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1. Introduction and Summary

One of the most significant characteristics of
Einstein's general theory of relativity is the ex-
tent to which physical singularities pervade
solutions to the field equations: Among all mat-
ter-filled cosmological models constructed to
date within the framework of Einstein's theory
(sans cosmological constant), not one is free of
singularities both in the remote past and in the
remote future. On a smaller scale, general
relativity tells us® that any non-rotating star,
which has reached the end point of thermonuclear
evolution and contains more than Acrit = 10>
baryons, must gravitationally collapse to a singu-
larity in a proper time of the order of seconds.
Even spherical configurations of cold matter con-
taining much less than 10°” baryons cannot escape
collapse if they are subjected to sufficient ex-
ternal pressure.

At this point in the development of the theory
of gravitational collapse, it is important to deter-
mine precisely how inevitable the evolution of
singularities is; To what extent can rotation of
a massive object or a cosmological model impede
or prevent its collapse to a singularity?

The purpose of this paper is to propose a
partial answer to the last of these questions: All
evidence now available suggests that magnetic
and electric field lines resist gravitational col-

*Expanded version of a paper presented at the Second
Texas Symposium on Relativistic Astrophysics, Austin,
Texas, December 15-19, 1964. This work was supported
in part by the U. 8. Air Force Office of Scientific Re-
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! For a discussion of this point see, e.g., the contri-
bution of Shepley (1965) to this volume,

* For a review of the evidence see Harrison, Thorne,
Wakano, and Wheeler (1965).

lapse; no matter how tightly they are compressed,
the gravitational attraction between field lines can
never overcome their Maxwell- Faraday repulsion,
Let us put this point more precisely:

Principle of Flux Resistance to Gravitational
Collapse: In a configuration of electromagnetic
fields gravitationally collapsing to a singularity,
the total electric and magnetic flux across each
2-surface in the collapsing region must vanish as
the singularity is reached—a non-zero flux will
stop the collapse. In more mathematical termi-
nology: Let S, be an arbitrary 2-surface passing
through the region in which collapse is occurring,
just before the singularity is reached; and let
S, be that portion of S, which is in the collapsing
region. Then, the principle of flux resistance to
gravitational collapse states that

v i. :
fszfx] dSyy = 0= fgz*f] asy;, )

where *fil is the dual of the electromagnetic field
tensor fij. This principle is illustrated in Fig. 1.
Comments on the principle: (1) At our present

stage of knowledge, the principle of flux resistance
to gravitational collapse can only be a conjecture;
there is as yet no hard-and-fast proof of its validity
within the framework of Einstein's theory. How-
ever, considerable evidence for it can be evoked,

'as we shall see in Section II. (2) As an example,
if this principle is valid, then a toroidal bundle of
magnetic field lines (geon)® of minor radius a and
major radius b cannot gravitationally collapse to
its guiding line (a — 0, b remain finite), but it
might collapse to its center (a —0 and b - 0 simul-
taneously). In Section Il we will see that the
dynamical behavior of a toroidal magnetic geon is
in accord with this prediction. (3) As a second

*The concept of a geon was first introduced by J. A.
Wheeler and is discussed extensively in Wheeler (1963).
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FIG. 1. A schematic illustration of the principle of
flux resistance to gravitational collapse. Two possible
histories are shown for the gravitational collapse of a
system composed of electromagnetic fields. One history
is allowed by the principle of flux resistance to gravita-
tional collapse; the other is forbidden. In the figure each
history depicts the electromagnetic field on a succession
of spacelike hypersurfaces approaching the singularity.
The shaded areas represent the region in which the
electromagnetic field is gravitationally collapsing, and
the solid lines represent magnetic field lines. The
electric field is not depicted. In the forbidden mode of
collapse, magnetic {lux threads the collapsing region at
the momeni when the singularity is reached, but in the
allowed mode, every magnetic field line is either
swallowed in its entirety by the singularity or left
entirely free—there is no net flux through the singularity.’

example, the principle of flux resistance to gravi-
tational collapse does not forbid the collapse ofa
cloud of electromagnetic radiation or of a radia-
tion-filled universe. This is fortunate, since
Tolman (1934) has constructed a radiation-filled
cosmological model which both explodes from a
singularity and collapses to a singularity. (4)
This principle is meant to apply only when
electromagnetic fields alone are present. We ex-
clude from attention systems in which particles
or neutrinos or other fields contribute to the
stress-energy. However, if the principle is valid,
then electric and magnetic flux probably also
show a partial (or even complete) resistance to
collapse in the presence of particulate matter;*
and magnetic fields might, consequently, play an
important role in the collapse of astrophysical

objects.® (5) The principle asserts that both mag-
netic and electric flux resist collapse because, in
the absence of charges and currents, the electric
field and the magnetic field are dynamically equiva-
lent. (6) This principle treats only classical
electromagnetic fields interacting with classical
gravitational fields in accordance with the laws of
general relativity. The quite new phenomena which
enter when the electromagnetic field strength

