central axis of the pipe. At any point on the wall,
define the angle 1, to be the angle between the longitudinal curve through that point and the central axis
of the pipe. Then there should be fluctuations in p, with rms amplitude Oy, in the range

107 radians < o, <107 radians . (2.7a)

Accompanying these angular fluctuations there should be fluctuating linear offsets &, of the pipe’s cen-
tral axis with rms amplitude

O, 2lcm. (2.7b)

For detailed justifications of these limits see Secs. III.C, IV.B, and IV.E.

5. Beam Wiggle.

In the design and development of detectors for the LIGO, account should be taken of the effect of beam
wiggle on scattering. This might be the most serious factor constraining the allowable beam wiggle — espe-
cially if only one end of the pipe is baffled rather than both ends. For details see the paragraph following Egs.

(3.25).

6. Computer Simulations of Scattering
I am not sufficiently confident of my scattering calculations to justify basing the final LIGO baffle

design solely on them.

Recommendation 5. [ recommend that computer simulations be carried out to check my calculations.

7. Paramenters of Final Baffle Design
Recommendation 6. The parameters of the final baffle design shendd be so chosen as to keep smaller
than about 1/10 the standard quantum limit (3.2) the noise levels ( 225333 — at least in the case
where a mode cleaner is used on the interferometer output. and if possible also without a mode cleaner.
If the general design of the baffles differs from that recommended here, then for the chosen design the
noise levels for the processes in Secs. [II.B—ILE should be recomputed, and the design should be

adjusted to keep them below about 1/10 of (3.2).
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111 Results of Scattering Calculations

The {ormulas for scattering noise in this section are probably accurate to within a factor 10 and perhaps
better. This seems accurate enough for our purposes — and higher accuracy would require far more effort
than I have expended. In most of the formulas factors of order unity (2’s, n’s, etc. have been kept because
they occasionally combine to give a net multiplicative factor of order 10 or larger. However, the precise com-
binations of 2’s, rt’s, etc. that are quoted are almost certainly not correct.

The formulas are given for Fabry-Perot interferometers. I have not analyzed scattering noise in Michel-
son interferometers in detail, except for an old (May 1987) calculation of one rather unimportant scattering
process. It would be worthwhile for somebody to extend this report’s analysis to Michelsons.

The parameters that will appear in the scattering formulas are listed here in alphabetical order for ease
of reference:

B — effective number of bounces that the light beam makes in the arms of the interferometer; defined
more precisely by the equation preceding (3.7) below; for a simple interferometer or a light-recycled
interferometer optimized to gravitational waves with frequency f, this quantity is (see page 424 of
Ref. 5) '

¢ 4x10° (3‘1)'

We shall use this value in our numerical estimates. For an interferometer with resonant recycling B
can be larger than this. Using that larger B would produce smaller levels It (f ) of scattering noise
than those quoted in this report.

d, — distance of baffle n from the first baffle at the end of the pipe nearest to baffle n; approximately
equal to the smaller of /, and L/, .
_do

dxd
fraction or the case of diffraction-aided reflection; see Eq. (3.9) for the precise definition of this cross

section; see Egs. (3.10) and (3.15) & (3.16) for formulas for the cross section.

—- the differential cross section for diffracting light off a baffle, either in the case of ordinary dif-

do _ the total cross section for diffracting light off a baffle into angles larger than the incoming angle.
X N

See Egs. (3.11) 'md (3.17) for formulas in the case of ordinary diffraction and diffraction-aided

reflection, respectively.

{ - . . .
l;o — the scattering probability for the baffle surfaces, i.e. the cross section d g for a unit area dA of
< sz

baffle surface to scatter light into a unit solid angle 4€2. In this report this scattering probability is
used only for incoming and outgoing light parallel to each other and at an angle of about 45 degrees
to the baffle surface. For numerical estimates we use the conservative value 0.1 for this <cattering

probability.

f —the frequency of modulation of scattered light produced by its encounters with baffles and pipe walls,
notation of Reference S: units are ‘‘strain per root Hertz™".

I = 1.054x10"*7 erg sec — Planck’s constant divided by 2.

H — the mean height of the baffles’ tops above the inner face of the vacuum pipe; for numerical estimates
we use /{ =6cm.

H, — the height of baffle n; in numerical estimates we shall use H, =H =6cm.
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811 — ‘‘height safety factor”: the minimum height that a baffle should be above that required to intercept
rays from mirrors; see Egs. (2.4); the value suggested in this document is 4 = lcm, and this is

assumed in all numerical estimates.

Al — the maximum peak-to-valley variations of height of the balfles (“‘jaggedness’’); assumed equal to
6 mm in numerical estimates, see Eq. (2.2)

[, —the distance of baffle n from the closest interferometer mirror.

n
I, — the “‘reduced distance’’ of a baffle pair, n and n+1, from the mirrors; given by lp, =1,(L—1, )L
- [where baffle n is presumed to be closer to the nearest mirror than baffle n+1]..

L — the length of an arm of the interferometer; assumed equal to 4 km in numerical estimates.

m — the mass of a mirror, assumed equal to 1000 kg in the numerical evaluation of quantum noise [Eq.
(3.2) below].

N, — the total number of baffles; see Eq. (2.5).

P.(9) ‘‘scattering probability’’: the probability that a photon from the main beam gets scattered into a
unit solid angle about a direction that makes an angle © with the main beam. In this report it is
assumed that P _(0) = w@?, where o= 1075,

P (8) — *‘recombination probability’’: the probability that a previously scattered photon impinging on a
mirror at an angle 8 to the mirror’s normal will recombine with the main beam in such a way as to
contribute to the scattering noise /i (f). This P ., depends on whether a mode cleaner is used on the
interferometer output. With a mode cleaner, P is given by Eq. (3.5); without, by Eq. (3.6).

R — the radius of the vacuum pipe; assumed equal to 60 cm in numerical estimates.

Y, — the distance from the center of the main beam to the mean position (smoothed over jaggedness) of
the nearest baffle edge; assumed equal to 20 cm in numerical estimates when a small Y, is the most
dangerous.

s, — the spacing between baffles n and n+1; assumed in numerical estimates to be given by Egs. (2.4)
with R =60cm, H, =6cm for all n and 8H =1 cm; i.e. s, = 10 cm/9, for the first 120 cm/0, length
of baffles near each end; thereafter s, =d,/12.

o — coefficient that appears in the approximate formula P (0) = dP /d Q = o/6” [Eq. (3.4)] for the scatter-
ing of main-beam light off the interferometer’s mirrors. In this formula P (0) = dP/dQ is the proba-
bility that a photon in the main beam will be scattered into a unit solid angle around a direction that
makes an angie 9 with the normal to the mirror. In numerical estimates we shall use a value o= 107

appropriate to supermirrors [Sec. HLA.1].
A — the wavelength of light used in the interferometer; for numerical estimates we shall set A = 0.4 um.

1 — the photodiode efficiency, averaged over the spot made by the main beam on the photodinde:

assumed equal t0 0.9 in numerical estimates.

ﬁ — the value of an angle pt averaged over times long compared to v gravitational-wave period. This
is defined as follows: A "tongitudinal curve” on the vacuum pive’s inger wall is the intersection of
that wall with anv plane containiog the central axis of the pipe. * »nsider a typical point at which light
reflects off the vacuum pipe’s inner wall. Then p is the angle I»rween the longitudinal curve at that
typical reflection point and the line-of-sight direction between the two points where the reflecting ray
originates and terminates. (Those origination and termination points are either on the mirrors or on
the edges of diffracting baffles.) We sometimes shall refer to u as the ‘‘slope’’ of the wall, and

sometimes as its ‘‘angle’’.
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IL(f) — the square root of the spectral density of fluctuations du(r) in the angle p defined above. These
{luctuations are due to (seismic-induced) acoustic oscillations of the vacuum pipe wall, plus —if only
one end of the vacuum pipe or neither end is baffled — wiggle of the main beam: see the paragraph
following Egs. (3.25). We shall assume, for numerical estimates, that j1(f ) = 107" Hz™"x(10 Hz/f );
see the passages following Eq. (3.22) for discussion of the reasons behind this value.

1t, — the angle between a longitudinal curve on the vacuum pipe’s inner wall and the straight-line central
axis of the pipe.
o, —ms value of the angle i,

op, — rms value of the lateral offset £, of the pipe’s central axis. This lateral offset, like |, , is produced
by (desirable) crookedness in the way the pipe is laid during construction. For numerical estimates
we shall use o, = 1 cm.

dy — the maximum wavelength of the jaggedness of the baffles, i.e. the wavelength above which the
spectral density of the jaggedness is small.

Gy — the mean wavelength for variations in the phase of scattered light along the edges of the baffles —
variations produced by irregularities in the scattering mirrors; see Eq. (4.5d) and associated discus-
sion

O,q — the mean wavelength for photodiode-irregularity-induced variations in phase along the edges of the
baffles; see Eq. (4.11) and associated discussion.

€ (f) — the square root of the spectral density of fluctuational displacements of a typical point on a typical
baffle — either longitudinal displacements or radial displacements. For numerical estimates we shall
assume that the baffles are sufficiently well anchored that they experience displacements only of
order the seismic noise; i.e. we shall assume E_.(f )= 1077 cm Hz (10 Hz/f )?, corresponding to the
level of seismic noise at the likely LIGO sites.

0 — the angle between a ray of scattered light and the central axis of the main beam.
©’ — the angle (value of 8) into which light diffracts when it encounters a baffle.

6, — the minimum value of © that a ray must have, when encountering baffles » and n+1, in order to

avoid being caught by them; given by Eq. (3.13).

This section III is organized as follows: Sec. III.A presents a set of simple formulas which can be used
to compute the noise due to a wide variety of scattering processes (scattering of the main beam off a mirror,
diftraction of scattered light off baffles, reflection of scattered light off the pipe walls, recombination of scat-
tered light with the main beam, ...). These formulas underlie most of the noise formulas of this report, and
they can be used for other. future noise calculations. The need for baffles is elucidated in Section lILB by dis-
cussing the dominant scattering noise effect for a LIGO without baffles: scattering off a mirror. followed by
reflections off the vacuum pipe wall, propagation to the other mirror. and recombination there with the main
beam. The remaining sections discuss what appear to he the dominant scattering noise effects in the presence
ol baffles: scattering off one mirror, followed by a diffraction-aided retlection hetween a pair of baltles. fol-
lowed by a series of reflections off the pipe wall and possibly a second dittraction-aided retlection. followed
by recombination with the main beam at the second mirror (Sec. II.Cy: scattering off a mirror, followed by
scattering off the baffles, propagation back to the mirror and recombination there with the main beam (Sec.
[[1.D).

In discussing these scattering processes we shall need to compare their noise levels with the best sensi-
tivities that are hoped for in the LIGO. As a measure of the best sensitivities we shall use the standard
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quantum limit

" -24
= 8n = 4x107** 10Hz 3.2)
m2nfL) VHz  f

{Eq. (121) of Ref. 5]. We shall regard scattering noise as acceptably small if it is at least one order of magni-
tude below this level. (The one-order-of-magnitude safety factor is to allow for inaccuracies in the scattering

calculations.)

A. Formulas for Use in Intensity Analyses of Scattering

It is argued in various places in this document [see especially the summary and analysis in Sec. IV.E,
the paragraph following Eq. (4.11), and Sec. IV.A.5] that by the time scattered light reaches the mirror or pho-
todiode at which it will recombine with the interferometer’s main beam to produce noise, the phases of light
coming from different directions will be so scrambled that coherent superposition is relatively unimportant.
As a result, computations of the noise due to scattered light can be carried out using intensity techniques in -
which the precise phase of any bit of light is ignored. In this section I give a number of useful formulas for
such calculations; these formulas are derived in Sec. IV.A

1. Scattering Probabiliiy P(9)

When the main beam of the interferometer hits a mirror, irregularities in the mirror scatter a bit of the
main-beam light. We shall denote by P () the probability that a main-beam photon will get scattered into a
unit solid angle in a direction that makes an angle 6 with the specularly reflected main beam,

P = d Probability ' 3.3)
dQ

The angles relevant to the LIGO are 8, >0 >2Y,/L; i.e. 0.1 or 0.01 radians to 10~ radians; i.e. 5 degrees or
30 minutes down to 0.3 minutes of arc. The most relevant scattering data I know of are: (i) measurements
with a poor quality mirror by Michelle Stephens' in the range 0.011 <6 <0.027, which are well fit by
P =2.4x1073(1-A)0?, where /A =0.988 is the reflectivity of the mirror that she used; and (ii) measure-
ments on supermirrors in the range XXX <0<XXX by Elson and Bennett?, which are well fit by’
P (9)=1.5x10"%6% Assuming that P, is proportional to 1-/7, there is reasonable agreement between
Stephens’ results and those of Elson and Bennett. Note, further, that the dependence on 8, P, = ow/@? with
o~ 107%, puts equal amounts of power into equal increments of In6, and it leads to a total probability for
scattering photons out of the main beam given by P, =fP,c2nsin9d6 = 2nodn(VL/A) = 7x10”" o/ 1079).
This is so close to the total losses of supermirrors (= 107 that there is no room for excess scattering, beyond
that of the formula P = w8?, for angles 8 below those at which the scattering has been measured. Thus. it
seems reasonable to assume (and we shail do so throughout this report) that not only in the measured region
but also down to the LIGO’s smallest angles, which are 30 times smaller. the scattering probability is given by
p.=% . with o= 107" (3.4

sC

The relationship of this scattering probability to the mirror’s irregularities, and the spatial dependence of

the phase of the scattered light are discussed in Sec. IV.A.2.
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2.Probability P

Alfter leaving the main beam, scattered light can interact with the walls of the vacuum pipe and with the
balfles in a variety of ways to be discussed below, and then some of the scattered light can recombine with the
main beam in two ways: By hitting a mirror and there scattering back into the main beam, or by hitting the
comer mirror and being transmitted through it, along with the main beam, onto the photodiode. We shall con-
sider these two recombination processes in tum.

(8) for Recombination of Scattered Light with the Main Beam

ee

Scattering back into main beam. When a scattered photon impinges on the mirror at an angle 9 to the
incoming main beam, it has a probability P,(8) = o/6? of being scattered into a unit solid angle in the direc-
tion of the reflected main beam. In order to actually rejoin the main beam rather than going into some other
mode of the Fabry-Perot cavity, the photon must scatter into a solid angle which is equal to that subtended by
the main beam’s spot on the distant mirror, AQ = AL/L*=ML. Correspondingly, the probability for the pho-
ton to recombine with the main beam via scattering is

P._(0)= 6‘%[%} . (3.5)

Transmission through mirror onto photodiede. Scattered light, arriving at the photodiode from a .
direction that makes an angle 8 with the main beam, has its phase fronts at an angle  relative to those of the
main beam. Since the phase fronts of the main beam and the beam from the other arm of the detector have
been made to agree at the photodiode, so far as possible, this means that the scattered light’s phase fronts
disagree in angle by 6 with those of the light from the other arm. The result is a pattern of interference fringes
on the photodiode with wavelength A/0. In these fringes the scattered light alternately increases, then
decreases the light intensity and hence the photocurrent. If the photodiode’s efficiency nj for converting light
intensity into photocurfent were spatially uniform, these fringes would give a net averaged contribution to the
photocurrent that is the Fourier transform (at wave number 6k = 270/A) of the Gaussian shape (4.1) of the
main beam — and because Fourier transforms of Gaussians are Gaussians and are notoriously small out on the
wings where we are operating (~ e"’”"leﬁ ”), the effects of the scattered light would be totally negligible.
Unfortunately, the efficiency n will be spatially variable due to imperfections in the photodiode; and
correspondingly the effect of the scattered light on the photocurrent will be proportional to a spatial Fourier
transform of the photodiode efficiency.

