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It is appropriate that I and my research group have
owned two copies of this book for 18 months, and only now
am I writing this review. Eighteen months is hardly enough
time for even an expert in the subject to attempt taking the
measure of this book. It is one of those exceedingly rare
books that will have a useful lifetime of at least 50 years. It
is a book filled with new approaches to old subjects and old
approaches to new subjects; it completes the unfinished
researches of other physicists; and, maddeningly {and per-
haps for the first time in the author’s career), it leaves unfin-
ished the researches of the author. It is filled with nuggets
of mathematical insight. It leads the serious reader, in the
words of the author, into “a realm of the rococo: splendor-
ous, joyful, and immensely ornate.” And it leaves the casu-
al reader cold, bored, repelled by page upon page of math-
ematical analysis with only a rare passage of motivational
text.

Chandrasekhar is an inspiration to aging physicists like
me. Now in his seventy-fifth year, he continues to produce
absolutely first-rate research at a pace that has slowed only
modestly. This book continues a pattern that he adopted
early in his career: He enters a new topic of research, works
on that topic with single-minded intensity for a number of
years, then wraps up his research by writing a definitive
treatise for the benefit of posterity. With treatise finished,
he then turns his back on the old topic, enters a new one,
and repeats the process. In this manner he has produced a
monumental series of treatises: An Introduction to the
Study of Stellar Structure (1939); Principles of Stellar Dy-
namics (1942); Radiative Transfer (1950); Hydrodynamic
and Hydromagnetic Stability (1961); Ellipsoidal Figures of
Equilibrium (1969); and finally, now, The Mathematical
Theory of Black Holes (1983).

Chandrasekhar begins his book with a passage “To the
Reader: ... Since the entire subject matter (including the
mathematical developments) has been written (or, worked
out) ab initio, independently of the origins, the author has
not made any serious search of the literature. The biblio-
graphical notes at the end of each chapter provide no more
than the sources of his information. The book is an expres-
sion of the author’s perspective with the limitations which
that implies.” He might have added, but modesty forbade,
“and with the power which that implies.”

To understand the limitations and the power of Chan-
drasekhar’s perspective, one must know some of the his-
tory of research on the mathematical theory of black holes.

The decade 1965-1975 was the Golden Age of black-
hole research. During that period the foundations of the
subject were laid by several dozen physicists, almost all of
them under the age of 35 and most of them graduate stu-
dents under the age of 27—people like Stephen Hawking
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and Brandon Carter at the University of Cambridge, Saul
Teukolsky at Caltech, and Aleksandr Starobinsky in Mos-
cow. Near the end of this Golden Age, just when these
young and brilliant researchers, thinking that the cream
had been skimmed off the subject, were moving on to
greener pastures in quantum gravity and gutsy astrophys-
ics, Chandrasekhar entered the field.

Now, Chandrasekhar thoroughly dislikes incomplete-
ness in mathematical physics. For example, in the 1960’s he
was horrified to discover how incomplete was the classic
research of Dirichlet, Dedekind, Riemann, and others on
the equilibrium structures of a rotating, gravitating, in-
compressible fluid. Driven by the aesthetic ugliness of this
incompleteness, Chandrasekhar devoted several years of
his life to cleaning up the nineteenth-century theory and
bringing it into a complete and elegant form in his Ellipsoi-
dal Figures of Equilibrium (1969)—a treatise that has gone
on to impact considerably the theoretical astrophysics of
the 1970’s and 1980’s.

In their exodus from black-hole research in 1973-1975,
Chandrasekhar’s young and brilliant colleagues left behind
a body of highly incomplete theory. This annoyed Chan-
drasekhar even more than had his discovery of the incom-
pleteness in Dirichlet, Dedekind, and Riemann.

Chandrasekhar’s attitude toward the situation actually
was rather complex, as one might infer from the following
remarks that he made to me in 1983 in a slightly different
context: “Thomas Huxley is supposed to have said, ‘A man
of science past sixty does more harm than good’; and in
Lord Rayleigh’s biography by his son, the son asked the
father, who was 67 at the time, what he thought about
Huxley’s view. Rayleigh thought for awhile and said, ‘I
don’t know why it should be so, provided you stick to what
you know and do not enter into controversy with younger
people.” That is what Rayleigh said. Put beside it what
Thomson said about Rayleigh. Thomson had to give the
memorial address for Lord Rayleigh at Westminster Ab-
bey; and he classified scientists into two categories, those
who get the first idea, and those who get the last idea. Well,
Rayleigh belongs to the latter category. It’s cruel to say
these things; but perhaps I can say them because I essential-
ly fall into this category myself, to the extent I can
judge....”