_ reaches the critical value Ferjt = mc ?/le(fi/me) ]

= 4.4 X 10*® gauss = 1.3 x 10" volt/m, where vacu-
um polarization effects become important, are not
taken into account. ST X

The remainder of this paper is a ptesentatmn .
of evidence supporting the principle of flux re- °
sistance to gravitational collapse. We briefly sum-
marize that evidence before presenting it in de-
tail: o
A prototype for sphencally symmetmc gmvx- :
tational collapse is the collapse of the Einstein—
Rosen bridge of the Schwarzschild solution. This
collapse is characterized by the pinching-off of -
the throat of the bridge as its time development
is followed. As our first evidence for the principle
of flux resistance to gravitational collapse, we
review the discovery by Graves and Brill (1960) -
that, if the Einstein-Rosen bridge is threaded by
electric or magnetic flux, then the resistance of
that flux to collapse causes the throat to pulsate
rather than pinch off, ' -

A second piece of evidence is the existence of
many different model electromagnetic universes
which do not undergo gravitational collapse, and
no known ones that do collapse—except the Tolman
universe (cf. comment {3) above) and Lindquist's -
toroidal magnetic universe (cf. Sec. IIC), whose
dynamics are compatible with our conjecture.
(Contrast this with matter-filled cosmological

4 Ginzburg (1964), Ginzburg and Ozernay (1964),
Novikov (1964), and Kardashev (1964} have recently
discussed the role of magnetic fields in the gravita-
tional collapse of massive stars. Ginzburg and Ozernoy
find that, as a massive magnetic star collapses through

_its Schwarzschild radius, it pulls its magnetic field

lines into its surface and carries them all, in their
entirety, into the singularity. This result is what would
be expected-if magnetic flux resists gravitational col-
lapse in the presence of matter.

S Colgate (1965) argues that magnetic field cannot
play an important role in the gravitational collapse
which initiates supernova explosions.
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models, of which there are none known that do
not either collapse to a singularity or explode
from one.) Of all known model electromagnetic
universes, one due to Melvin (1964) is of parti-
cular interest. Melvin's universe, which con-
sists of a cylindrically symmetric magnetic field
pointing along the axis of symmetry, has been
proved to be stable against large as well as small
radial perturbations (Melvin 1965; Thorne 1965b);
it cannot be induced to evolve a singularity as the
result of any finite perturbation.

These first two pieces of evidence for the
principle of flux resistance to gravitational col-
lapse are not as satisfying as would be the analysis
of more physical electromagnetic systems, around
which spacetime is asymptotically flat. Fortunate-
ly, the third piece of evidence has what the others
lack: It is an analysis of the dynamics of a loroi-
dal bundle of magnetic field lines (geon)® residing
in asymptotically flat spacetime. This analysis
reveals that, in keeping with the principle of flux
resistance, a toroidal magnetic geon with magne-
tic field initially uniform inside the torus cannot
collapse to its guiding line {minor radius go to
zero, major radius stay finite).®

II. Evidence for the Principle of Flux Resistance
to Gravitational Collapse

A, Dynamics of the Einstein-Rosen Bridge

The Schwarzschild solution to the vacuum field
equations of general relativity has been known for
nearly fifty years, but only in the last five years
has it been really understood. This is because
Schwarzschild's line element

ds® = (1 - 2m/r)dt® - (1 - 2m/r) *dr®
- r? (d9® + sin® 9 do¢?) 2)

has a coordinate singularity at r = 2m and is in-
complete—from any point (r, t) there are space-
like and timelike geodesics to (r=2m, t=+ ) or
to (r =2m, t = -=) with finite proper length.” Our
modern understanding of the Schwarzschild solu-

°® For independent evidence that a toroidal magnetic
geon may not collapse to its guiding line, see Thorne
(1964), For evidence that collapse to the center of
the torus should occur for sufficiently massive geons,
see Thorne (1964) and Wheeler (1964).