More specifically (see Sec. IV.A.3), if the scattered light’s effect is described by the probability P ..(9)
for each scattered photon to recombine at the photodiode with the main beam in such a way as to act like a
main-heam photon, then that P (0) will be essentially the square of the spatial Fourier transform of n. A
conservative estimate of the magnitude of that Fourier transform (more likely an overestimate than an
underestimate; see Sec. IV.A.3 for details) gives

-3 Y4
p_ = U= [2‘} _ (3.6)

fec 29 L

Here ﬁ is the spatially averaged efficiency of the photodiode. which in numerical estimates we shall take equal
to 0.9.

Comparison of recombination via scattering with recombinaticn via transmission to photodiode.
The probability (3.6) for recombination via transmission to the photodiode is always (for all relevant 6)
several orders of magnitude larger than the probability (3.5) for recombination via scattering. Fortunately, if
recombipation via transmission becomes a serious noise source, it can be suppressed by putting a mode
cleaner on the output of the interferometer. Thus, with a mode cleaner recombination by scattering dom-
inates: without a mode cleaner recombination by transmission to the photediode dominates.
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3. Scattering Noise Expressed as h (f)

When scattered light recombines with the main beam, it produces a change of phase 6@, in the main
beam. This 3, fluctuates slightly due to fluctuations in the phase of the scattered light — fluctuations put
onto the scattered light by interactions with the pipe walls and baffles. The syuare root of the spectral density
of those phase fluctuations is given by

D () = COS(D =D )

dE,,_./drdf] ”
: .

Here ®,~®,_, is the phase difference between the scattered light and the main beam, 7/ is the power of the
main beam and dE /dtdf is the power spectral density carried into the main beam by the scattered light. We
can express dE /dudf as

dE

= [r dE ALY Q

™ dtdAd Qdf

mirror
where dE _/dtdAd Qdf is the specific intensity of scattered light arriving at the receiving mirror, and AL is the
area of the main beam on that mirror. Since we make no attempt to compute the relative phase ®,.—®,, of
the scattered light and the main beam, we shall simply replace the cosine of that relative phase by its ms .
value, 1/V2. By doing so and by using the standard relation

- 1 -
h (f)“m(pmb(f)

between the gravitational-wave noise and the main-beam phase noise (a relation which is essentially the
definition of B), and by multiplying by a factor of ¥2 to account for the fact that scattered light can originate
at either of the two ends of the vacuum pipe, we obtain the following formula for the gravitational-wave noise
due to scattered light: - -

dE JdrdAdQdf )"
ETT da| .
AL

A

_ 37
2nBL G-D

k)= [Pet®

Here and in the preceding equation the proportionality factor in front of the integral takes account of both
arms: The integral is to be performed at the corner mirror of only one arm, and the h (f ) which results is that

for the entire detector.

4. Reflection of Scattered Light off the Pipe Wall

In the remaining subsections of this section we shall discuss the interaction of scattered light with the
wall of the vacuum pipe and with baffles. as it propagates from the scattering mirror to the receiving mirror.
For each interaction process we shall describe the incoming light by the energy Hux (power per unit area)
dE/drdA of the unmodulated component of the incoming light, and by the specific energy flux (power per unit
area per unit frequency) dE /dtdAdf of the tiny portion that has been frequency-modulated by previous
interactions with baffles and/or the wall. If the light bas a well-defined propagation direction, then these
cvergy fluxes carry all the relevant information. If there were a spread of propagation directions, then one
would need to work with the intensity (flux per unit solid angle) JdE/drdAd and specific intensity
dE 1dtdAd Qdf .

Consider. first, the reflection of scattered light off the wall of the vacuum pipe. We shall treat such
reflection as precisely specular (angle of reflection equals angle of incidence) and as lossless. (Losses are
taken into account by placing the upper limit 8, on angles of photons included in the analysis.)
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Acoustical vibrations of the wall produce time variations (modulations) of the path length between the
scattering and receiving mirrors, and corresponding modulations of the phase and thence frequency of the
scattered light. In Sec. IV.A.4 [Eq. (4.19)] it is shown that the dominant contribution to the frequency modu-
lation comes not from radial displacements & of the wall, but rather from changes in the longitudinal slope
of the wall. The standard of reference for that slope is the line-of-site direction between two points: the point
at which the reflecting light initiates its sequence of specular reflections, and the point at which it terminates
them. Both of these points are baffles at which diffraction occurs, if both ends of the pipe are baffled; other-
wise one or both points are tise centers of interferometer mirrors. Correspondingly, if there are 510 baffles or
oaly one end of the pipe is baffled, the modulations result from beam wiggle as well as from wall vibrations;
but if both ends are baffled, wall vibrations are the sole source of the modulations.

The analysis of Sec. IV.A.4 shows that the frequency modulation put onto the light by the fuctuations
in p is described by ‘

(3.3

dE _ d& |, .[@-2w+LLenRq, )]?
ATdag = wdk 4""[ x } -
Here n%(f) is the spectral density of |, dE /dtdA is the energy flux of the unmodulated component of scattered
light, A(dE /didAdf ) is the amount by which the tiry modulated component is augmented during the reflection,

8 is the angle of the scattered light relative to the wall, 1 is the time-averaged slope of the wall, { is the dis-"
tance of the reflection point from the scattering mirror, and in this version of the formula it is presumed that
the scattering and receiving mirrors or diffracting baffles are at opposite ends of the pipe. For further discus-
sion see Sec. IV.A 4.

5. Diffraction of Scattered Light Off a Baffle

Although the diffraction of light is a phenomenon that depends crucially on the phase differences of dif-
ferent propagation paths, in analyzing scattering we can embody the influence of those phase differences in a
differential cross section d o/dxd @ and then use that cross section in a phase-ignorant intensity analysis. In
this approach one must look carefully at phase when deriving formulas for d 6/dxd @’; but once that cross sec-
tion has been derived, one can ignore phase when applying it.

/\\

N -
‘\. -l:’ P ’
/t-k*'

Fig. 3.1 Diffraction of light off a baffle. The long-dashed line is the path of a “zht ray. The projection of that path inte
the pipe wall cannot change in the diffraction: the angle 8 relative to the wall charge= into 8,

The differcntial cross section d o/dvd § is defined by the followinc formula in which one uses it: Sup-
pose that light with wave vector E’ impinges on a baffle (Fig. 3.1). Then the diffmcted light appears to emerge
from the edge of the baffle. As for reflection off the wall, so also here, the componeat of the wave vector k,
parallel to the wall is unchanged in the diffraction, while the component &, perpeudiminr can change. Define
the angle of incidence by 8 =k, /& and the angle of diffraction by 8" = —k’, /k, where k” is the wave vector of
the diffracted light. For wall reflection 8’ must be equal to 8. For diffraction off a baffle @ can have a range
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of values. If the incoming light has energy flux (dE/dtdA ), then the power diffracted into a range A8’ of &
by a portion of baftle with length Ax is

L

dE
didA |, dxd®

—dE—] 4900 (.9)

The diffraction cross section d o/dxd®’ is derived in Sec. IV.A.5. It depends only on the incoming angle 6,
the outgoing angle 6°, and the wavelength of the light:
do A 1

= —— (3.10$)
dxd®  4r? (0+0)?

Of particular interest will be light diffracted to angles €’ that are larger than the incoming angle 8. Most such
light goes into angles @ = (several)x®; and the total cross section for diffraction into those angles is

Al

8 9

The reason the differential cross section is given per unit linear angle 8 rather than per unit solid angle Q’ is
-,

that the components of & parallel to the wall are conserved; the diffraction is into a conlinuous range of 6 but

not a conunuous range of solid angle.

When light diffracts off a baffle, wbratxons of the baffle frequency-modulate it. If §2(f ) is the spectral

density of the vertical displacement of the baffle, then the diffraction-produced augmentation of the specific
flux of modulated light is

do _ @.1n

dE dE 2
== n . 2. A2
A[dtdAdf]m [d ]m m6+6) EM] (3.12)

see Sec. IV.A 4 for a derivation.

6. Diffraction-Aided Reflection

The bafile configuration suggested in this report is designed to force all light with 8 < 6, to encounter
baffles. In addition to diffraction (treated above), there is one other important way by which light can escape
being trapped by the baffles it encounters: the *‘diffraction-aided reflection’ depicted in Fig. 3.2,

Fig. 3.2 Diffrction-aided reflection.

In this diffraction-nided reflection, light diffracts off the first of two baffles, bending its propagation
downward sufficiently to be able to reflect specularly off the wall and then climb up above the top of the
second baffle where it diffracts off into a more shallow angle. Here. as in ordinary diffraction, the trajectory
of a light ray parallel to the wall cannot change. The only thing that changes is the angle 8 between the wall
and the ray; it goes from © to some new angle 8’. Comrespondingly, di diffraction-aided reflection can be
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described by the same type of cross section, d o/dxd 0, as is used for ordinary diffraction.
A special role in the cross section will be played by the minimum angle

Hn +Hn+|
0, s —— (3.13)

n Sn
that an incoming ray must have in order to successfully clear baffle n, then reflect specularly off the pipe wall,
and then clear baffle n+1 without the aid of diffraction. Recommendation 1 of this report (Sec. 1I.1) guaran-
tees that ail light experience at least two baffle eacounters in which :

28H 9 -~

9,—922&[/3"=;[—+—1-{—" n %
n net

9, . ’ (3.14)

In such encounters pure reflection is severely impossible, but diffraction-aided reflection can occur and is
larger than one naively might expect. We shall confine our discussion of the cross section do/dxd €’ to the
regime (3.14) of baffle encounters.

I have computed the differential cross section d o/dxd @ for the regime (3.14). My result is given by the
following set of formulas and is depicted in Fig. 3.3:

A

s

. do

dxde’

A
«” 4n*(e'-8)"

Fig. 3.3 The differential cross section for diffraction-aided reflection in the regime (3.14).

do 1
dxd® 4 (9'-9)*

Nar *
= A - 5", for -0, < — k . (315
499, )" (8,-9') Arcs,

Lk
arcs, ]

for 8’6, > [

This cross section is negligibly small for -8, << ~VA/4r’s,; and it rises sharply, at
19-9,1 < \J?Jnhrzs,, , to its peak value. This and the fact that VA/4r’s, < 8,8, permit us to approximate the

cross section by
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A

= e @0 for® >9, ; (3.16)
’[- p—

cf. Fig. 3.3. This cross section sends most of the diffracted photons into angles 6’ between 8, and
6, +(several)x(6, —0); and the total cross section for sending light into that region is

do (™ do 1 A 1 As,
— = = — — ) 3.17
dx dxde'de 42 0,9 = oH G-17)

Note that with our choice of baffle safety factor 84 = 1 cm and baffle height H =5 cm, this total cross section
has 6, = 06/5, and correspondingly it is a factor 2x5 = 10 times larger than the cross section (3.11) for ordinary
diffraction. Note further than in the region of interest, 8’ > 9,,, the value (3.16) of the differential cross sec-
tion has a simple explanation: The light makes a single diffraction at the first baffle, to an angle —6’, then
reflects off the wall (converting its angle from —§’ to +9), then flies unhindered over the second baffle.
Correspondingly, the cross section for this diffraction-aided reflection is precisely that (3.10) for ordinary dif-
fraction, with 8’ replaced by —9’.

We note in passing that, when one places no restrictions at all on the range of 6 and €’ [i.e. when one
abandons restriction (3.14)], the cross section d o/dxd @ turns out to be symmetric under interchange of the
pair (6,/,) with the pair (6",.L ~,,,); see Sec. IV.A.6 for a proof. This means, as a special application, that the '
cross sections (3.15) and (3.16) are unchanged when 0 and 6’ are interchanged; i.e. they are unchanged when
the direction of propagation of the ray in Fig. 3.2 is reversed.

Vibration of the wall and of the baffles in diffraction-aided reflection will modulate the frequency of the
scattered light. The dominant modulation comes not from the vertical displacement & of the walls and baffles,
but rather from the changes 30 = 5y, 38" = -8 of the incoming and outgoing angles relative to the pipe wail.
If fl % f) is the spectral density of dj1(¢), then the modulation turns out to be [Eq. (4.38) of Sec. IV.A.6]

, |

dE dE | 2L, = . -

A - 0,i| . (3.18)
didAdf  drdA [“ e

7. Scattering by Baffles

A final process by which scattered light can interact with a baffle is by scattering off it. In such scatter-
ing the only regime of interest is that in which the incoming and outgoing rays are nearly parallel to the pipe’s
central axis (to within angles 8 < 0, <5 degrees), and thus make angles of about 45 degrees to the baffle
faces. We shall describe such scattering by the cross section d ¢ per unit area of baffle dA to send incoming,
near-45-degree photons back into a unit solid angle 4 Q in a near-45-degree direction: and in numerical esti-
mates we shall use for this cross section the conservative estimate

_45_ . (3.19)

dAdQ

In such baffle scattering the light will acquire the following frequency medutation due to longitudinal vibra-
tion of the balfles (cf. Sec. IV.A.4):

_JE__ dE

&l )
dr=3-| 3.2
k}

JAdrdf | dAdt
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B. LIGO With No Baffles

Suppose that baffles are not included in the vacuum pipe. How severe, then, will be the scattering
noise? It is fairly obvious that without baffles the predominant way in which light can scatter out of the main
beam, acquire a time varying phase shift, and then scatter back in again, is that shown in Fig. 3.4: The light
leaves the main beam by scattering off a mirror; it then reflects specularly one or more times off the wall of
the vacuum pipe, acquiring frequency modulation in each reflection; and it then propagates to the other mirror
where it recombines with the main beam either via scattering or via transmission to the photodiode.

N ) 4 X \/ A

Fig. 3.4 The dominant scattering noise source for a LIGO without baffles: Light (dashed line) scatters off the end mirror,
then reflects several times off the wall of the vacuum pipe. then propagates to the comer mirror. At the comer mirror it
can propagate directly to the photodiode along with the main beam, or it can scatter back into the main beam and pro-
pagate as part of that beam toward the end mirror. P

It is straightforward to use the intensity-analysis formulae developed in the last section to derive expres-
sions for the noise due to this process. The derivation is sketched in Sec. IV.B, and the justification for ignor-
ing phase coberence (i.e. for using intensity techniques) is discussed in Sec. IV.E and the paragraph following
Ey. (4.11). The results are as follows:

1. Without Mode Cleaner

When there is no mode cleaner on the interferometer output, the recombination of the scattered light
with the main beam is in the photodiode. The noise is dominated by scattered rays that have large angles
9 ~9, and that thus bounce many times between the two mirrors. The analysis in Sec. IV.B gives for the
noise

\ _ —— “[— k /7 _
h(f)=%-§%—m[—:-l‘-] 0, (f). @2

For the set of numerical values listed at the beginning of Sec. II [a= 1075, 1—1=0.9, B =2000(10Hz/f),
A=04pm, L =4km, R = 60cm, 8, = 0.1 radians] Eq. (3.21) gives

-~

Tx10°%° T .
kol i (3.21)
YHz 10 Hz V(10 Hz/f )

h(f)=

The form chosen for the spectral density of fluctuations in the angle p.

