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It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum
noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if
one filters the interferometer output appropriately. No additional noise arises from the test masses’ initial
guantum state or from reduction of the test-mass state due to measurement of the interferometer output or from
the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these
conclusions:(i) The interferometer outputthe photon number quXV(t) entering the final photodetecior
commutes with itself at different times in the Heisenberg pict[,lfd,t),ﬁ/(t’)]zo and thus can be regarded
as classical(ii) This number flux is linear to high accuracy in the test-mass initial position and momentum
operatorsA(0 and E)O, and those operators influence the measured photorﬁf(tu)(in manners that can easily
be removed by filtering. For example, in most inten‘erométgrandf)0 appear in\(t) only at the test masses’
~1 Hz pendular swinging frequency and their influence is removed when the output data are high-pass filtered
to get rid of noise below-10 Hz. The test-mass operat&§and E)o contained in the unfiltered outpi(t)
make a nonzero contribution to the commutdtdf(t),A/(t')]. That contribution is precisely canceled by a
nonzero commutation of the photon shot noise and radiation-pressure noise, which also are confeffbed in
This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer’s
standard quantum limit from test-mass considerations, and independently from photon-noise considerations,
and get identically the same result. These conclusions are all true for a far wider class of measurements than
just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought
experiments that are free from the complexities of real measuring systems.
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I. QUESTIONS TO BE ANALYZED AND SUMMARY recycling mirror” that converts them from conventional in-
OF ANSWERS terferometers into QND devicgd5—-17. LIGO-III interfer-

ometers are likely to beat the SQL by a facted or more;
It has long been known that the Heisenberg uncertaintygee, e.g.[13].
principle imposes a “standard quantum limi{SQL) on In the research and development for LIGO-II interferom-
high-precision measuremenf$—3]. This SQL can be cir- eters[14—17 and in the attempts to invent strongly QND
cumvented by using “quantum nondemolitiof@ND) tech-  LIGO-IIl interferometers[18-24,13, it is important to un-

niques[2-9|. derstand clearly the physical nature of the quantum noise
For broad-band interferometric gravitational-wave detecwhich imposes the SQL, and to be able to compute with
tors the SQL is a limitingsingle-sided spectral density confidence the spectral density of this quantum noise for

various interferometer designs. These issues are the subject
of this paper.
Sh(f)= m(27f)2L2 (1.9) There are two standard ways to derive the gravitational-
wave SQL(1.1), and correspondingly two different view-
for the gravitational-wave fielch(t) [10,11. Here # is  Ppoints on it. The first derivatiofil0,25 focuses on the quan-
Planck’s constant divided by72, m is the mass of each of tum mechanics of the interferometer’'s test masses and
the interferometer’s four test massds,s the interferom- ignores the interferometer’s other details. In the simplest ver-
eter’s arm length, antlis frequency. sion of this derivation, one imagines a sequence of instanta-
This SQL firmly constrains the sensitivity of all conven- neous measurements of the difference
tional interferometerginterferometers with the same optical L o
topology as the Laser Interferometric Gravitational Wave X=(X1—X5) — (X3—X4) (1.2
Observatory's(LIGQ’s) first-generation gravitational-wave
detector$[12,13. LIGO’s second-generation interferometers of the center-of-mass positions of the four test masses, and
(LIGO-II; ca. 2009 are expected to reach this SQL for their from this measurement sequence one infers the changes of
m=40 kg test masses in the vicinity 6f-100 Hz[14], and and thence the time varying gravitational-wave fidi(t)
may even beat it by a modest amount thanks to a “signak x(t)/L. At time t immediately after one of the measure-
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ments, the test masses’ reduced state has position variante test-mass center-of-mass degree of freedpmnd we
[Ax(t)]? no smaller than the measurement’s accuracy. Durhave assumed that the shot noise and radiation-pressure force
ing the time interval-=t’ —t between this measurement and are uncorrelated as is the case for conventigih#GO-I

the next, the test masses are free,x§t) evolves as the type interferometers[13,15-17. At frequencyf the test
position of a free particle with mass mass responds to the Fourier compongft) of the force
with a position change(f)=—F(f)/[ u(27f)?], and cor-

p=nmia 13 respondingly the net gravitational-wave noise is

[the reduced mass of the four-body system with relative po-
sition (1.2)]. The Heisenberg-Picture commutation relations _
for a free particle Sh(f)= L2

Sk )

in(t' —t) B 4ikh T
T m

[X(t),x(t")]= (1.4 By combining Egs(1.6), (1.7) and(1.3), we obtain the SQL

(1.1) for a conventional interferometer, e.g. LIGO-I.

imply that, whatever may be the state of the test masses, the N View of these two very different derivations of the

variance[ Ax(t')]2 of X just before the next measurement SQL, test-mass quantization and light quantization, three

must satisfy the Heiseni)er uncertainty relation questions arise(i) Are the test-mass quantization and the
9 y light quantization just two different viewpoints on the same

hlt—t'| 2hT physics?—in which case the correct SQL is EQl). Or are
=— (1.5  they fully or partially independent effects?—in which case
we would expect their noises to add, causing the true SQL