? For a discussion of geodesics in the Schwarzschild
solution, see Fuller and Wheeler (1962},

tion stems from the work of Kruskal (1960).°
Kruskal completed the Schwarzschild solution in a
manner which exhibits the true nature of the region

- r =2m. We will not be concerned here with the re-

lationship between the Schwarzschild solution and
the Kruskal completion of it, nor with the nature
of the region r = 2m; rather, we shall confine our-
selves to a review of the dynamics of Kruskal's
solution.

Kruskal's completion of the Schwarzschild solu-
tion is expressed in terms of a new time coordinate,
v, and a new radial coordinate, u, in the form

ds® = £ (dv? - du®) - r’(d6® +sin 9 d¢2). (3)
Here f and r are given in terms of u and v by
[(r/2m) - 1] e/?m -2 o v,
ff = (32m3/r).e"/2‘".4 4)

The r appearing here is Schwarzschild's r coordi-
nate; and Schwarzschild's t coordinate is related
to u and v by

tanh(t/2m) = 2uv/(u® + v*). .(5)

Fuller and Wheeler (1962) have made clear the
dynamical behavior of Kruskal's solution, The
spacelike hypersurface v=0 (t=0, r = 2m in
Schwarzschild coordinates) is a bridge or "worm-
hole'' between two asymptotically flat spaces
(see Fig. 2). (It is often called the '’ Einstein-
Rosen bridge,'' since Einstein and Rosen (1935)
discussed it extensively.) One can follow the
dynamical evolution of this wormhole in Kruskal's
solution by looking at the geometry of a succession
of spacelike hypersurfaces, each lying to the future
(+v direction) of the preceding one. Such an analysis
reveals that the throat of the wormhole undergoes
gravitational collapse; it pinches off, disconnecting
the asymptotically flat spaces originally linked by
the wormhole (see Fig. 3).

Now, suppose that a magnetic field were made to
thread the wormhole. The collapse of the wormhole
would provide a means for squeezing the magnetic
field into a smaller and smaliler region. But if the
principle of flux resistance to gravitational collapse

"is correct, the magnetic field should protest against
- this squeeze; it should actually halt the collapse be-

fore the throat pinches off.
8See also Fronsdal (1959).
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FIG. 2. The 2-surface (v = 0, ¢ = constant) of Kruskal's completion of the Schwarzschild solution, as it appears
when embedded in 3-dimensional Euclidean space. The hypersurface v = 0 is the 3-dimensional analogue of this

surface, embedded in a 4-dimensional Euclidean space.

asymptotically {lat surfaces is often called the " Einstein-Rosen bridge, "

The bridge or wormhole connecting the upper and lower

since Einstein and Rosen (1935) dis-

cussed it extensively; however, Wey! (1917) described it much earlier. (This figure was kindly provided by J. A.

Wheeler.) ’

Graves and Brill (1960) have given the solution
to the Einstein-Maxwell field equations for a worm-
hole threaded by electric or magnetic flux. Their
solution is a completion of the Reissner-Nordstrom
solution for a ''charged, point mass'' in the same
way as Kruskal's solution is a completion of the
Schwarzschild solution for an *"uncharged point
mass.!" Graves and Brill find that even a very
minute amount of magnetic flux threading the worm-
hole will cushion its collapse. Rather than pinch-
ing off, the throat oscillates in and out between its
initial radius ryx and a minimum radius

= —-———16; o7 X (Total flux threading the throat)®

1
Tmax »
(see Fig. 4). Hence, in this particular example,
the (ex post facto) predictions of the principle of
flux resistance to gravitational collapse are borne
out.

Tmin

X

B. Non-Collapsing Model Electromagnetic
Universes :

The easiest test of the principle of flux resist-
ance to gravitational collapse which can be per-
formed is to search the literature for counter-
examples to the principle. The author's search
has revealed none,

Nearly all electromagnetic systems with strong
gravitational fields which have been studied are
non-asymptotically flat at spatial infinity. We
call such systems '""'model electromagnetic uni-
verses." There has been much interest in model
electromagnetic universes recently (Bertotti
1959; Misra and Radhakrishna 1961; Brill 1964;
Melvin 1964, 1965; Thorne 1965a, b; Harrison
1965. Of the model universes recently exhibited,
several deserve special mention in connection
with the principle of flux resistance to gravitation-
al collapse:

Brill (1964) has given a family of model
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KRUSKAL'S COMPLETION
OF

SCHWARZSCHILD SOLUTION

FIG. 3. The dynamics of the throat of the Einstein-Rosen bridge. On the left is a diagram of the Kruskal u-v
coordinate plane, showing a succession of spacelike hypersurfaces, each one to the future of the preceding one.