B =10 Hz V310 Hz/f ) . (3.22)

requires discussion. There are two independent sources of jt: beam wig: 'e and acoustic noise oo the vacuum
pipe. Acoustic noise: The supports of the vacuum pipe are likely to vitrate at the level of the local seismic
noise, & wime = 107 cm Hz'?x(10 HZ/f )*. These vibrations will send acoustic waves down the pipe. If the
free pipe responds somewhat resonantly to the motion of the supports, the pipe might have a displacement E
as much as 10 times larger than that of the supports, §Piw =108 ;;mic- The sound speed for flexural motions
of the pipe might be roughly 4x10* cm/sec, corresponding to a wavelength A ound =4000 cm (10 Hz/f ). These
sound waves would then produce p =2nrE pipel Asounds Whith works out to be expression (3.22). Beam wiggle:
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In a LIGO without baffles the points where the reflecting rays initiate and terminate their journeys are the mir-
ror centers; and correspondingly p is the slope of the wall relative to the main-beam axis. This means that
beam wiggle shows up fully in j. It may be difficult, and perhaps impossible, to keep the beam wiggle as
small as (3.22). Ifitis impossible, then the noise could be even larger than the estimate (3.21°).

The estimate (3.21") of the scattering noise without mode cleaner is 2x10* times larger than the standard
quantum limit at 10 Hz and 2x10° times larger at 100 Hz. This strongly motivates including baffles in the
LIGO and designing them to reduce the scattering noise by a factor of at least 10°.

2. With Mode Cleaner

With a mode cleaner on the interferometer, the recombination mechanism is scattering off the receiving
mirror, and the noise works out to be (Sec. IV.B)
— 3/2
o2l Az
V3 B

Al
b LT
R } 0,% 1. (3.23)

L

The presence of 0, in this formula is a signal that, as without a mode cleaner, the noise is dominated by
large-angle scatterings which entail many reflections on the vacuum pipe. Numerically, with the parameter
values listed above, this works out to be '

~

23
=20 - . (3.23")
YHz 10 Hz V2 (10Hz/f)

For the chosen parameter values this is a factor 2 larger than the standard quantum limit at 10 Hz and a factor
20 larger at 100 Hz. Any temptation that this ‘‘smallness’’ of the noise might give to build the LIGO without
baffles should be mitigated by the following: (i) We do not now know whether it will be possible to use a
mode cleaner on the output in a sufficiently noise-free way to permit bringing the scattering noise down to this
level. (ii) Even with a successful mode cleaner, expression (3.23) could actually underestimate the noise by a
factor 10 or so.

Nevertheless, it is encouraging that a mode cleaner can be so effective in bringing scattering noise
under control, and that the noise level might be as low as (3.23), even in the absence of baffles.

C. LIGO With Baffles: Diffraction-Aided Reflection
Throughout the rest of Sec. III we shall presume that baffles are incorporated in the LIGO in the
configuration suggested in Sec. IL.1, with constant baffle heights 4, =H. The first baffle is at a distance
I, > 10 meters from the plane of the comer mirror; there is then a first series of R/(H —8H ) baffles with equal

spacings
s, = 2<H._._9—5” ). (3.240)

and there is then a second series of [R/(H —0H ) In(9,L/4R ) baffles extending up to the center of the vacuum
pipe. with spacing

H=3H 1) (3.24b)

<

Sy =

between baffle n and baffle n +1.
We shall consider two possibilities: that there are no baffles in the outer half of the vacuum pipe; and
that there is a full set configured in the same manner as (3.24), but beginning from the end mirror. We shall
concemn ourselves only with noise in full length detectors. The half-Jength detectors bepefit only from the
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baffles of the inner half pipe and thus are a special case of the one-set-of-baffles formulae.

In the case of one set of bafiles, the dominant scattering noise involves photons that do one of two
things (Fig. 3.54): (i) scatter off the corner mirror at some angle 8, then circumvent the tirst pair of baffles they
encounter by means of diffraction-aided reflection to a slightly larger angle 8 ~ 6 + (several)x(8,-8) ~ 1.56,
then reflect repeatedly off the pipe wall (acquiring frequency modulation at each reflection) until they reach
the end mirror where they recombine with the main beam by scattering; or (ii) trace precisely the reverse
route: scatter off the end mirror at an angle &, reflect multiple times off the pipe wall, circumvent the first
troublesome set of baffles by a diffraction-aided reflection to angle 0, then fly directly to the corner mirror and
there recombining with the main beam either by scattering or by transmission to the photodiode.

In the case of two sets of baffles, the dominant scattering noise involves photons which follow routes
identical to the one-set-of-baffles case with one exception: The reflection nearest each of the two ends of the
pipe must be diffraction-aided (Fig. 3.5b). [Note: There is also noise due to these same processes but with
diffraction-aided reflection replaced by ordinary diffraction. !lowever, because the cross section for ordinary
diffraction is ~1/10 that for diffraction-aided reflection, it can be neglected. Diffraction-aided reflection dom-
inates the noise.]

Vv =< < < 2N
™ A - RN N < ™3
N P N e ~_ 7 ~_”7
k;,‘j NS o .
(a)
— v < > ~~ v v
~< -~ - S~ - RN /’/ s -2
‘& ".' \_,/ \\/ M

Fig. 3.5 The dominant scattering noise sources for a LIGO with baffles: (a) For a pipe with just one set of baffles. The
photons responsible for the noise trace out the dashed route in either direction. In this route the wall-reflection nearest the
comner misror is diffraction aided: all other reflections are ordinary and specular. (b) For a pipe with two set of baffles, one
in each end of the pipe. In this case the noise-producing photons undergo two diffraction-aided reflections: one at each

end of the pipe. 3

The noise due to the processes in Fig. 3.5 is computed in Sec. IV .C using the amplitude-analysis formu-
lae of Sec. II.LA. We shall discuss the results of the computation in the following two subsections — first for
detectors without mode cleaners, then for detectors with mode cleaners.

1. Without Mode Cleaner

For a LIGO with baffles the noise is the worst when the mirrors ars near the edge of the vacuum pipe.

because it then is easier to circumvent the first pair of baffles encountered (the required diffraction angle.

0, -0, is smaller and thus the cross section for diffraction-aided reflection is higher). For such near-the-wall
mirrors the noise is
14 - — 32
PR O S S B € S Y2 R
24 SH B R °
-22 o
= x10 B for one set of baffles, (3253)

YHz 10°Hz V*(10Hz/f)
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o 10 B for two sets of baffles. (3.25b)

VHz 10 Hz V(10 Hz/f)

The dependences on the maximum possible photon angle 8, and the minimum possible angle 4R /L indicate
that with one set of baffles the dominant noise is due to large-angle, many-reflection photons, while with two
sets of baffles photons of large angles and small contribute equally. Note that the improvement in noise over
the no-baffle LIGO is a factor 10° with one set of baffles and 3x10° with two sets. With one set the computed
noise is a factor 25 larger than the standard quantum limit at 10 Hz and 250 larger at 100 Hz, for the chosen
parameter values; with two sets it is 10 imes smaller than the standard quantum limit at 10 Hz and at the stan-
dard quantum limit at 100 Hz. These numbers are one motivation for the recommendation to use two sets of
baifles.

A second motivation for two sets of baffles is to reduce the sensitivity of the noise to beam wiggle: The
It that appears in the noise formulae (3.25) is (the square root of the spectral density of) the angle of the pipe
at reflection points. In Eqs. (3.25) this pipe angle is measured relative to the line of sight between the points
where the reflecting photons initiate and terminate their specular-reflection motion. Those initial and terminal -
points in the case of a LIGO with no bafiles (Sec. 111.B) are the two mirrors; [i therefore is the angle between
the main beam and the pipe wall; and [ thus is fully sensitive to beam wiggle. When there is one set of
baffles, the initial and terminal points for photon reflections are one mirror and the one baffle pair at which the
diffraction-aided reflection occurs. Thus, lateral motion of the main beam on the mirror (beam wiggle) again
shows up in [1, but with a modestly reduced influence. When there are two sets of baffles, the initial and ter-
minal points for the photon reflections are the two baffle pairs — one near each end of the pipe — at which the
two diffraction-aided reflections occur. In this case, sensitivity of i to beam wiggle is strongly reduced. I
have not attempted to compute the actual reduction factor, but I would expect it to be several orders of magni-
tude. Since controlling beam wiggle at the level 10~ radians/Hzl" x(10 Hz/f ) is likely to be very difficult and
perhaps impossible, this reduction of sensitivity to beam wiggle seems to me very important.

Expression (3.8) reveals that the modulation of scattered light by reflection (proportional to
JdE /dtdAdf ) is second order in small angles. (It nevertheless is the dominant form of modulation because
the pipe length L acts like 2 ‘‘lever arm’’ to amplify the modulation.) There are two second-order contribu-
tions to the modulation: one proportional to © pt (product of scattered-photon angle with fluctuations of wall
angle), and one proportional to op-ﬁ (product of rms wall angle with fluctuations of wall angle). The noise
levels quoted above are those of the ‘9 It"’ noise. For comparison, the ‘o 1L’ noise is given by

%3
lof

i 30, L9
- e — = ad 2 = —"™_ for one set of baffles , (3.260)
expression (3.252) @, (4R/L) 4R 0.001
i 3o o
B = N — for rwn sets of haffles . (2,260
expression (3.25b)  (4R/L)VI(L O, /4R)  SxI0”
This and the corresponding formula (3.28) below for a detector with movde cleaner motivate the recommended

upper limit on fluctuations in straightness and circularity of the pipe walls [Eq. (2.7)].
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2. With Mode Cleaner

When a mode cleaner is used on the detector’s output, the noise works out to be (see Sec. [V.C)

. ) A '/zg YA 32 A 4 . Le, '/:_
"l @ oll| B| R L ar || H

—26
= 2x l_Q_ 5 ; };" for one set of baffles, (3.27a)
YHz  10°Hz"2(10 Hz/f )

po L 1t of L)
Y3 6an2 SH B| R

-~

_ Ix107% m

— 5 T for two sets of baffles. (3.27b)
YHz  10°Hz "2 (10 Ho/f )

The dependences on angles indicate that for one set of baffles all photon angles 6, from 6, down to ~4R/L,
are significant contributors; while for two sets of baffles the smallest angles, 8 ~ 4R /L (those with only a few
reflections), dominate.’

For the chosen parameters the noise reductions due to including baffles are ~ 500 with one set of baffles, '
and ~ 10° with two sets. The computed noise levels are several orders of magnitude below the standard quan-
tum limit — sufficiently far below that we should feel quite comfortable. If we were sure that mode cleaners
could be implemented on the interferometer output at the exquisitely good sensitivities we are discussing, we
might even live happily with just one set of baffles — until we reminded ourselves of the issue of sensitivity to
beam wiggle. Then we might hesitate.

With a mode cleaner present, noise associated with fluctuations in the pipe’s straightness and roundness
(“p, I’ noise) has the magnitude

h,. 30, o,
; = = — for one set of baffles , (3.28a)
expression (3.27a)  (4R/L)NIn(LO,/4R)  5x10
i 3o c
b = s % for two sets of baffles . (3.28b)

expression (3.27b) . VZ(4R/L)  3x10~

Thus, if the rms fluctuations in straightness and roundness are much larger than 1073, the ““n,, L’ noise
[Eqs. (3.28) and (3.26)] will be significantly larger than the ‘0 ft "’ noise [Egs. (3.27) and (3.25)]. This is the
origin of the recommended upper limit (2.7) on straightness and roundness of the vacuum pipe.

This entire discussion is based on the assumption that coherent superposition of light is unimportant in
the dominant scattering processes of Fig. 3.5. We shall examine this asrumption in Sec. IV.E and shall dis-
cuss there the need for jaggedness of the baffle edges to protect against ccherence.

D. LIGO With Baffles: Scattering of Light off the Baffles

When baffles are present the most dangerous source of noise. asich: trom diffraction-aided retlection. is
the baffles’ rescattering of light directly back to the mirror from which it came (Fig. 3.6). This rescattered
light gets trequency-modulated by longitudinal vibrations &(f) of the baffies. The resulting noise, as com-
puted in Sec. 1V.D, is discussed in the next two subsections:
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Fig. 3.6 Main-beam light scatters off a mirror toward a baffle, then scatters off the face of the baffle directly back to the
mirror where it recombines with the main beam. ’

1. Without Mode Cleaner

. When there is no mode cleaner on the output, the dominant noise is due to the baffles which are pearest
the scattering mirror — and thus it is sensitive to the distance /, from the mirror to the first baffle. The noise is
also stronger, the smaller is the photon angle 8 to reach the nearest part of that baffle; and thus it is sensitive to
the transverse distance Y, between the mirrors’ main beam and the edge of the baffle. For two sets of bafiles
the noise works out to be ‘

—_ % [) 14
2 [ _do Al () r )%
B dAdQ L Y, 1 Wo| L

~

3.29)

VHz f 10”7 an Hz" V2 (10Hz/f )?

for one set of baffles the noise is smaller by 1/¥2. The number shown assumes Y, = 5YAL =20cm, and also
I, = 10 meters, the smallest mirror-baffle distance allowed by Recommendation 1 of Sec. I In fact, the noise
level (3.29) is the motivation for the limit /, > 10meters in Recommendation 1. With I, = 10 meters the
noise, (3.29). is 1/4 of the standard quantum limit. This is about as close to the limit as it seems wise to go.
Smaller I, would put us closer.

_ Ixio™® [ lOHz] [ g

2. With Mode Cleaner
When a mode cleaner is used on the output, all baffles contribute roughly equally to the rescattering

noise, and the noise works out to be
- _ 23| _ao |"[a]"[AZ)( _a] "yuk
- Y, | "L

B | dAdQ L

P

VHz f 10~ cm Hz 2 (10 Hz/f )?

This is a factor 4000 below the standard quantum limit— very comfortable.

‘= lxlO‘T’[ lOHz] [ E ] . (3.30)

E. LIGO With Baffles: Mirrors Near the Pipe’'s Center

If the pipe were perfectly straight and round and the baffles were oet jagged, then for mirrors at the
pipe’s center the noise would be strongly enhanced due to two effects: (i) The pipe would act like a mirror to
focus scattered light from one interferometer mirror onto the center of the other, thereby increasing the inten-
sity of the light and increasing its noise. (ii) Because the diffracting baffles would be symmetric with respect
to the misrors, the Fresnel pattemns would be unable to suppress coherent effects; and coberence would further
enhance the noise. Crookedness of the pipe, deformations of the pipe from routidness, and jaggeduess of the
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baftles are the methods of controlling these noise enhancements.

Crookedness is characterized by transverse displacements Eo of the central axis of the pipe from a per-
fectly straight line. The rms value of this displacement we denote by O¢ ; and we assume for numerical pur-
poses that o = [ c¢m. In this section I shall quantify the suppression of noise by this crookedness; see Sec.
IV.E for derivations. I am quite sure that the suppression by deformations from roundness is of the same mag-
nitude as suppression by crookedness; i.e. in the following equations one should replace o by \]og‘zmglz
where o, is the rms amplitude of the quadrupolar (m =2) deformations of the pipe from roundness. How-
ever, I have not proved that this is so. In any event, even without any deviations from roundness, the crooked-
ness alone should lead to the following levels of noise suppression. B

The jaggedness of the baffles will be described by the maximum wavelength o of the jags. The height
of the jags is not important, so long as it is larger than the minimum given by Eq. (2.6).

A role similar to that of jaggedness is played by spatial phase fluctuations due to the nonzero coherence
lengths of (i) the mirror irregularities which produce scattering and recombination, and (ii) the photodiode
irregularities which produce recombination. The transverse wavelengths of these phase fluctuations evaluated
at the midpoint of the pipe’s length (i.e. at baffles that are roughly equidistant from the two ends) we shall
denote oy and o, These wavelengths are expressed in terms of the coherence lengths of the mirror and pho-
todiode irregularities by Eqgs. (4.5d) and (4.11) with z =z"=L/2; and they have magnitudes G, > >VAL ,
Opa 2 VAL .