Chandrasekhar has had the first idea often enough (max-
imum mass of white dwarf stars, 1931; general relativistic
instabilities in compact stars, 1964; gravitational-radi-
ation-reaction-induced instabilities in stars, 1970) to win a
Nobel Prize; but in The Mathematical Theory of Black
Holes, he concentrates on the last idea and the last word:
He cleans up and completes, in a thorough manner, the
body of incomplete theory that his younger colleagues left
behind. And he does it without entering into controversy
with them—at least not on the surface. However, if one
knows something of the literature and reads beneath the
surface, one sees Chandrasekhar riding smoothshod over
the works of his younger colleagues—smoothshod on an
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elegant steed with velvet-covered hooves.

As always, Chandrasekhar insists on presenting his sub-
ject in his own way, and in this case that way differs in
major respects from the approaches of his younger col-
leagues. Ever intellectually honest, Chandrasekhar warns
of this in his “To The Reader” remarks—but the reader
and history may soon forget those remarks and assume that
Chandrasekhar’s way is canonical. For example, a large
portion of the book is devoted to the problem of recon-
structing, from a radiative component of the Riemann ten-
sor (the “Teukolsky function”), the metric for a gravita-
tionally perturbed black hole. This problem was first
solved by Paul Chrzanowski, a graduate student of Charles
Misner at Maryland, by a reconstruction method that re-
quired making an unproved anszatz. Chandrasekhar found
the lack of rigor in Chrzanowski’s reconstruction method
aesthetically and mathematically disturbing; so he em-
barked on a long and arduous quest for a more fully rigor-
ous method. And when he had finally succeeded, his meth-
od was so alien in spirit and appearance to that of
Chrzanowski that he could not see any way to relate the
two to each other. As a result, and despite the fact that
Chrzanowski’s method was subsequently made rigorous by
other young physicists (Robert Wald, Jeffrey Cohen, and
Lawrence Kegeles), there is no reference whatsoever to
Chrzanowski’s work in Chandrasekhar’s book.

The impact of this was brought home to me recently
when one of my own graduate students, wishing to recon-
struct the metric for a particular black-hole perturbation
problem, went to Chandrasekhar’s book to find the method
of solution, and then struggled for months trying to apply it
to his own problem. I have had real difficulty getting him to
look at Chrzanowski’s method, which might be easier to
apply, because Chandrasekhar’s method has now been can-
onized. In another ten or twenty years Chandrasekhar may
have had the truly last word: The method of Chrzanowski
and many other insights tied up in the incomplete, non-
Chandrasekhar versions of black-hole mathematics may be
lost to researchers.

But in return for losing other viewpoints, we get from
Chandrasekhar’s book a monumental and almost complete
body of mathematical theory, presented in a totally coher-
ent and aesthetically pleasing way. We are struck by the
splendor of the theory, by the intricacies of its interconnec-
tions, by the mysterious amenability of black holes to total-
ly analytical analysis.

Chandrasekhar’s legendary analytical genius shows up
brilliantly throughout the book, but most especially in
Chap. 9 on “The Gravitational Perturbations of the Kerr
Black Hole.” In concluding this chapter, he himself looks
back in amazement: “The treatment of the perturbations of
the Kerr space-time in this chapter has been prolixious in
its complexity,” he says. “Perhaps at a later time, the com-
plexity will be unravelled by deeper insights. But mean
time, the analysis has led us into a realm of the rococo:
splendorous, joyful, and immensely ornate.”” Then, in the
bibliographical notes to the chapter, he remarks: “But the
nature of the developments simply does not allow a presen-
tation that can be followed in detail with modest effort: the
reductions that are necessary to go from one step to another
are often very elaborate and, on occasion, may require as
many as ten, twenty, or even fifty pages. In the event that
some reader may wish to undertake a careful scrutiny of
the entire development, the author’s derivations (in some
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600 legal-size pages and in six additional notebooks) have
been deposited in the Joseph Regenstein Library of the
University of Chicago.”