On the right is a picture of each of these hypersurfaces embedd
of rotation, ¢, is suppressed.) These successive " snapshots” of the throat of the wormhole re

off; it gravitationally collapses to a singularity.

electromagnetic universes which are generaliza-
tions of the Taub-NUT vacuum solution to ‘
Einstein' s equations. Like the Taub-NUT solu-
tion, Brill's universes do not possess any phy-
sical singularities; however, the dust-filled
generalizations of the Taub-NUT solution, which
have been given by Behr (1961) and by Shepley
{1965}, all evolve singularities.

Melvin (1964) has described a static, cylin-
drically symmetric magnetic universe in which
the magnetic field points along the axis of sym-
metry. This model universe not only does not
gravitationally collapse, but no large or small
radial perturbation can cause it to collapse
(Melvin 1965; Thorne 1965b).

Thorne (1965a) has shown that no cylindrical
electromagnetic univérse,' which is non-singular
in a certain canonical coordinate system on some

initial spacelike hypersurface, can undergo gravi- .-

tational collapse.

/N
A Y
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¢ = CONST SURFACE
EMBEDDED IN Ej

ed in a 3-dimensional Euclidean space. (The angle
veal that it pinches

C. Toroidal Magnetic Geoxis

In our discussion of evidence supporting the
principle of flux resistance to gravitational col-
lapse, we turn now to toroidal magnetic geons
residing in asymptotically flat spacetime. We
shall consider the family of all geons whose initial
configuration has the following properties: (1)

It is a momentarily static configuration (" con-
figuration of time-symmetry'). (2) It contains
only a magnetic field; the electric field vanishes
everywhere. (3) The magnetic field is contained
inside a thin-ring torus (torus with minor radius
much smaller than major radius), where it is
uniform and parallel to the guiding line of the torus.
(4) There is no gravitational radiation present
anywhere (see Fig.'5).

The members of this family will range from
geons with such dilute magnetic field that their
dynamics can be treated with great accuracy in the
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FIG. 4. The dynamics of the throat of Kruskal's
wormhole when threaded by a magnetic field. On the left
is a diagram of the Graves-Brill (1960) coordinate system
which is characterized by an infinite sequence of pairs of

coordinate patches identical to the pair shown. A succession
of spacelike hypersurfaces, each one to the future of the pre-
ceding one, is shown in the coordinate diagram. On the right

is a picture of each of these hypersurfaces embedded in a
3-dimensional Euclidean space. (The angle of rotation, ¢,
is suppressed; and the magnetic field lines are represented
by arrows.) These successive ' snapshots’ of the throat
of the wormhole reveal that, instead of pinching off, the
throat pulsates. What is shown here is one period of the
pulsation—from maximum radius to minimum radius, and

then back out.
special relativity approximation, to geons with

such intense magnetic fields that they wrap space
up into closure around the ring of the torus. We
shall show, in accordance with the resistance of
magnetic flux to gravitational collapse, that none
of the geons in this family will undergo collapse
to the guiding line of the torus as it evolves in
time. _

The initial configuration of each of these geons
can be constructed from Bertotti's (1959) static
cylindrical magnetic universe. Bertotti' s uni-
verse is described by the line element

2 . 2.2 2 dz?
=( 1+ By 2*)dr -m

—E(dn + sin’y de?),

¢=co~sr SURFACE
REISSNER —~ NORDSTROM SOLUTION EMBEDDED IN Ez

S THORNE

(Here, and throughout this paper, we use "geo-
metrized units” in which the speed of light and
Newton' s gravitational constant are equal to 1.)

In Bertotti’ s universe an observer with world line
(z, 71, ®) constant sees no electric field, but he
sees a uniform magnetic field of strength B, point-
ing along the z-direction. The static surfaces of
constant T have the geometry E, X S, ; they are
closed up in the radial direction (n- direction) but
not in the z-direction.

The first step in constructmg a toroidal mag-
netic geon from Bertotti’ s cylindrical universe is
to bend it around into a toroidal universe (give it
the geometry §; X S, rather than E, X S,). Lind-

- quist (1960) has given the prescription for doing
this; we follow this discussion closely in the next
paragraph.

Introduce new time and longitudinal coordinates,
t and i, defined by

Boz = cos(Bot) sinh(Bobu), tan B, T
= cot (Bot) cosh(B,bu), 9)

where b is a constant. Thereby transform the line
element (8) to read

? = dt® - (cos®B,t) b*du?