In discussing the noise we shall examine first noise due to light that does not reflect off the walls at all;
i.e. light that scatters from one mirror, diffracts off one baffle, then recombines with the main beam at the
other mirror; see Fig. 4.7 below. We shall call this ‘‘diffraction without reflection’’. Then we shall examine
the noise due to light that both diffracts and reflects (Fig. 3.5 for mirrors at the pipe’s center).

1. Diffraction Without Reflection

It is shown in Sec. IV.E.1 using a phase-coherent (amplitude) analysxs that, for mirrors that are precisely
at the pipe's center and for precisely centered baffles (no pipe offset &0 at the baffle locations), the noise due
to diffraction without reflection is given by

[EH < ] {Le] [mmwuopd,om g

i - Jaan [
L

B R H-6H R 2R L
. ARC - )
Ix107%* | (OHz || Min(Cy,0p4,0H) 13 .
= ——— . (331«1)
VHz f 2rR ) 107 em Hz™ 2 (10 Hz/f )?

This is the noise in the absence of a mode cleaner. When a mode cleaner is present the noise is

Vs

- S va min(oy oy) | &
fe QA AL Mo On) | S
B| L R 2nR L
1\<10_77 “’) HZ min(O'M ’Opd'oH ) E_.* — (}3 Ih)
VHz f InR W7 emHz™"= 10 M7/ )

where N, the number of baffles, is given by Eq. (2.5). In these equatiors € is the square root of the spectral
density of the radial baffle vibrations. With a mode cleaner present |Eq. (3.31b)] the noise is negligible
whether or not the baffles are jagged. Without a mode cleaner [Eq. (3.31a)], the noise is about at the level of
the quantum limit in the case of perfectly smooth baffles and large o, and G4 One reason for baffle jagged-
ness is to drive this noise well below the quantum limit: With the recomnended oy <5mm (Sec. II), the
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baltle suppression factor will be \/oH/ZnR <0.04. Pipe offset '50 at the baffles (i.e. pipe crookedness) will
also suppress the noise a bit; but I have not calculated the amount of suppression.

2. Diffraction With Reflection

It is shown in Sec. IV.E.2 using a phase-coherent (amplitude) analysis that, for mirrors that are precisely
at the pipe’s center, the noise due to reflection combined with diffraction {both ordinary diffraction (Fig. 3.1)
and diffraction-aided reflection (Fig. 3.5)] is given by the following expressions:

i. For one set of baffles and no mode cleaner

Pl 43(1‘,‘,){;&] “‘[ m‘] "’{ «IE] "’[ m‘}” [Leo}"‘ {4@9,,/21:)3%;0,,} O, [80,,%J .
=7 S +—5 H

B L R H O 2R AL R AL
L g 5| |, g O (3.32a)
VHz  10°Hz2(10Hz/f) | | 6x10~em | 6x107* | 2em | '

ii. For two sets of baffles and no mode cleaner

p ot Yaem [a] (&) [ AL [ VL), 2 O | f B0on ;
180 B |L R H || o 3 RIL AL

_ 3x107% i
YHz 10 Hz "2 (10 Hz/f)

Op, Oy
1+ . 3.32b
2x10'4}s[ 2cm] (3-320)

iii. For one set of baffles and a mode cleaner

s lafa)" L (L) ()", o | [ B0on).
"T7B|L] R | H | | o oriL|®| M
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iv. Fortwo sets of baffles and a mode cleaner
- tafa]"[A)" iz | [, o | [ Boeou]
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YHz  (0°HzY2(10Hzf)| 1.5x107*| | 2cm
In these formulas S(x) is a function which describes the effects of nccedness of the baflles. T have not
computed the precise form of S{x); however. considerations develop: 1 in Sec. TV.E.2 show that (i) it is
always unity (there is no suppression of noise by jaggedness) when the argument v of Sty is greater than
Oone:
Stv)=1 forx >1; (3.34a)

(ii) it is less than unity (there is noise suppression by jaggedness) when v is less than one

S(x)<1 forx <1; (3.34b)
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(itiy the precise amount of suppression depends on the spectrum of the jaggedness (the distribution of
wavelengths present); (iv) if the spectrum of the jaggedness is very small for wavelengths greater than the
wavelength gy, then

S(x)x 1 forx <. (3.34¢)

For further details see Eqs. (4.93) and associated discussion.
Discussion

Equation (3.33a) shows that, when a mode cleaner is used and the ms beam-pipe offset is o = 1cm,
then a single set of baffles might be sufficient to suppress diffraction-plus-reflection noise. The word
“‘might’’ is because with just one set of baffles ﬁ is sensitive to beam wiggle, and it is far from clear that ﬁ
can then be held to the level pt <1077 Hz"'2 (10 Hz/f ). If it cannot be held to this level, and there is only one
set of balfles, then significant noise suppression will have to be achieved via baffle jaggedness.

Since it is not certain that a mode cleaner can be implemented on the output at the sensitivity levels we
require, we should be sure that the LIGO design also suppresses the noise adequately in the absence of a mode
cleaner. Equation (3.32a) shows that it does not do so if there is just one set of baffles. The noise level
(3.32a) is a factor 25 larger than the standard quantum limit at 10 Hz, and 250 times larger at 100 Hz. More-
over, the “‘Op1"" portion of the noise (the part not proportional to ,.) is incapable of being reduced by baffle
jaggedness — unless the angle 6, can be reduced far below 0.1. The reason is that this part of the noise [by
contrast with all others in Egs. (3.32) and (3.33)] is dominated by baffles near the ends of the pipe; and for
those baffles jaggedness has an influence only when its wavelength is smaller than the extremely small value
of 6x10™ cm(0.1/6,)*2. This “‘@ iL”’ part of the noise also is not very susceptible to reduction by ‘‘blacken-
ing’’ of the pipe, i.e. by reduction of the angle 6,, because it is proportional only to 9,)"%. Thus, the only
secure way of reducing this noise below the quantum limit is by using two sets of baffles {Eq. (3.32b)]. The
second set of baffles drives down the noise due to end baffles so much that the central baffles come to dom-
inate; and for them baffle jaggedness could be a significant help in reducing the noise below the 3x102* Hz™
level — which, itself, is already below the quantum limit.

To recapitulate, for mirrors near the center of the pipe it is particularly important to have two sets of
baffles. With two sets, the combination of crookedness of the pipe (I, = 1 cm), and baffle jaggedness can
push the noise well below the quantum limit. In fact, crookedness alone brings the scattering noise for cen-
tered mirrors down to the level of that for mirrors near the pipe’s walls [compare Egs. (3.32) with Egs. (3.25)
and (3.26): also compare Egs. (3.33) with Eqgs. (3.27) and (3.28)].

V. Derivation of the Formulas for Scattering Noise

This section sketches the derivation of the scattering-noise formulas given in Sec. III. Section IV.A
derives intensity-analysis formulas for the specific processes discussed in Sec. HLA. Then Secs. [V.B, C and
D derive the scattering formulas given above in Sections OB, C and D respectively. Finally Sec. IV.E
analyzes and discusses the possible roles of coherence in scattering noise 211 the role of balfle jngredness in

controlling coherent effects.

A. Formulas for Use in Intensity Analyses of Scattering
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1. Scattering of Main Beam Off Mirror

The experimental basis for the scattering formula P (8) = &/6* and the parameter value o= 10~ were
explained in Sec. LII.LA.1. In this section we shall examine the relationship of this scattering probability to
irregularities in the mirror, and we shall develop an amplitude analysis of the scattering (by contrast with the
intensity analysis of Sec. ILA.1). Figure 4.1 is a foundation for our discussion.

N

Z=0

Fig. 4.1 The scattering of the main beam off irregularities in a flat mirror.

In-Fig. 4.1 and our analysis we presume (for simplicity and without significant uitimate error) the fol-
lowing: (i) The mirror is flat rather than curved (aside from its irregularities discussed below). (ii) The light is
describable by a scalar field (an appropriate component of its electric field, appropriately renormalized) that is
sinusoidal in time with angular frequency w and wave number k = w/c =2m/A and with spatial form y(x) that
satislies, in vacuum, V2y =0. (iii) When it hits the mirror (at longitudinal location z = 0) the incoming light
beam has the Gaussian form

%
¥ = YY) = [ hﬂ—] exp(-y*/AL) “4.n

(subscript **mb’’ for ‘‘main beam’’.) Here and throughout I is the power (energy per unit time) in the main
beam, and V is normalized such that 1y|? is the epergy flux. The bold letter y denotes position in the
transverse plane (a 2-vector) relative to the mirror center.

The mirror can be described by the idealized boundary condition that on its surface the field y must
vanish. We shall describe irregularities in the mirror's surface by the surface’s displacement N(y) in the z-
direction (longitudinal direction). For supermirrors it will be true that kN = 2rV /A «l. By inserting our
idealized W = 0 boundary condition into the Helmholtz-Kirkhoff formula [Eq. (7) in Sec. 8.3 of Bom and
Wolf*] and expanding e2*" = 1+2ikN and dropping the 1 from this expansion (since it corresponds to the per-
fectly reflected main beam), we obtain for the scattered field at the point P of Fig. 4.1

KN | e™ o,
P)= 1 — ——d"v. 4.2
W(P) j [ 2 r -
miror
Here the integration is over location y on the ideally flat mirror. z=0. and r i the distance from the integrtion

point y to the field point P. This distance can be expressed in terms of y. the transverse location Y of the tield
point relative to the main beam'’s central axis, and the longitudinal distance - of the field point from the mir-

ror. as

2 ,2
r=[HY-y)" = :+—§;+—’:—-y+’72— . 4.3

Here terms of higher order in {/z than 1/z2 are small compared to A/2r and thus give negligible contributions
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to the phiase factor in (4.2) and are omitted. By combining Eys. (4.2) and (4.3) we obtain

£y

5 e"("y”"’e”"’x’z"dzy ) (4.4)
14

w(Y,z)= % o kY2 J» Ve

mirror

The squared modulus of this field, [y |2, is the energy flux of scattered light and thus must be equal (after spa-
tial averaging over any fluctuations) to z 2[P (=Y /z) = 2 oz /Y )2 Correspondingly, we can rewrite (4.4)

in the form

W(Y,z)= %%e‘“e"”"” (XD (4.52)

Here the quantity f .. (Y) (subscript ‘‘sm’’ for ‘‘scattering mirror’’) is a complex function with rms value
unity,

<fwm>=1, (4.5b)
given by
2 . . k) .
fsm(Y) = % me[ _@Z_nﬁ] e:k(Y/z)-ye_:ky 12z dzy . (45C) .

In words, f.,(Y) is the fourier transform of the mirror deformation N(y) inside the main beam’s spot,
evaluated at wave vector kY/z and renormalized to unit rms value. If the fluctuations N(y) in the mirror
shape at transverse wave vector k Y/z have coherence length D, then the Fourier transform will change sub-
stantially on scales 1kAY/z | =2m/D,,, ie. on scales |AY! =2rz/kD,,, =zMD,,. Because the fourier
transform is confined to a region of radius 1y 5‘5\2- by the Gaussian V,,, that appears in the integrand, the
largest the coherence length D, can be in the integral is D ., = VAL , and the smallest possible scale for vari-
ations of f (Y) is 1AY1 gzNVE ); Le.

$nm

A z 4
£ +(Y) varies substantially only on scales 1AY | = ; > Zm . (4.5d)

This lengthscale |AY |, evaluated for the central baffles z = L/2, is the o), of Secs. IILLE and IV.E.

2. Scattering of Light Back }IItO Main Beam

Consider. next, scattered light that is converging onto a ‘‘receiving mirror’’ after being reflected off the
wall of the vacuum pipe and/or diffracted off a baffle. In this section we shall analyze the recombination of
that light with the main beam via scattering off the receiving mirror: in the next section we shall analyze
recombination via transmission through the mirror onto the photodiode: and in both sections we shall derive
expressions not only for the recombination but also for the noise i (f) that results from the recombination
(Sec. II.A.3). The intensity-analysis descriptions of these processes were discussed in Secs. 111.A.2 and
III.A.3; here we shall focus primarily on amplitude analyses.

Consider scattered light, described by the tield w. impinging on the receiving mirror. Focus attention on
the form y(y") of the incoming field at transverse location y” on the surtace ot the mirrorand also on the torm
Wy (¥ of the incomiug main-beam field there. The incoming scattered field w(y") will be a superposition of
locally plane waves coming from the directions of the various parts of various baffles or from various points
of reflection on the vacuum-pipe wall; while y(y") will have the same Gaussian form (4.1) as on the scattering
mirror, but with y replaced by y’.

It can be shown, by computing the rescattering of the field w(y") via Eq. (4.2) (with y,, replaced by )
and by then breaking up the rescattered field into modes of the interferometer and picking out the component
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which goes into the main-beam mode, that the scattered light produces a phase change in the main beam given
by

I

mirror

. l . ’ ’ ’ ’
8Dy, = Imagmmy[ — | WP IWEAN (3)dy } : (4.6)
Here N(y") is the displacement of the receiving mirror from ideal flatness due to irregularities, and the *
denotes complex conjugation. This phase change has a time dependence produced by the modulational time
dependence of the scattered field y; and the time-dependent portion is interpreted, upon reaching the photo-
diode, as associated with a gravitational-wave field
A

A
h(t) = ——50_,
M) = 2B OPm = SraL

Imasmary[ I VYOV N (7 )dzy} @7

By expanding y(y',¢) in modes of the mirror [paragraph following Eq. (4.11) below], then evaluating the
spectral density of expression (4.7), assuming random relative phases of the mirror modes, and using Eqgs.
(4.5b,c,d), one can obtain the intensity-analysis formula (3.7), (3.5) for i (f). (This is a much harder way to
get that formula than the simple argument given in Sec. I11.A.) -

3. Transmission of Scattered Light Onto the Photodiode

When the scattered wave W hits the receiving mirror, part of it gets transmitted through the mirror,
along with part of the main beam, and into the photodiode. The scattered wave then, by interfering with the
beam from the other arm, produces a change in the photodiode current. It can be shown that the change in
phase 8P, of the main beam that would have been required to produce that same change of photodiode

current is

4.3)

80,,, = Imaginary| - ,f Vs 3 W M)y

where the integration is over location y’ on the comer mirror of the interferometer’s arm, and 1(y’) is the
efficiency of the photodiode for photons that move along main-beam rays passing through y’. Notice that Eq.
(4.8) is the same as (4.6), but with the mirror’s deformation-produced phase shift XV replaced by the
photodiode’s efficiency 1. Corresponding to (4.8) is the following expression for the gravitational-wave field
inferred from the observed phase shift

h(f)_ —A'"sq’mb [

mirror

}\' 2 "o

cf. Eq. (4.7).
In concrete applications of Eq. (4.9) the scattered field y will arrive at the receiving mirror from some
location (z”,Y) (a diffraction or scattering or reflection point on a baffle or on the vacuum-pir+ wall), where =°

is longitudinal distance from the plane of the receiving mirror. Then w eviluated on the rec iving mirror will
have the form ¢/ Y=Y ® " gside from a multiplicative factor. while W, will have 15 Gaussian torm

(4.1). Correspondingly. when computing the scattering-induced phase shift (4.8) we will cncounter the tol-
lowing integral, which we shall approximate in the following way:

PN R —_— - ‘/_Z"/z
j meei(sz ).ye'h' 2 T]dz_v':“j[M (1_‘1)[_%?} fpd(Y) » (410)

mirror

where f_(Y) is a fluctuating complex function with rms value of unity. In Eq. (4.10) the first term, VIAL ,
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would be the value of the integral of ., alone; and the remaining part is our estimate of the integral with
replaced by a normalized Gaussian (one whose integral is unity). This remaining part is essentially a Fourier
transform of the photodiode efficiency, restricted to the main-beam spot. Qur estimate of this Fourier
transform is conservative — i.e., it is more likely an overestimate than an underestimate. The magnitude of
our estimate, (l—ﬁ)[(‘J)TI:/Y )z’/L 1%, is the mean deviation of the efficiency from unity, divided by the square
root of the number of half-waves of e'*Y?)7 contained in the integration region. The function f pa(Y)
“describes the fluctuations in this Fourier transform, which are caused by the random fluctuations in the photo-

diode efficiency. By analogy with Eq. (4.5d),
ey ’

z
Dy~ L

AL , (4.11)

f 2d(Y) varies substantially only on scales 1AY| =

where D 4 < VAL is the coherence length for fluctuations of 1) at transverse wave vector K = k Y/z’ within the
main-beam spot. This 1AY1, evaluated for the central baffles z” = L/2, is the Opq Of Secs. IILE and IV.E.