In attempting to follow the mathematical development
as presented in the book, I am struck time and again by
Chandrasekhar’s style—a style at which I have often mar-
veled when discussing physics with him and watching him
do research: his development is motivated by deep insight
into the forms and symmetries of the differential equations
with which he struggles. The equations speak to him in a
tongue that I will never master. In places where I, not
knowing how to proceed, would go back to the physical
origins of the equations and seek guidance from physical
intuition, Chandrasekhar flies nimbly forward, guided un-
cannily by the equations themselves.

Chandrasekhar takes a long-term view of physics. The
things he values are those which will last for decades or
longer. In commenting on his presentation of the Dirac
equation in the curved space-time of a black hole (biblio-
graphic notes to Chap. 10), he says that “The account of
spinor analysis in the text is largely based on the author’s
notes of lectures given by Dirac in the spring of 1932 on
spinor analysis and the relativistic theory of the electron.
The style and content of the lectures do not seem to have
faded in the intervening fifty years.” It is clear that Chan-
drasekhar intends for his book to have a similarly long life.
He assiduously avoids topics that will make the book seem
dated fifty, twenty, or even ten years from now. There is
absolutely no mention of observational searches for black
holes, or of the roles that black holes might play in quasars,
galactic nuclei, or compact x-ray sources. Black holes are
presented as an elegant topic in mathematical physics, to-
tally divorced from their ill-understood astronomical im-
plications.

The Golden Age of black-hole research produced two

-major branches of the subject: Stephen Hawking and Rog-

er Penrose in England (among others) used techniques of
differential topology to prove elegant theorems about high-
ly dynamical holes, while Teukolsky and Chandrasekhar
in America, Carter in England, and Starobinsky in Russia
(among others) used techniques of differential geometry
and analysis to probe the details of equilibrium holes and
small perturbations of them. A definitive treatise on the
first branch (dynamical holes; differential topology) was
written in 1973 by Hawking and George Ellis [The Large
Scale Structure of Space-Time (Cambridge University,
London]]; but the second branch (equilibrium holes; differ-
ential geometry and analysis) has had no comparable trea-
tise until now. Chandrasekhar’s book fills the void, beauti-
fully.

The book is fully self-contained, including introductions
{concise but complete) to its mathematical underpinnings:
differential geometry, the Newman-Penrose formalism,
and the mathematics of spinors in curved space-time. Al-
though the notation is not to my liking, these introductions
are so nicely, concisely, yet thoroughly done that they are a
place of preference to which I now send advanced students
to learn the Newman-Penrose formalism and curved-
space spinors. On the other hand, the conciseness and lack
of motivational prose make it a hopeless place for the nov-
ice to learn any aspect of mathematical relativity.

Having laid its mathematical foundations, the book goes
on to treat in enormous and elegant depth the Schwarzs-
child metric which describes a nonrotating, equilibrium
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hole; geodesics and gravitational perturbations of a
Schwarzschild hole; the Reissner—Nordstrom solution
which describes an electricaily charged, nonrotating, equi-
librium hole; test-particle orbits and coupled gravitational
and electromagnetic perturbations of a Reissner-Nord-
strom hole; the Kerr metric which describes a rotating,
equilibrium hole; geodesics, electromagnetic waves, spin-}
fields, and gravitational perturbations of a Kerr black hole;
and the Kerr—-Newman solution which describes an electri-
cally charged, rotating, equilibrium hole. In each of these
the treatment is Chandrasekhar’s own—sometimes relying
heavily on previous work of others, but frequently not. A
large fraction of the formalism is due fully to Chandrasek-
har.

Much to Chandrasekhar’s annoyance, the book’s math-
ematical formalism is not wholly complete: it is marred by
two major gaps.

The first gap is the absence of any treatment of the cou-
pled gravitational and electromagnetic perturbations of a
(charged, rotating) Kerr~Newman black hole. Chandra-
sekhar struggled for many months trying to bring the
mathematics of such perturbations into tractable form—to
no avail. The anguish that this incompleteness has given
him is hidden beneath the words of defeat on p. 562: “It
does not appear that the methods developed in Chap. 9 for
the treatment of the gravitational perturbations of the Kerr
black-hole can be extended in any natural way to the Kerr—
Newman black-hole.”