- (1/B&) (dn® + §in2 n d¢*). (10)

If ;1 is now interpreted as an angular coordinate of
period 27, then equation (10) is the line element
for a toroidal universe with major circumference
27b cos (Bot) and minor circumference 1/B,. An
observer with world line (yu, 5, ¢) = constant in
this universe sees a uniform magnetic field of
strength B, pointing in the p-direction. (The only
non-vanishing components of the electromagnetic
field tensor are £, = -fon = 1/B, sing). The
hypersurface t = 0 of the toroidal universe is a
hypersurface of time-symmetry. As the universe
evolves away from this momentarily static con-
figuration, it gravitationally collapses along the
k-direction (its major circumference, 27b
cos{B, t), decreases to zero).?

® None of the invariants of the Riemann tensor are
infinite at t = + #/2. Hence, the singularities there
can be removed by an appropriate choice of coordi-
nates—e.g., by introducing Bertotti' s coordinates ( 8).
However, the singularities are removable only at the
expense of destroying the periodicity of the coordi-
nate u; if we insist that (t, u, 5, ¢) and (t, u + 2g7,
7, @) correspond to one and the same point, then we
cannot remove the singularities at t+ #/2.
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FIG. 5. The initial configuration of the magnetic geon whose subsequent dynamical evolution is studied. A uni-
form magnetic field threads the ring of the torus. There is no electric field or gravitational radiation in the initial
configuration; but as the magnetic-field distribution changes with time it generatés them. No currents or charges

are present.

Note that this mode of collapse is perfectly com-
patible with the resistance of flux to gravitational
collapse; the length of each closed field line
decreases to zero, but the distance between
adjacent field lines remains constant.

The next step in constructing a toroidal mag-
netic geon from Bertotti's universe is to take
Lindquist' s toroidal form of the universe (10) at
the moment of time-symmetry t = 0, remove the
region 7o <7 = 7, and join what is left onto the
gravitational field of a static line ring (see Fig.
6). The mathematical details of this procedure
will be given elsewhere (Thorne 1965c).

The toroidal geon, which is thereby con-
structed, is a solution to the initial-value equa-
tions of general relativity for a hypersurface of
time-symmetry. 1 The geon consists of a torus,
which contains a uniform magnetic field of
strength B,. The surface of the torus is at 5 =7o;
its proper major circumference is 27b; its proper
minor circumference is 27Bg* sin To; and its
proper minor radius is noBBI. If no < m, then the
geon is so dilute that its subsequent dynamics can
be treated in the special relativity approximation;
but if o = 7, then the geon is so massive that it
wraps space up around itself almost into closure.
For 1, = 7, space is completely closed up around

the geon, and we have Lindquist's toroidal magnet- -

ic universe. This initial configuration of a toroidal

' For a discussion of the time-symmetric initial
value equations, see Brill(1959).

geon contains no gravitational radiation, in the
following sense: The dynamical evolution at any
point inside or outside the geon is static until
information that stresses were not initially bal-
anced at the geon's surface (internal pressure
= Bo?/87, external pressure = 0) has propagated
to the point in question. Spacetime is static out-
side the geon because the initial external gravita-
tional field is that of a static ring mass. It is
locally static inside the geon because the dynamical-
evolution is initially that of the toroidal universe
(10), which can be put into a static form by intro-
ducing Bertotti's coordinates locally. (Bertotti's
coordinates cannot be introduced globally if we in-
sist that ¢ be an angular coordinate of period 27.)
‘Let each of these geons be followed as it evolves
away from its initial configuration. Will gravita-
tional collapse to the guiding line occur, in vio-
lation of the principle of flux resistance to gravita-
tional collapse? No! The way in which the toroi-
dal universe evolution (10), which involves no
motion in the radial (n) direction, will be modified
is this: Explosion away from the guiding line,
rather than collapse to the guiding line, will be in-
duced by the lack of balance of the magnetic pres-
sure at the geon's surface." '

Y por geons with surfaces at 7, <7/2, one can al-
ternatively prove the impossibility of collapse to the
guiding line by means of C-energy arguments, simi-
lar to those used by Thorne (1965a) to rule out the
collapse of certain cylindrical electromagnetic uni-

verses.
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II. Conclusions

We have suggested in this paper that, in vacuo,
electric and magnetic flux resist gravitational col-
lapse; and we have given a number of examples
which support this viewpoint. A concerted effort -

should be made to prove or disprove this conjecéture,

not only because it would give us deeper insight
into the nature of gravitational collapse in general
relativity theory, but also for the following reason:
If this conjecture is correct, and if flux also parti-
ally or completely resists collapse when matter

is present, then magnetic fields could play an im-
portant role in astrophysical processes based on
gravitational collapse.
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