Equations (4.83)—(4.11) constitute our highest-accuracy description of the effects of direct propagation
of scattered light into the photodiode. In this description no assumptions are made about the phase coherence
of the scattered light. To see that phase coherence typically will not be important here or in the case of recom-
bination via scattering (preceding section), consider the incoming scattered field w(y") evaluated on the receiv-
ing mirror. That field can be written as a sum over modes of the mirror (solutions to the two-dimensional
Laplace equation) that are restricted to the interior of the Gaussian beam spot — or, for greater conceptual
simplicity, restricted to the interior of a square of side VAL . Then the Cartesian compogents of the transverse
wave vectors K of these mirror modes will be multiples of 2VAL ; and correspondingly, the region in
transverse wave-vector space occupied by each mode will have linear size |1Ax| = 2nAL . Equation (4.10)
shows that the transverse wave vector is related to the location (z’,Y) from which the scattered light comes by
x=k(Y/z"y=2rY/Az’; and correspondingly, regions of transverse size |AY| =MVAL =z /L)AL all
contribute to a single mirror mode of y. This means that, if the lengthscale for phase fluctuations in the scat-
tered light at z” is |AY | <(z'/L )‘/E, then the various mirror modes in y will have random phases relative to
each other and thus will contribute incoherently to the integral (4.8). In fact, the lengthscale for such phase
fluctuations typically (but not always) will be <(z'/L )‘-"E because the light from the original scattering mir-
ror is likely to have lengthscales not much larger than this {cf. Eq. (4.5d)], the photodiode response [Eq.
(4.11)] is likely to be characterized by lengthscales not much larger than this, and interactions with baifles and
the pipe wall are likely to fuirther randomize the phases. This justifies our extensive use of intensity-analysis
techniques in this report. For a more detailed discussion of the effects of phase coberence and of situations in
which the intensity analysis may break down, see Sec. I'V.E below.

Returning to our analysis of scattered light impinging on the photodiode. we next shall rewrite Wy in Eq.
(4.9) as a sum over modes and use (4.10) to evaluate each mode’s contribution to the integral. Thereby we

obtain

h{t)=

Imagin LZ\/(JE/dA) expli ®NTAL H—ﬁ)( AL L (4.12)
2rBL R T2 <EPH D I

Here O is the angle to the main beam at which a given mode s photor: come in. and @, is the phase of the
contribution from mode x. The square root of the spectral depsity of this /it/1. when the relative phases of the

various modes are random, is

Y2 '
- 1 |1 _(dEIdAdf ) | A 1
" >=m<"“"[52—m¢ I o (419

Converting the sum over modes to an integral over directions of the incoming scattered light, and comparing
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the resulting expression to the standard one (3.7), we can read off the value of the ‘‘recombination probabil-
ity”’ for scattered light transmitted to the photodiode:

-, 2
P (8)= il—;g)—[ —:‘—} : (4.14)

This is the expression quoted without full proof in Eq. (3.6).

4. Frequency Modulation of Light by Reflection off the Pipe Walls and Diffraction and Scatteriné off Baffles

Turn next to a derivation of expression (3.8) for the frequency modulation of light that gets reflected off
the pipe walls.

Fig. 4.2 The geometry of a ray from point P to point Q which is reflected in a locally flat portion of the vacuum pipe's
wall. Motion-induced changes in the wall are described by the normal displacement § at the point of reflection and by an-
gular displacements St and v of the normal 7 at the point of reflection.

Consider, as a first step in the derivation, an idealized problem in which light propagates from one point
P to another point Q via small-angle reflection in the wall (Fig. 4.2). If the wall’s geometry fluctuates relative
to P and Q, how will the length r of the reflecting ray from P to Q change? The geometric fluctuations can
be split up into a displacemept g of the wall normal to itself at the point of reflection, plus a change 87 in the
direction of the normal 7. The change of 7 is described by two angles. The first, Syt is the angle of the pew 77
to the old one, projected into the plane of the original ray; this is also describable as the change of the angle pt
of inclination of the line PQ to the wall. The second angle, Sv, is the change of it projected on the plane per-
pendicular to the original ray. It is easy to convince oneself that 3v has no first-order effect on the length r of
the ray from P to Q. However, as one readily sees from the diagrams in Fig. 4.3, both the displacement & and
the angle 3 do have first-order influences r; and they, and the corresponding changes 5® = 2rdr /A in the
phase of light that propagates from P to Q, are given by the following eqnations:

80:2::%5:—‘1{3(%1;)%. (4.15
and
6<D=2n—i£ = %(b—a)&l . (4.15b)

Here a, b, and ¢ are the distances shown in Fig. 4.3.
Tum, next. to the slightly more realistic (but not fully realistic) problem of light that scatters off one
mirror and travels to the other via a series of reflcctions in the pipe wall {but no diffractions or scatterings);
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l;ulg. 4.3 Geometry for computing the changes of the length of the ray from P to Q induced by the displacement & and tilt
of the wall.

and restrict attention for simplicity to the case of a ray whose transverse motion is radial (i.e. which passes
repeatedly through the central axis of the vacuum pipe). In this case, if / is the distance from the scattering
mirror to a specific reflection point and 0 is the angle of the ray relative to the main beam and the pipe axis
and 1 is the angle of the unperturbed wall to the unperturbed main beam, and if for conceptual ease we ima-
gine straightening out the ray at all reflection points except the one being studied, then the lengths a+b, b—a
and ¢ of Figs. 4.2 and 4.3 becomes ’ '

) a+b =L6+Lo, VLO2R , b-a =(2L-1)8+Lo, VLO2R , ¢ =L. © (4.16)

Here Lo, VLB/2ZR is an estimate of the stochastic effects of the time-averaged wall angles p at all
N, =L6/2R reflection points along the route from one mirror to the other. This may be an overestimate
when 0 is large, because of anticorrelations in 1.—1 from one segment of pipe to another; but when  is large the
L6 and (2L ! )8 terms dominate, so the error in the estimate Lcu.m is unimportant. Corresponding to

the values (4.16) of a +b, b—a, and ¢ are the following expressions for the changes of phase (4.15a,b):
50 = 4n(@HLOR 0,)3 . (4173)

(L-21)+LVLEI2R o,
50 = 4r . S (4.17b)

M
M

The phase shift will still be given by (4.17) to within a factor of order unity in the more realistic cases of
rays whose whose transverse motions are not radial, and rays that interact with baffles before and/or after the
reflection — so long as the baffles are near the ends of the pipe. Moreover, in ail these cases the modulation
put onto the light by fluctuations in the phase shift is given by the standard formula

dE__ dE

= ), (4.18)
dtdAdf — dtdA )

where ® 2(f ) is the spectral density of 3®(¢).

The wall motion will be characterized by sound waves with prepagation speed roughly 2x10* em/sec
and thus with wavelength A 4 ~ (2000 cm)(10 Hz/f ) and with pt ~ 22/ A eun- CoOTTEspondingly. the ratio of
Su-induced phase shift to &-induced phase shift will be

8_01"_ .- SN (4.19)

Sog Aﬁ:mml

which means that we can (and shall) ignore the E-induced phase shift compared to the y-induced shift when
dealing with light that reflects off the pipe walls.
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When light diffracts off a baffle the only contributor to phase and frequency modulation is the baffle's
vertical displacement &, It is easy to show that, by analogy with Eq. (4.17a)

5 = 2n(e+e')—i* : (4.20)

‘where 9 is the angle of the incoming light and @ is the angle of the outgoing light. By combining this with
Eq. (4.18) we obtain expression (3.12) for the diffraction-induced change in the specific flux of frequency-
modulated light. .

In the case of scattering off a baffle (Sec. I1I.A.7), it is the longitud'nal displacement £ of the bafle that
produces the phase shift; and one easily sees that the shift is 5 = 4nE/A comresponding to Eq. (3.20) for the
production of frequency-modulated light.

5. Diffraction off Baffles

Tum, next, to diffraction of light off a baffle. For ease of analysis, approximate the baffle as plane
parallel rather than cylindrical. This is justified by the fact that, unless the mirrors are very near the pipe
center (a case treated separately in Sec. IV.E), the scattered light’s transverse lengthscales (coherence length-
scale and lengthscale of Fresnel diffraction pattern) are small compared to the badfe’s radius of curvature.
Let the baffle be jagged, with beight variations //(x ) where x is distance along the baffle. Denote by y verti-
cal distance measured from the mean baffle top and by = longitudinal distance away from the baffle; see Fig.

4.4,
—_— e

1,
~ -
~

4
s

Fig. 4.4 Geometry for derivation of the diffraction cross section and for discussion of its dependence on jaggedness of the
edge of a bafile. :

Place a point source of light, with outgoing field w=e™/r, at location (z; ==y, y, =&/, x); and
examine the diffracted field at location (z, =15, y, = 6,/5, ¥;). By definition, the diffracted field is the differ-
ence between the field that would exist at point 2 in the absence of the baffle and that in the presence of the
baffle; and by Babinet’s Principle (Bom and Wolf* p. 381) and the Fresnel-Kirchoff diffraction formula (Bom
and Wolt* p. 382) this field can be expressed as the following integral over the region covered by the baffle:

R k(e :
=]} dve . 420

A little geometry and algebra permit one to write ry+r, in the form

(x—x;=x) =8 +0)R ] . (81,-9:1p° ) (x=xa)?

T - . (4'22)
2Up 2Ug W Hy) 20+

"|+r2 = Il+lz'|L'

Here I is the reduced length of the baffle from the source and field points, lg =/1,/(1,+;). By inserting
expression (4.22) into (4.21) and evaluating the y integral using the approximation, valid for @ > |,
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o

J’c(im2)z'dtg _Le(""/z)"” , (4.23)
! Tw
we obtain
i®. +e i (=t =¥ ,)?
y= e 1 J‘ ___‘__2_ W(x), (4.24)
2rl,l, (9,+9,) 2, Alg

where @, is a phase that we shall not write down and W (v) is unity if the baffles are smooth, and is the com-

plex random function

W = ¢~ kO8I ) 4.25)

if the baffles are randomly jagged. The strategy of jagged baffles would dictate that H(x) vary with a
sufficiently large amplitude to make the phase of W change by x on some short lengthscale c. In this case
we can regard expression (4.24) as a filter of the ‘‘random process’’ W (x). The input to this filter is the func-
tion W (x) of position x on the baffle; the output is a function of the lateral position x, of the observation
point. The output fluctuates randomly with changing x,. We are interested not in the details of those fluctua-
tions, but instead in the rms value of the output y averaged over x,. We can estimate that rms value as fol-
fows: :

If the real and imaginary parts of W (Wy = cos[ik (8,+6,) ~(x)] and W, = —sin[ik (0,+8,)/~/(x)]) were
uncorrelated, then y(x,) [Eq. (4.24)] would have the same rms value as the ‘‘modified’’ y

1 1
mod = 7 7 o a ) (X2, (4.26a)
Wimod 2nl\l, (0,48 °
where
o i o(x —x4)?
J(x) =2 jcos[ ——}\—2— W (x)dx . (4.26b)
S Ir

The correlation between Wy and W, will not alter the equality of hwi _, and Iy, 4!, by more than ~ V2.
Then the modulus of the Fourier transform of the filter X (§) = 2cos[i m‘;Z/MR ], which appears in (4.26b), is

LK (f)1% = 2Al [1+sin2rMlg £ D] 4.27)

and correspondingly, if Sw, (f) is the spectral density of Wg(x), then the spectral density of J(x,) is
S;(f)=1K (f)1%Sw, (f ); and rms value of J is

2
+oo

J s =| 2AIg [ [1+sing2hlg £ 2)ISw, (f 1df (4.28)
0

Figure 4.5 shows the two components of the integrand. Sy, (f ) and +sint2n’ Ip F2) for fwo extreme cases: (i)
lengthscale o, on which the baffle height varies (and hence on whirh V. (v) varie l:ui:; compared to
\/ﬁ; = (the transverse size of the largest Fresnel zone oo the baffle’s adun: nd (b oy ‘/')JR It should be
evident from the figure that the value of the integral (4.28) is the same in the 'wo domains: The rms value of J
and thence of \y is independent of the lengthscale Gy on which the baffic heizht varies; jor all oy . to within a
factor of order 2, Wl is equal to the value for a completely smooth baffle:

M
! R (4.29)

fwl? = .
Vims = 20+ (8,48,
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Fig. 4.5 Components of the integrand (4.28).

Thus, the baffle jaggedness does not change the diffracted light’s intensity distribution.

This conclusion can be understood in the following way: When the baffle is smooth the contribution to
v from each Fresnel zone on the baffle is relatively large, but the contributions frgm adjacent Fresnel zones
cancel each other almost perfectly, in the manper of a Cornu spiral. As a result, essentially all of the contribu-
tion to 1'y| 2, comes from the central Fresnel zone [ lx—x,~x,! sﬂ in Eq. (4.24)]. Note that this zone has
about the right size to contribute to only one or a few modes of the receiving mirror [paragraph following Eq.
(4.11)], thereby guaranteeing that phase coherence will be fairly unimportant when the scattered light diffracts
off a smooth baffle. When the baffle is jagged on a short lengthscale oy < VAlg, this jaggedness reduces by
a large factor the contribution of each Fresnel zone to W, but it also spoils the delicate cancellation between
the contributions of adjacent Fresnel zopes. The two effects compensate, and the rms value of y is
unchanged. However, the field y now comes from a region on the jagged baffle with transverse size
Ax =Mploy > \Iﬂ; . This means the baffle feeds many modes of the receiving mirror — a situation that
would cause danger from pbase coherence were it not for the randomization of phases produced by the
jaggedness itself.

The bottom line-is that (when the mirrors are not very pear the pipe's center) jaggedness is unimportant:
It neither influences the cross section nor disturbs the insensitivity to phase coherence.

From the diffracted field (4.29) we can compute the cross section d 6/dxd 9, for diffraction: The energy
flux incident on the baffle is (dE /dAdt),, = 1/1,2, and the total energy diffracted by a length Ax of baffle into a
range A8, of 8, is (dE/dt) g = 1y1HAx (I +1,)/1]A8,1,; and correspondingly [cf. the definition (3.9) of the
cross section, with the change of notation 8, = 8 and 8, = ¢']

do _ (dE/dt) g
dxd®, (dE/dtdA ), AxA8,

A

— - (4.30)
d n’“(e]-f-e:)' )

=1L H) Yl =

This is the cross section quoted in Eq. (3.10).

6. Diffraction-Aided Reflection
Turn attention, finally, to diffraction-aided reflection. As in the above study of ordinary diffraction, we

shall compute the diffracted/reflected field and the resulting cross section using a plane paradlel approxima-
tion. For simplicity we shall presume that the baffles are smooth rather than jagged. The geometry of the cal-

culation is shown in Fig. 4.6.