Of greater astrophysical import is the other gap. In
Chandrasekhar’s own words (p. 567): “The equations of the
Newman-Penrose formalism have proved singularly inept
at addressing...the important physical problem of the sta-
bility of the Kerr space-time.” When I asked Chandrasek-

The Ideas of Particle Physics: An Introduction for Scien-
tists. J. E. Dodd. 202 pp. Cambridge University
Press, New York, 1984. Price: $44.50 (cloth); $17.95
(paper). (Reviewed by Nilotpal Mitra.)

At the time of this writing, there is a brief lull in the
dramatic progress of particle physics. Present-day accel-
erators are at their limits of resolution and the debut of the
super colliders is several years away. A very plausible
scheme for understanding elementary particle data is in
place, and experiments during the coming decade can ei-
ther confirm current expectations of grand unification and
supersymmetry or reveal completely unexpected phenom-
ena.

It seems appropriate that this should be the time to re-
view the progress of the subject, the better to understand
why, given the experimental facts, our present paradigms
are as they are, and what one may expect in the future.
Dodd’s book admirably suits this task. It is a sweeping re-
view of particle physics, starting from Planck’s hesitant
introduction of the quantum hypothesis in 1900 to the dis-
covery of the W and Z particles in 1983. In between, he has
described, in chronological order, the marriage of special
relativity and quantum mechanics; the birth of nuclear
physics; Dirac’s proposal and the subsequent discovery of
anti-particles; the sudden glut of “elementary” particles in
the sixties as the construction of accelerators opened new
energy frontiers; their classification as quark composites;
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har, shortly after publication of his book, whether he be-
lieved that the Kerr space-time (i.e., rotating black holes)
might, in fact, be unstable, he replied ‘“No.”—There is a
proof of stability based on a combination of numerical solu-
tions of the black-hole perturbation equations by Bill Press
and Saul Teukolsky, and an elegant analytical analysis by
James Hartle and Daniel Wilkins; and Chandrasekhar ad-
mits, privately, that he finds this proof rather convincing.
However, because it relies so heavily on numerical work, he
regards the proof as unsatisfying—so unsatisfying, in fact,
that he does not even mention it in his book. Instead, he
poses as a crucial unsolved problem the analytic proof of
stability; and in the last section of his book he presents a
variational-principal technique (due to himself, John
Friedman, and Bernard Schutz) which analytically proves
stability against axisymmetric perturbations and might one
day succeed in proving complete stability. Chandrasek-
har’s anguish that it has not yet succeeded peeks through at
us in his book’s final sentence: “This might be the subject of
a new story; but our present story has ended.”

Kip S. Thorne is the William R. Kenan, Jr. Professor and
Professor of Theoretical Physics at the California Institute of
Technology. Together with Charles W. Misner and John A.
Wheeler he co-authored the textbook Gravitation (collo-
quially called “MTW ™), which contains an introduction to
the mathematics of black holes. He leads a research group
whose graduate students in the Golden Age (Teukolsky,
Press, and others) helped develop the mathematical theory of
black holes, and whose graduate students today are using
Chandrasekhar’s book in their research on astrophysical
aspects of black holes.

and the current synthesis of all known elementary particle
phenomena in a unified gauge-theoretical framework. This
is not a history book, though. Only the winning hypoth-
eses, so to speak, are described, and so the book tends to
portray scientific development as a linear progression. Nor
isit a textbook. It uses fairly simple equations, but there are
no derivations. Under the circumstances, the author man-
ages remarkably well to explain abstract concepts but the
reader will appreciate it better if he has had some previous
exposure to physics up to the sophomore level. I found one
inaccuracy: In Sec. 6.3.1 on parity, the author writes that
atomic transitions occur between states of the same parity.
It is just the opposite, because of the parity of the photon.
There is a list of books and review articles of varying depth
of content for further reading. One unfortunate journalistic
gimmick occurs in the epilogue where the author tabulates
forthcoming experimental searches, their significance,
and, as he puts it, their “Nobel rating” because “the next
few years are about discoveries and Nobel prizes.” Until
the Nobel committee can see their way to awarding the
prize to the large teams that are essential in high-energy
experiments, crediting one experimenter for a discovery
will often be very misleading.

Nilotpal Mitra received his Ph.D. from Columbia University
in theoretical high-energy physics and is currently at Bell
Laboratories.
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