We presume that the field emitted from point 1 has the form, near point L, y = e™ Ir; and we denote by
8, = (Y ,=H )1, the light's incident angle, by 8, = (V. 11,v1, its outgoing angle, and by 0, = (H +H /s the
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Fig. 4.6 Geometry for derivation of the cross section for diffraction-aided reflection. The field at point 2 is written, in
Eqs. (4.31), as a sum over all paths of propagation with the form shown dotted in this diagram. The transverse, x-
direction is suppressed from the diagram.

minimum incoming angle the light would bave to have in order to escape the baffles. (In this section, and only
here, transverse distances Y are measured to the pipe wall rather than to the smoothed baffle tops.) We further
denote L =1 ,+s+l; and Iy =1,l,/L, and we restrict attention to the regime

A

S 9,‘—61»[ N S«I,, S«lz. (4.31)

A
4r?s
Then by a double application of the Fresnel-Kirchoff diffraction formula {a sum over all possible patbs of the
form shown dotted in Fig. 4.6 — paths involving propagation from the source point to an arbitrary point (x,y)
in the plane of the first baffle, then a bend of the ray downward, then propagation via specular reflection off
the mirror to the plane of the second baffle, then a bend of the ray, then propagation to point 2}, we can write
the field at point 2 as

kL,

e
=—————[‘]v . (432:\)
M Alsl,
where
¥ ‘A
4on fon
ikl x* (x=x"? x? , | hista
= = + + dedx’=iA , (4.32b)
L _[_,e"p[ 2 [1, s 1, ML
o k| T ey Xy)
= {d ’ — S
I, J' _vg['dy exp[ 2 { I . I
4o 4oo ’ 2 ’ 2 [ 2
ik | §=1,8)" (§+H+s6,)" (5128, '
= ’ = + + . (4320)
!d&!diexp{z[ 7 - L
The &’ integral can be expressed in terms of the Fresnel-integral function
L
F{w) = C (wp+S (w) = [e P d< (4.332)
0
=w for ol <1, (4.33b)

i

I —-i—e(""’z)‘”’ for > 1, (4.33¢)
2 w
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N R P (4.23d)
2 T

By doing so, by invoking (4.31), and by making use of the approximations (4.33c) and 5//, « | and setting
k =2m/A, we obtain

[, =

hd

A e dE i 2
¢ !9,,-—9,4-@/5‘ e’q’[ ) [5”9"_92)”}

4 ‘. hod e(irr/'l)t’
e

Y i (4.33)
V(2572 (8:~9,) 8,-0,+VA/2s 1

T,

M| s
2l 2

where ®@, is a phase that we shall not bother to write down. In the regime 6,6, <« -YA/4r’s the integral
begins at T>> | and goes to +e=, The dominant contribution to the integral then comes from near the lower
limit; and, accordingly, the slowly changing denominator can be evaluated there. By doing so we convert the
integral into the form (4.33a) of a Fresuel-integral function, which can then be approximated by (4.33c) giving
A e'® Ny '
I,=——5———— for 6,9, < -Y\dn’s . (4.34)
> 4w (0,-0,X8,-08) .
Here @, is a phase that we shall not write down. In the regime 8,—8, > +VA/4r?s the integral begins at
T « -1 and goes to +e-. The dominant contribution to the integral then comes from t = 0; and accordingly the
slowly changing denominator can be evaluated there. By doing so and using the approximate value 1+i for
the resulting Fresnel integral, we obtain

L TR P Sy (4.35)
2r 0,6,
Here @, is a phase that we shail not write down. By combining Egs. (4.32a,b), (4.34), and (4.35) we obtain
the diffracted/reflected field w. By inserting this field into d o/dxd 8, = I,I,L | y|? [Eq. (4.30) above] and by
making the change of notation 6, =9, 8,=6",/,=1{,, I, =L-l,, Iy = lg,, s =s,, we obtain expression (3.15)
{or the cross section to produce diffracted/reflected light.

By noting that the ex}pression (4.32) for the diffracted/reflected field Wy [which is always valid, even
when (4.31) is violated] is symmetric under integchange of the pair (8,./,) with the pair (8,./5) and by feeding
this fact into the expression d o/dxd ©, =1,I,L 1y1%, we infer that the cross section d o/dvd 8, is also always
symmetric under interchange of these pairs.

The above calculation also produces, for the phase of the diffracted-reflected light in the regime 6, > 6,

and in the notaton of this section

2 - 3
o bed /,9l+/392 '+(/,9|+/192)' f T ‘/|9|+‘I192)- (1ot
=—|5 = A
2A 1+, Ly 1 2 L,
When the wall moves radially by an amount &, the ruantities 7,0, and 7.0 both change be 0l

correspondingly the phase of the scattered light changes by
X 1,9,+,80, £ © & 4 37
= -2 =1 > 3T7a
od s X L 1 3
When the longitudinal slope of the wall changes by 3y, the incident and diffracted angles change by 86, =p
and 88, = -1, and the corresponding phase change is

} Su .-:11:9,[ 11;12J S (4.37b)

1,0,40,8, [ 1,-1
Y L
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By the same estimate as we used in discussing reflected light [Eq. (4.19)]} it is seen that the du-induced phase
change will almost always be larger than the &-induced phase change. Correspondingly, the phase modulation
put onto the scattered light by diffraction-aided reflection is

dE dE -~ dE =y} - :
_dE _ dE_ - dE | o T2t 438
S didr = daa 2 ) dtdA[ '[ Y J”J (4.38)

This is the relation (3.18) quoted in Sec. UI.A.7.

B. LIGO with No Baffles
Tumn, next, to the use of these results to derive the scattering formulas of Sec. III.

Counsider, first, a LIGO without baffles. In such a LIGO the dominant scattering noise would be due to
the process depicted in Fig. 3.4: Light scatters off one mirror at an angle © < 6, then propagates down the
pipe making N .(0) = L 0/2R reflections and getting frequency modulated at each reflection, then reaches the
other mirror where it recombines with the main beam.

We shall compute the noise due to this process using Eq. (3.7), modified so the integration is over the

scattering angle © rather than over solid angle Q:

Y4
8,

- : dE /dtdAd ©
/,(f)=_2‘__ J‘pm(g)__"i/__f__idg

4.39
2mBL | 4, 1L 39)

This approach is motivated by the fact that the angle @ is conserved along each reflecting photon'’s trajectory.

At the reflection which occurs at a distance / from the scattering mirror, static irregularities of magni-
tude o, in the wall angle influence a photon’s subsequent direction, changing the transverse location of its
arrival at the plane of the receiving mirror by a distance 8Y ~ o, (L~!). Because of the recommended
minimum in the wall irregularities, Oy, > 10"‘, this random change in the arrival location is
8Y >50cm (1-{/L), which is of order the pipe’s radius. It will turn out that the largest angles, 8 ~ 6,, which
have the largest number of reflections, N,.s~L9,/2R ~300(9,/0.1). dominate the integral (4.39); and
correspondingly, each photon experiences a huge number of random > 50 cm perturbations to its arrival loca-
tion. As a result, the light from the scattering mirror gets smeared out in the plane of the receiving mirror in a
rather uniform way. This permits us to write the specific intensity of the light arriving at the receiving mirror

in the form
dE . 1 dE
x < (4.40)
dtdAd Odf R drd Bdf
The quantity JE . /dtdOdf can be written in turn as
dE . .
dE - ©H? (141
dd8df  Jdtd©
where JE /did 8 is the power scattered into a unit angle at the scattering mirtor,
e o,dQ_ Inof (442
Jid9  gr do 0
fcf. Eys. (3.3) and (3.4)] and @ is the total phase modulation put onto the light in all its reflections
2
L=2jL/AN 116 - .
[L2LNNwetDIS o1 ith ¥, = LOI2R 4

- Nm
d*=Y|4n
2=
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[ct Eq. (3.8) with the o, omitted because in this case. where large angles 6 ~ 6, dominate, its contribution is

negligible]. By (i) performing the sum in (4.43) to get

4"LJ Logge (4.43")

=21
di= :
Al o2R

3

then (ii) combining Eqs. (4.40)—(4.43) to get dE . /dtdAdOdf , then (iii) inserting this and expressions (3.5)

and (3.6) for P c(0) into Eq. (4.39), and then performing the integral, we obtain the final resuits for h (f ) that

were quoted and discussed in Sec. III.B: Eqs. (3.21) and (3.23).

C. LIGO With Baffles: Diffraction-Aided Reflection

When baffles are included in the LIGO the dominant scattering noise is that depicted in Fig. 3.5: Pho-
tons scatter off a mirror, circumvent the first pair of baffles they encounter by a diffraction-aided reflection,
then reflect their way down to the other end of the pipe where (i) if there is no second set of baffles they sim-
ply encounter the second mirror and recombine there with the main beam, or (ii) if there is a second set of
baffles they undergo a final diffraction-aided reflection before recombining.

The calculation of the noise from this process follows the same pattemn as the calculation for no baffles
(Sec. IV.B, above). The only difference is the need to include the effects of the diffraction-aided reflection. -

The largest noise occurs when the mirrors are close to the wall of the vacuum pipe, because it then is
easiest for the photons to undergo the diffraction-aided reflection. We shall restrict attention to this case.
Those photons which emerge from the scattering mirror propagating toward the nearby wall get stopped with
great efficiency, so we shall ignore them. For those which emerge propagating toward the far wall and there
encounter the baffle pair n, n+1, the angle 8, appearing in the cross section for diffraction-aided reflection is

given by Eq. (3.14) with the > replaced by =:
8, =0(1+3l/H) . (4.44)

(Here and throughout we make the approximation that the baffles’ height-safety factor 84 is small compared
to their height H, and we linearize in 8H/H. We also ignore the first series of uniformly spaced bafftes. The
first photon with © > 6, from our chosen mirror hits its first baffle pair only at the end of the uniformly spaced

N
-

The diffraction-aided reflection boosts the photons from angle 6 to

8" =9, + (several)x(8,-0) = O(1+30H /1) . (4.45)

For comparison, because the critical angle 9, is decreasing along the pipe at the rate d6,/di, =6,/1,, the
second pair of baffles encountered by the diffracted-reflected photons (twice as far down the pipe as the first
pair) has 9, = 8, /2: and thus this second pair is easily surmounted using an ordinary reflection.

The total cross section, per unit length of baffle, for the diffraction-aided reflection is. by Egs. (1.17)
and (4.44),

Jdo T H A (1.4m)

dv 4 SH 9

The energy (lux hitting the baffle pair is [by virtue of Egs. (3.3) and (3.4) for scattering off the mirror|

dE o o
in 92/!!2 4R2 .

dAdt

o _ o (4.47)

and correspondingly. the total power emerging from the haffle pair n. n+1is [cf. the integral of (3.9) over 9°]
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(4.48)

[g_E
dt | gign 4R dx 1679

(Here we have approximated the total length of ba(fle that contributes by R , the length of the portion on the
opposite side of the pipe from the mirror.) We shall approximate the angle 6" at which this power comes off
by 6. Then, since the number of baffle pairs dV, that send their diffraction-reflected photous out in the range
d9is dN, = (R/H )d 9/9, the total power per unit 9 crossing the midpoint of the pipe (I = L/2) is

dE o A H dN, od A

I = 4.4
dtde] 160 R 3H d9  16m0* SH (4.49)

If there is only one set of baffles (no baffles in the second half of the pipe), then this is also the power
per unit angle reaching the far end of the pipe. For comparison, the power per unit angle that started out from
the scattering mirror (and that reached the far end of the pipe in the case of a LIGO without baffles) was

dE _ 2reed
drd® no baffles 9

[Eq. (4.42)]. Thus, the first set of baffles has succeeded in attenuating that portion of the scattered light with-
photon angles near 6 by the factor

AE 1Atd8)e ot ot s -7
( Jone mtofbatfis _ 1 A 1 _ 107 @51)

(dE/dtd0)ng vurpes 322 OH O O

4.50)

which will range from ~107* for the smallest relevant angles to ~10~® for the largest. The contribution of
these photons to the gravitational-wave noise /i will be reduced by the square root of this number.

If there is a second set of baffles in the second half of the pipe, an analysis similar to the above will give
a second reduction by the same amount as the first, so the total reduction will be the square of (4.51):

roa1)? [107)’
AN ) L & 4.52
32;:28119] [e] (4.52)

(dE/ dtde)two sets of baffles
(AE 1dtdB)ro tatties

By inserting the redug:t.ion factor (4.51) or (4.52) into (4.42) and then repeating the calculation of Sec.
I11.B, one obtains the final formulas (3.25) and (3.27) for the noise /i (f). To obtain the corresponding formu-
las (3.26) and (3.28) for the influence of static pipe deformations p, on the noise, one can repeat the calcula-
tion replacing expression (4.43) {or the reflection-induced modulation by

: -11'([,0}_,__ Lo _1
= 453
[ R “! (2

oy L ——— - z
dl=3 4rtx‘/L9/2R o, H

j=!

/4

[cf. Ey. (3.8)).

D. LIGO With Baffles: Scattering of Light off the Baffles

Tum. next. to a derivation of expressions (3.29) and (3.3 tor noise ue 1o 1he process shown in Fig.
3.6: main-beam light scatters off a mirror toward a baffle. then scatters otf the tace ot the haifle directly back
to the mirror where it recombines with the main beam.

The foundation for the derivation is the standard noise equation (2.7). rewritten as a sum over baffles

and an integral over the circumference of a baffle:
Y1

. A * JE JdtdAd b, df
Fy=250 | Z] VAL

n 0

(4.54)
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Here JE /drdAd ¢, df describes the scattered light when it returns to the mirror from location o, on baffle n.
We can compute this quantity as follows:

At ¢, on baffle n the incoming light is described by

dE

— = _Cd (4.55)
dtdA

w 1200

where 8 is the angle at which the light must leave the misror in order to reach location ¢, on baffle . More
specifically, if Y, is the (transverse) distance of the main beam from the nearest point on the baffle and ¢, is
measured from that nearest point, then

Y

1,

0= -, whereY =YY +2R (I—cosé, R -Y,) (4.56)

is the transverse distance from the mirror center (or main-beam-axis) to location ¢, on the edge of baffle n.
The light scattered back toward the mirror from a range A¢, of angles on baffle n is described by

dE .
did Qdf

-
back.n 1207

Here d o/dAd Q is the baffle’s scattering cross section and RH Ad, is the cross sectional area presented by the
baffle to the incoming scattered light. The energy flux of modulated light that arrives back from the baffle at
the mirror is 1//? times (4.57), multiplied by the spectral density of the phase modulation produced by longitu-
dinal baffle vibrations, (4n&/A)? [Eq. (3.20)):

do
dAdQ

RH AY, . 4.57)

RH
12

do
dAdQ

dE.. ol
dtdAd b, df 1267

A

2
4u§_] , (4.58)

By inserting this (4.58) and expression (3.5) or (3.6) for P (8) into Eq. (4.54) and then using expres-
sion (4.56) for © in terms of ¥ (1,0, ), one obtains A (f) in a form explicitly ready for integration over ¢, and
summation over . The integrand tumns out to be proportional to 1/Y? or 1/Y*; and, correspondingly, the noise
is stronger the closer the mirrors are to the pipe wall. We shall specialize to the case of strongest noise, Y, as
much less than R as possib’le. Then the integrand has a sharp peak of width Ad, =2Y,/R at ¢, =0, and the
integral can be approximated by the value of the integrand at this peak times the peak’s width. The sum over
baffles can then be carried out using Egs. (3.24) for the distances of the baffles from the mirrors, and taking
account of shadowing of the baffles by each other in the first series [n = Lup ton =R/(H -8H )], This leads
to the tinal result, Egs. (3.29) and (3.30) for /i (f).

E. LIGO With Baffles: Effects of Coherence ‘

Throughout this report, except in Sec. IILE, we have assumed that ohrence of the scattered light has a
negligible influence on the noise h (f ), and correspondingly we have rzed intensity techniques in our ana-
lyses. The impediments to coherence are great: (i) randompess in the deformations of the mirrors, which pro-
duce scattering and recombination {Egs. (4.5) and associated discussion}: titr rindomaness ia the imperfections
of the photodiode. which influence recombination [Eq. (4.10) and associated discussion]: (iii) randomness in
the delommations of the vacuum pipes. which redistribute reflected light randomly over the plane of the receiv-
ing mirror [discussion following Eq. (4.39)): (iv) the Fresnel fringe pattern, which makes the cross sections for
diffraction be inseasitive to phase coherence [Fig. 4.5 and associated discussion]; and (v) randomness in the
distance from the face of a baffle to the mirror, which makes coherence upimportant in processes involving

scattering off the baffle faces.
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These randomizing effects are so strong that there seems to be little to fear from coherence in any of the
processes studied above, at least in the case of mirrors that are oot closer to the center of the pipe than one
main-beam width, VAL . However, for mirrors nearer the center than this, the Fresnel fringe pattem is nearly
parallel to the pipe wall and baffle edges and thus is ineffective in reducing the effects of phase coberence,
and the other randomizing effects by themselves might not provide full protection. In this section we shall
study this issue in detail, first for diffraction without reflection (Sec. 1) and then for combined diffraction and
reflection (Sec. 2). ’

1. Diffraction Without Reflection

Diffraction without reflection is depicted in Fig. 4.7: Light scatters off a mirror, diffracts off the edge of
a baffle, then propagates directly to the other mirror where it recombines with the main beam — all without
any reflections in the pipe wall. We shall compute the noise A (f) for this process using phase-coberent
(amplitude) techniques.

Fig. 4.7 Light scatters off a mirror, diffracts off the edge of a baffle, then propugates to the other mirror where it recom-
bines with the main beam.

The scattering of the main beam off the scattering mirror produces the field y(Y,z) of Eq. (4.4) at longi-
tudinal distance z and transverse location Y from the mimor’'s center. This is the field that diffracts off the
vibrating baffles to produce modulated light at the receiving mirror. To compute the diffracted, modulated
light from baffle n at location z =1/,, we can insert the scattered field (4.4) into the Fresnel-Kirchoff diffrac-
tion formula [Eq. (17) of Sec. 8.3 of Born and Wolf*]. That diffraction formula involves an integral over the
aperture bounded by the baffle. The modulation of the diffracted light is produced by vibration of the boun-
daries of the aperture (i.e. of the baffle); and correspondingly, the modulated diffracted feld from baffle n is
given by the Fresnel-Kirchoff diffraction formula restricted to the new aperture area opened up by the balfle
vibrations (and with a negative contribution from old area closed off):

kr

—i ¢ et T
‘Vdiffn='x_£ v E($IRd b, . (4.59)
Here
Y: - , 2
P= (LAY EL —_— 4.60
r’ =1, " H{Y-y)] 1n+2,',+ln. Y+ 0 (4.60)

is distance from the integration point on baffle n to location y” on the 12ceiving mirror, with l,"=L-l, the
longitudinal distance to the receiving mirror. Also, in Eq. (4.59) &, (4, is the time-varying mdial displace-
ment of baffle n at location 9, , E,Rdd, is the new area opened up (negative for old area closed off) by the
baffle motion, and Y(9, ) is the transverse location of the edge of baffle n at angular location ¢, :
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=[R=H(d,)]e, — 7 Y, . (4.61)

o

Here Y, is the vector from the central axis of the main beam to the nearest point on the smoothed edge of
baffle n, /(9,) is the jaggedness-produced fluctuation in the height of baffle » (zero for a smooth baffle; a
randomly fluctuating function for a jagged baffle), and e, is the unit radial vector at location d,.

By inserting expressions (4.4) (with z =/,) and (4.60) into (4.59) and summing over baffles, we obtain
for the modulated, scattered, diffracted light arriving at location y’ on the receiving mirror

i kN 1 -y iky'
w(y)_ Z ;\'l I k) Y, L "[ ‘ym 2 (kY/l.)yeky/ZI.dz)J

n=i

XeikY'l‘Zl.. ei(kY/l.')',V'g" R} de, , (4.62)

where [,z =/,1,"/L is the reduced length from the baffle to the mirrors. By then inserting this into Eqs (4.7)
and (4.9), we obtain for A

h = A Imagin -l—N. —ie™® ("
2ItBL g [n=l Inln’

HI‘Vmbk N oYLy :kyﬂldz]

x U‘vmb(n/k or k*N 2r)e YT, "‘y"”-'dly'] e™ ‘“’*g,R] d¢,,} . (4.63)

Here the expression *‘(1/A or k*N/2x)’* means to use 1/A if no mode cleaner is present so the dominant noise
is due to scattered light transmitted directly to the photodiode, and otherwise use kN2 corresponding to res-
cattering of the light back into the main beam. In Eq. (4.63) the outer (¢, ) integral is over the periphery of
baffle n, and the two inner integrals are over the scattering mirror (y integral) and the receiving mirror (y’
integral).

We shall now treat separately detectors with and without mode cleaners on their outputs:

la. With Mode Cleaner
When there is a mode cleaner present the two inner integrals in (4.63) are both given by Eq. (4.5¢). and
{4.63) is thereby brought into the form

= 1
A- ikl ka A '
ho= Imaginary z —ie’ L ol ¥ f o 0, (4 6d)
2rBL ]
Here £ () is the fluctuating function that comes from the y integral over the scattering mirror. and £, (Y is
the analogous function from the y’ integral over the receiving mirror.
Specialize. now. to the case of mirrors that are far from the center of the vacuum pipe. In this case the

exponential in the integrand of (4.64) is the Fresnel fringe pattern that is depicted in Fig. 4.8. superimposed on
a smooth batfle. Each Fresnel zone in the pattern (each region over which the phase changes by x) has a
width

!
AY = —2& %\f’- ~ (a few mm) ; (4.65)
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Fig. 4.8 The Fresnel pattem of the exponential term in the integral (4.64) superimposed on a smooth baffle.

see Fig. 4.8. This fringe patter is parallel to the pipe walls at the bottom and the top of the pipe (Fig. 4.8);
and if the baffle edges are circular rather than jagged [if /=0 in Eq. (4.61)], then the bottom and top Fresnel
zones will occupy a lateral piece of baffle edge of length AL .

By carrying out an analysis completely analogous to that of Eqs. (4.24)—(4.29) one can show that the
integral (4.64) is almost completely insensitive to the fluctuations with ¢, of the functions f,.(Y), f.m(Y)
and A(s,). Independently of these functions the rms value of the integral is VAlw & (9s =0.4)¥Y% and
correspondingly, the square root of the spectral density of & is

__oh BLE | he ’
) h=—r 7e {z } : (4.66)

By carrying out the sum with the aid of the baffle spacings (3.24) we obtain the following final formula for the

noise:
4 2 %
foBala | I R 3
arB| L Y, | | H=oH| L
-29 3
- 2x'!0_ 10Hz §7 - (4.67)
VHz £} 107 cm Hz " (10Hzf )°
This is the same result as one obtains by doing the calculation with the amplitude techaigies f Se. IV. A

Thus. in the case of mirrors far from the center of the pipe. the Fresuel pattern by itself gives fudl pro-
tection against phase coherence. [Note: Because of the extremely small value of the noise (4.67). we ignore it

in the summary of major noise sources in Sec. 1.}

Turn, next. to the idealized case of mirrors precisely at the center of the vacuum pipe. and baffles that
are perfectly round and perfectly aligned with the mirrors. Then the Fresnel fringe pattemn is precisely parallel
to the baffles, and correspondingly Y?=(R-H)-2(R-H )/ d,); and expression (4.64) for the noise reduces
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10

& do,| . (4.68)

N, ) 2 r .
h= —c-d'—lm:\ginary{ Z_’.e,/(L e,k(R—H)/ZI..g e[rk(R -H VI*J//(Q.)fsm(Y)frm(Y) 7?_
n=l

2r8L

The most dangerous situation would be one with (i) perfectly smooth baffles, so ~(9,) =0, (ii) mirrors
with imperfections that are perfectly circularly symmetric about the axis of the main beam, so that f . (Y) and
f mtY) are independent of ¢, along the periphery of baffle n, and (iii) acoustic vibrations of the baffles that
are perfectly circularly symmetric so that &, (¢) is independent of ¢,,. Then the modulus of the integral wouid
be 2nE, /R, and the spectral density of # would work out to be

_Ix1077
=

10Hz
f

where N,,, the number of baffles, is given by Eq. (2.5). This is still too small to be of concemn.

g 4
, 69
107" cm Hz Y2 (10 Hz/f )? (4.69)

In reality, the mirror irregularities will not be perfectly circularly symmetric. Rather, they are likely to .
give rise to functions f.(Y) and f,,(Y) that vary on lengthscales o, ~ VAL . This will reduce the modulus
of the integral (4.68) and thence the noise level (4.69) by a factor ‘/cM/Zr:R ~0.1:

2]
~ o/
h =[Expression (4.69)]x[ 5:7] if f o and f ., vary on the scale oy, . (4.70a)

If, in addition, the baffles are made jagged in accord with Recommendation 3, on transverse scales
Gy ~ | mm, then the integral (4.68) and the noise (4.67) will be reduced by a factor \JGH/2rr.R ~0.01:

Y
~ o]
i = [Expression (4.69)]x[ ?ﬁ%] if baffles are jagged on scale oy . (4.70b)

Such jaggedness is not needed to control the noise (4.69) in this case of a mode cleaner on the output; but
when there is no mode cleangr, the noise is larger and jaggedness might be desirable:

Ib. Without Mode Cleaner
In the ahsence of a mode cleaner recombination occurs directly in the photodiode. In this case a calcu-
lation patterned directly after the above gives the following results:

When the mirrors are far from the center of the pipe, the Fresne!l pattem protects completely against
coherent effects, and the noise has the same form as would be predicted bv an intepsity analysis:

32

PRI I8 B V0N B . S0 B
it B L Y, H-SH| L

_ 7007 | 10Hz g 47D
VHz f 107 ecm Hz™"* (10Hz/f )*

This is too small to be of concern, so it is not discussed among the serious noise sources in Sec. [II.

When the mirrors are at the center of the vacuum pipe and have perfectly circular irregularities centered
on the main-beam axis, and the baffles are perfectly smooth, and the batfles vibrate perfectly circularly, then
coherence is very important and the noise level works out to be
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14 74

S
: 4.72
1077 cm Hz Y2 (10 Hz/f )? (*-72)

'

i= Yo l-1y) (&
B L

AN

L8, &_
R L

_ 3x107** | 10Hz

VHz f

This is the same noise level as the standard quantum limit. Noncircular irregularities in the mirror and photo-
diode will reduce this noise by the same factor (4.70a) as in the case with a mode cleaner, perhaps bringing

the noise down by one order of magnitude. Jaggedness of the baffles would bring the noise down by the fac-
tor (4.70b), perhaps two orders of magnitude.

Equations (4.69), (4.70), and (4.72) for the case of mirrors at the pipe center are reproduced and dis-.
cussed further in Sec. H{L.LE.1 [Egs. (3.31)].

2. Diffraction with Reflection

The above analysis was for the simplest process in which coherence might be important: Diffraction
with no accompanying reflections. We now turn to the effects of coberence in the more complicated and more
noisy situation of diffraction plus reflections. It seems rather clear (though I have not proved it rigorously)
that for mirrors far from the pipe center the Fresnel patten will protect fully against coherence; see the para-
graph following Eq. (4.29). Therefore we shall consider only mirrors at the pipe center. We shall begin by
restricting attention to a LIGO with just one set of baffles (Sec. 2a); and we then shall extend the analysis to
the case of two sets of baffles (Sec. 2b).

2a. One Set of Baffles

We presume, in this subsection, that the inner half of the vacuum pipe (the half nearest the comer mir-
ror) is baffled in the manner of Egs. (3.24), but the outer half has no baffles. For such a LIGO we shall com-
pute, using phase-coherent techniques, the noise due to the combined effects of diffraction-aided reflection
and ordinary reflection (Fig. 3.5), together with ordinary diffraction and ordinary reflection (Fig. 3.1).

Throughout our analysis we shall assume that the mirrors are precisely at the center of the vacuum pipe
(the most dangerous situation). The pipe will be presumed slightly cr_?oked, so that relative to the central axis
of the main beam the pipe s central axis is displaced by an amount &, (/). Here [ is distance down the pipe
from the comer mirror. This means that the distance from the main-beam axis to the wall, at longitudinal
location | and azimuthal location ¢, is R +03(¢,!), where

@(9,1) = &, ()cos[o—0z, ()] (4.73)

Here &, (/) is the magnitude ofgo (I)and ¢ (1) is its direction. For simplicity we shall assume that the pipe is
perfectly round. though it would not be difficult to generalize to the case of a deformed pipe. To do so one
should add onto expression (4.73) a quadrupolar term &,cos[2¢—2d,(/)] and terms of higher order. We shall
presume that &, and ¢ vary randomly on lengthscales shorter than or of order the separations between
haffles; we shall denote by oz the rms value of &, and for numerical estimates we shall use v = Tem. As
we shall see. this crookedness of the pipe impedes the focusing of scatter=d light and impedes phase-coherent
ctfects. Random variations in the pipe's roundness could also serve this purpose.

In our analysis we shall break into components the scattered light arriving at the receiving mirror. Each
component reflects off the walls a specific number of times N and then terminates its reflection by diffracting
off baffle 11, or by a dilfraction-aided reflection at baffle pair n, n+1 (Fig. 3.5a viewed with propagation from
right to left). Thus, each component will be characterized by the two integers (n V) and by a statement as to
whether it terminates with a pure diffraction (*‘diff’’) or with a diffraction-aided reflection (‘‘DAR’"). The




[V.E Derivations: LIGO With Baffles - Effects of Coherence 47

randominess of the pipe crookedness and randomness in the acoustic noise on the pipe should make random
the relative phases of the light’s various components; but phase coherence could be important for each indivi-

duad component.

As in previous sections we shail denote by
0, =2H/s, =2R/l, (4.74a)
the critical angle for baffle n. Any light with 6 < 8, will be unable to make wall reflections nearer the comer

mirror than baffle n. The components (n,N ,diff) aod (7, ,DAR) will have, before they reach balfle n, an
angle 8 = 9, given by

Oy = 591-?—"—” = N—IZ,£ , where I’, =L, . (4.74b)

In order to reach the receiving mirror, these compopents must diffract to the angle

o, =RH_R (4.74c)
l, l,
Note that because 5,//, = R/H [Egs. (3.24)],
o . 4.75 |
=S (4.75)

This should be contrasted with 6’, = (1-8H/H )8, in the case of mirrors near the pipe’s walls. In effect, the
centered mirrors are protected by a height-safety factor of 8H . = H/2. This added protection, compared to
OH =H/6 for near-wall mirrors, suppresses the cross section for diffraction-aided-reflection, making it
approximately equal to that for ordinary diffraction — and thereby forces us to consider both types of diffrac-
tion in our analysis.

The number of reflections N for a given component of the scattered light is limited by the requirement
that the light reach baffle n without being stopped by any previous baffles, and then undergo either an ordi-
nary diffraction or a diffraction-aided reflection. These requirements turn out to restrict N to the range

o,L
1<N < -EOE— for ordinary diffraction, (4.76a)

II
l

n

9,L ,
<N < T3 for diffraction-aided reflection . (4.76b)

n

The modulation put onto the light by acoustic vibrations of the wulls at the reflecticn points is much
greater than the modulation put on by vibrations of the diffracting battles. Consequently. the modulational
fluctuations in phase shift of the (n .V ) components, when they arrive at the receiving mirror. will be

v [ (L=2,)0,n+L VLW, 2R o,
5D,y = z4n - Y

j=

Spedd o 1177

[cf. Eq. (4.17b)). Here j labels the various reflections. /, is the longitudinaf tocation of retlection j, ¢ is time,
and ¢ is the angular location of a specific set of photons in component (#7.V ). (Because the light's transverse
motion is nearly radial, each photon has nearly constant ¢, except for jumps of © when going through the
pipe’s central axis.)

With these preliminaries taken care of, we are now ready to evaluate the contribution of the components
(n.N) to the scattering noise. The field scattered off the end mirror into angle 6,y is described, before it
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reaches its tirst reflection point, by

V= { _(y'f} =" f o (4.78)
0.~ r

where f_ is the slowly varying function discussed in Egs. (4.5). The subsequent propagation up to baffle n
can be described by geometric optics [phase change equal to k times distance traveled by rays; amplitude pro-
portional to 1/(radius of curvature of wave fronts); and wall-induced modulation given by Eq. (4.77)]. Upon
arriving at the vicinity of baffle n, the wave fronts have radii of curvature [’, in the radial direction and
R /8,y = (transverse distance back to last focal point) in the azimuthal direction; so their net radius of curva-
lure (geometric mean of these two) is v I’,R/8,y. Correspondingly, the modulated part of the field in the
vicinity of baffle n is

o |*
=i &P = D . 4.79
Yin 18 N B,WI',,R} € fsm A ( )
Here @,y is ik times the total distance travelled by the rays since leaving the center of the scattering mirror:
N %
D,y =kl I'7+[R—H —p+ T (2R +265 )}
j=1
d ka5,
= const + 2k 8,y 3.0, —ke,,,\,p+—2—R2 8. P, (4.79)

j=t

where @; = m(¢+/n,/;) is the lateral offset of the pipe at reflection point j as given by Eq. (4.73), and p is
height above the level of the smoothed baffle (the mean level about which baffle jaggedness oscillates). The
quantity Z}V:,w ;» being a sum of circular harmonics of order 1, is itself a circular harmonic of order 1 and has

the value

N _ -

Y@, =N o cos(o—e ) ,

j=t
where o is the ms pipe offset and 65_ is a mean phase of offset, which will vary randomly from one light
component (n ,N) to anothers Correspondingly, the phase of the light in the plane above bafile n (aside from
the slowly varying factor f ) is the following function of height p and azimuthal angle ¢

’

_ _ kU
D, =const + 2k GHN‘/N O CoS(d—bz )+4 By p+3 F-SHN p*. (4.80)

To recapitulate, (4.79) is the modulated field coming into the plane of batfle » after N reflections: and in this
expression the rapidly varying phase factor is (4.80), and the modulation tactor is (4.77).

We note in passing that expression (4.79). with the modulation /3D,y stripped off. gives for the total
energy flux in the vicinity of the centermost baffle (where N runs from { t0 8, L/2R for both the ditf arel NDAR
components: i.e. where the DAR components have not vet been subjected to anv attenuation)

A.LiIR o R H.L]
l\yw|1=2 > _"‘(T—-zz > cfj’:_&{_“ = } (L8]
N=1 en.N/ R N =t 2NR- R- 2R

Here the factor 2 takes account of the two, diff and DAR, types of components (i.e. of light that most recently
was reflected from the far wall, and of that most recently reflected from the near wall). Note that this energy

flux at the baffle edge is 1/2 the average energy flux in the baffle plane, i.e. 1/2 of
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—2r8d 6 = — R

o 2, [o.L
nRZm,LG R? t

The factor of 1/2 presumably is because of the focusing of the light toward the center of the pipe by reflection
off the walls. The agreement to within a factor 1/2 indicates that we have correctly deduced the amplitude of
the incoming light y,_ in (4.77).
We now shall study, for several paragraphs, ordinary diffraction of the incoming light (4.77) by baffle
n; i.e. we shall set aside, momentarily, the DAR component and deal only with the diff component. The
incoming light, by diffracting off the baffle, produces the following field at transverse location y’ on the
receiving mirror
. 2rR-H
V)= Yl 0)e e T 2R 0 g _ (4.82)

n 0

Here Y is the vector describing the transverse location of the point (p,$) in the plane of the baffle, relative to
the main-beam axis; and expression (4.82) is an explicit version of the Fresnel-Kirchoff diffraction formula.

By inserting the field (4.82) into the phase-coberent expressions (4.7) and (4.9) for the gravitational-
wave noise /t (¢) and using Eqs. (4.5¢) and (4.10) to evaluate the integrals over the receiving mirror, we obtain -
the following phase-coherent expressions for the noise due to component (n,N , diff):

rREANENN i T e
ey ase(t) = ——| 221 | & it i . (4.
by ige(t) L | T | ) Imaginary x fﬁ)('”\yme Fm(Y)dpdd thhmode cleaner, (4.83a)
UL TR % e 2R
1- AL A R ‘ . i
Moy gi(t) = (?73;12— ARy [ i—] Imaginary A. ‘Vm e*Yf p(X)dpd d

without mode cleaner, (4.83b)

By inserting into (4.83) expressions (4.79), (4.77), and (4.80) for y;, and then evaluating the spectral density
of the resulting /1y 4, We obtain

V2 a| A ¢E e
/r,,Nd,ﬁ(f)——?,——B- A AS# 1 with mode cleaner, (4.84a)

1 (l—n)[

Mo aied f) = T3 lJ TM‘- {IA] AJf 1 without mode cleaner.  (4.84b)

L

4,36 = (9"N+3\/m T M ealt

Here the integral over the baffle plane has been embodied in the quantity

n n

I ey ¥ x| it] 0 107 ppr L 2oy B
,i‘Qz x!dfbeXP[llk‘/N enNcE,COS(ME,-)]fsmfrmorpdfuJ}exp{lk[_(e"'\i+eﬂ)p+2 l +2N I’ }dp

9
(4.84d)

Here f,(9) is a slowly varying function of ¢ which, like the other f functions. has rms value unity, and which
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characterizes the angular dependence of the acoustic noise yt. The integral over p is a Fresnel integral with
argument in the regime (4.33c). By performing that integral we obtain

) 1 2 _ N
-1 L 12k .
I = 08 | 2 £d¢exp[12k N 8, cos(0—de )IG (9)d ¢ | , (4.85a)
where
G ()= e* IO (0)f emor paD)f W) (4.85b)

is a function with rms value unity that incorporates all azimuthal variations due to baffle jaggedness ( /), irre-
gularities of the scattering mirror (f ), irregularities of the receiving mirror or photodiode (f p, o, pq)» and
angular variations of the pipe’s acoustic noise (f ).

Phase-coherent effects would be the most serious if G were independent of ¢ (smooth baffles, perfectly
circular irregularities of mirrors and photodiode, perfectly radial acoustic. vibrations). In this case the phase
factor i 2k VN 0.~ o;cos(«b—:ig_), which describes a Fresnel fringe pattern that is offset from the baffle edge by
a distance VN 0, O, would force almost all the net contribution to /, to come from two opposite regions on

the baffle edge, regions with length
%

’

My R

4.86)
N 4N%oy (

Ax sRAd=

As we shall see below, the noise / (f ) is dominated by light whose number of reflections is N ~1’,/l,. This
means that, if the pipe is so crooked that ¢ > | cm, then Ax will be so small

Ar R [ L2 ™
— = —| <4 (4.87)
(VAL | doe | | LV,

that the baffle can feed light to only a few modes of the mirror [cf. discussion following Eq. (4.11)]. This, in
turn, means that effects of phase coherence cannot be great. The random fluctuations of baffle jaggedness,
noncircular mirror and photodiode irregularities, and acoustic-noise angular variations (which are embodied in
a non-unit value of G) can only make phase coherence even less important. Despite this unimportance of
phase coherence, we shall continue our phase-coherent analysis:

For arbitrarily varying G we can evaluate the integral (4.85a) by Fourier transform techniques: First we
characterize G () and the exponential factor in (4.85) by their Fourier coefficients:

Eoey
G)= Y gne™?, (4.88a)
IN3 - = a7 171 (b )
expli 2k VN 0,y Os cos(9—0z )] = X J 1,1 (2K VN 8,y 0 20 (4.88)
Here J,,, is the ordinary bessel function of order Im |. The Fourier coefficients ¢., henceforth will he surro-

gates for G(¢). By inserting the expansioas (4.88) into (4.85a) and integrating. w2 ohtain

[,,= ————
PYT (8,4 +0")

1 oo

l o2 y—
T g it (ZKIN B, 02 )

Because the function G (¢) is more or less random, the relative phases of the g,, ‘s will be random with respect
to each other. This means that the square root of the square of the above expression will be

1%}
1 2 27 YN
= g 12+1g . 15T “2kYN 8,50e)| - (4.89)
Toe="0 B,A)LZ(gm #1817 ( N &,]
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The quantity (lg,, 12+ Ig_, %) is the precise analog. in this periodicity-of-¢ situation, of the spectral density
of G(¢). One should, in fact, think of it as G's spectral density; and one should think of the
T 2N 6, Cr) in (4.89) as the square of a filter function (with m the argument of the filter function, i.e.
the ‘‘frequency’’ at which it is evaluated). The input to the filter is G (9); its output is the I, of Eq. (4.85a);
and the rms value of this output is expression (4.39).

Note that the parameter u appearing in the filter function J,, () has magnitude

u= 3,:N3/2_5__Gi
I, A

n

>100. (4.90)

. In this regime it is a reasonable approximation to set
J,,,z(u)= L form<u,
T

T, u)=0 form >u, (4.91)

and correspondingly to write (4.89) in the form

[,= L M |° 4.92)
-1 1’8n‘2N3/4(9uN +9’,| ) R cg' ) .
Here
SN Y'R o /(1" N)
S = ) (Tgm 12418019 (4.93a)

m=0

is the rms value of G (9) after filtering it to remove all Fourier components with m > i = 8rN>?R Oe /(174 A).
Thus, only G (¢)’s Fourier components of low order |m | < u are able to diffract light. The high-order com-
ponents do not diffract. ’

Because f s frm: fpar and f, are not likely to contain any substantial Fourier components of order
Im 1 > 100 (the minimum value of u ), they will have no significant influence on the I, of Eq. (4.89). More
specifically, in the absence of baffle jaggedness, the ‘‘suppression factor’’ § will be unity (no suppression)
independently of the fluctuations due to angular irregularities of the scattering mirror, receiving mirror, photo-
diode, and acoustic noise. This is a precise analog, for centered mirrors but crooked pipes, of the insensitivity
of diffracted light to angular irregularities in the case of mirrors near the walls [Eq. (4.29) and preceding dis-
cussion]. Thus, we henceforth can ignore the angular irregularites of the mirrors, photodiode, and acoustic
noise, and can focus attention solely on those due to baffle jaggedness.

In order to suppress the scattered light substantially, we must take care that the baffles’ jaggedness does
not contain substantial Fourier components with 1m | < «. This is the origin of the statement in Recommen-
dation 3 (Sec. 11.3) that the baffles should ‘‘have the shortest wavelength o, that can be achieved without
great effort, preferably << 1cm’”: and that they should ‘‘contain as littfe 'nger wavelength component as can
be achieved without undue effort”’. Henceforth we shall assume that t! '« recommendation has been imple-

mented. Then we can regard the suppression factor S as a function of @y “TRu:

3
4N O’gﬂ Ty

4.93b
a5 ( )

S =S(O’H/2KRu)=S

and this function [defiped rigorously by Eqs. (4.89) and (4.92), and approximated by (4.93a)] will have the
properties described in Eq. (3.34) of Sec. IILE. Note that in order to achieve significant noise suppression, the
maximum wavelength of baffle jaggedness must be much shorter than
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r,A -
GH min = —VZ < -[i = 2 cm { 'I"LEJ . (494)
4N°- /3 80'5'_‘ Ce.
This is the reasbn that the jaggedness wavelength is specified in Recommendation 3 to be ‘'preferably

<« {cm',
Let us return to our calculation of the scattering noise. By combining Egs. (4.84c) and (4.92) we obtain

a1 M %1 Ow+INLOy/2R o,) [ 4NYoy oy
8n? Rog, | N By +6',) Iy

(4.95a)

This is the factor for ordinary diffraction which appears in expressions (4.84) for the noise. It should be fairly
obvious that the same calculation for diffraction-aided reflection will lead to the same expression, but with
0, +8’, in the denominator replaced by 8,y~6’,:

A DAR _l_ AI"'
87!2 RO’;

1 Ow+3INLOy/2R o,) [ 4N*?0c oy or L
N (Ow) % o

n

Since different components (n ,V, diff) and (n,N, DAR) will have random relative phases and thus contribute
incoherently to the noise relative to each other, the total noise will have the form [cf. Egs. (4.84) and (4.95)]

N 0,L/2R 0,L/2R “4 _
T = _29‘.[ _] YA Z T AF+ T (ARARY with a mode cleaner , (4.962)
3 BIL n=t| Ns=i N=i'l,

-

e

N A e ) [ M g [eLnr o.L/R %
1Yod-m Al | YAL pl = L Z AN+ T @A without a mode cleaner ,
378 |L] | R I, A

n=|

(4.96b)

Examination of expressions (4.95a,b) shows that: (i) the diff and DAR components contribute approxi-
mately equally to the sum over N = (number of reflections); and (ii) the sum is dominated, for both diff and
DAR, by reflections numbers N ~{",/l, — i.e. by light for which the incoming angle 8, is approximately
twice the diffracted angle 0", [cf. Egs. (4.74)]. (This is in accord with assumptions made in this report’s
intensity analyses.) The actial result of summing over N is

b-LR LR AL I Ll a1, o 0y ||

dxff DAR\2 ll al n n 1 nllin g H )
)+ AN = 1+3 g S| ———— . (4.97)
En h_,z,,( T Rog, { R? *"]H A

”

Here we have approximated the net effect of the suppression factor § by the function §(x) evaduated for
N =1,

The final step in our derivation of the noise /i for a single set of haffles is to insert expression (4.97)
into Egs. (4.96) and perform the sum over baffles, n with the aid of th baffle spacings 13.24). The result.
after approximating § by its value for N =1",/I, at those batfles which '»minate the sum. ix Egs. 12.320) and
{3.33a). This result is discussed in Sec. IILE.2.

2h. Twao Sets of Baffles
Having seen that coherent effects are not important in the case of o single set of baffles, we can be quite

sure thev also are not important when both ends of the 'vacuum pipe are baffled. This justifies our using the
results of this report’s intensity analyses to infer, from the one-set-of-baffles case, the noise for the two-sets-

of-baffles case:
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When two sets are present, diffraction of light off the first set will suppress the field arriving at the
second set by the square root of expression (4.51), with the height-safety factor SH4 replaced by 0H = H.
Thus, the light coming into baffle n of the second set, after N reflections, will be given by

Ya
v, = [_‘_-"—L} x[Expression (4.79)] . (4.98)

2 H 8,y

As in the one-set-of-baffles case, the sum over N will be dominated by N =!’,/l,, which means
8,5 =26, =2R/l,; and correspondingly, the net noise 1 will be given by expressions (4.96) with

OLR o.L/2R L oL
p2 (An?\llﬁ)z + 3 AR = W 7 Z—R-X[Expression 4.97] . (4.99)
N=i N=l',

By inserting (4.99) into (4.96), summing over baffles, and approximating the effects of the suppression factor
§ by its value at the baffles which dominate the sum, we obtain Egs. (3.32b) and (3.33b) for the scattering
noise. This noise is discussed in Sec. IILE.
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