The accuracy with which the change obetweent andt’  for Sn to be larger by, perhaps, a factor[@nd thence the
can be measured is no better than the value obtained Yent rate in an SQL-limited interferometer to be reduced by
setting Ax(t)=Ax(t'), and in classical language that accu-2 factor N(\_/E)?’_:?)]- (i) How should one compute the
racy is related to the minimum possible spectral density ofli@ntum noise in candidate designs for the QND LIGO-Il
the noise at frequencyf=1/mr by Ax(t)=Ax(t") and LIGO-IIl interferometers? One inevitably must pay close
=/S,(f)/7. Simple algebra then gives expressidnl) for attention to the behavior of the lig&nd thus also its quan-
the SQL ofS,(f). A more sophisticated analygis0], based tization), since the optical configuration will differ markedly

on measurements that are continuous rather than discrete affgm one candidate design to another. Must one also pay
on a nonunitary Feynman-path-integral evolution of the test?'ose attention to the quantum mechanics of the test masses,

mass stat¢26,27, gives precisely the SQ(L.1). including their commutation relatiofl.4) and the continual
The secon'd derivation of the SQI28,29 ignores the reduction of their state as information about them is continu-

quantum mechanics of the test mass, and focuses instead 8} Put onto the light's modulations and then measureidp

that of the laser light which monitors the test-mass motion>iMmilarly, how should one design a QND interferometer?

The light produces two kinds of noise: photon shot noiseNé€d one adjust one’s design so as to drive both the light's
which gets superposed on the output gravitational-wave sig?©!S€ and the test-mass noise below the SQL?
nal, and radiation-pressure fluctuations, which produce a ran- AS We shall show, the answers are thess: The test-

dom back-action force on the test masses, thereby influen&?@SS guantization is irrelevant to the interferometer’s noise
ing their position evolution and thence the interferometer@nd correspondingly test-mass state reduction is irrelevant, if

output. In an ideal, SQL-limited interferometer, both ©N€ filters the output data appropriatglyor interferometers

noises—shot and radiation-pressure—arise from quanturith conventional optical topology such as LIGO-I, it is suf-

electrodynamic vacuum fluctuations that enter the interferiCient to discard all data near the test masses'Hz swing-

ometer through its dark port and superpose on the highhmg.frequency. Therefore_, one can ignore 'test-mass 'quan'u-
classical laser lighf28,29. The radiation-pressure spectral 2ation and state reduction when computing the noise of a
density is proportional to the laser-light powRr the shot- candldate7mterferomete(_m) Similarly, one can ignore the
noise spectral density is proportional ti®1/and their prod- (€St mass's quantum noise when designing a QND interfer-
uct is independent d? and is constrained by the uncertainty OMeter that beats the SQL. One need only pay attention to
principle for light (or equivalently by the electromagnetic the light's quantum noise, and in principle, by manipulating

field commutation relationso be no smaller than the light appropriatelyand filtering the output data appro-
priately), one can circumvent the SQL completely. Corre-

SSe=1? (1.6)  spondingly, the SQI(1.1) as derived from light quantization
is precisely correct; there is no extra factor 2 caused by test-
[cf. Egs.(6.7) and(6.17) of [3] in which there is a factor 1/4 mass quantizatiofThe fact that one can also derive the SQL
on the right side because R¢8] uses a double-sided spec- from test-mass quantization is a result of an intimate connec-
tral density, while the present paper uses the gravity-wavéon between the uncertainty principles for a measured sys-
community’s single-sided conventiprin Eq. (1.6) S,(f) is  tem (the test masses in our casmnd the system that makes
the spectral density of the shot noise that is superposed ahe measuremerithe light. We shall elucidate this intimate
the interferometer’s output position signdlt), Sc(f) isthe  connection from one viewpoint at the end of Sec. 11 B 4.
spectral density of the radiation-pressure force that acts oRrom another viewpoint, it is due to the fact that the com-

AX()Ax(t")=

2 m
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mutator[x(t),x(t")], which underlies the test-mass deriva- Sition and momentum for’ the test mass and thereby remove
tion (1.4), (1.5 of the SQL, also underlies the derivation of the effects of the meters’ back action from the output data

the measuring light's uncertainty relatioh.6): see the role (Make a “quantum variational measurement”
g9 y .6 Our examples are the following: We will begin in Sec.

of the generalized susceptibility(t,t")=(1/%)[x(t"), || A with a simple, idealized, instantaneous single measure-

X(1)] in Sec. 6.3 of Ref[3].] ment of the position of a single test mass. This example will
Central to our answer@), (i) and (iii) is the fact that an demonstrate that the noise associated with test-mass quanti-

interferometric gravitational-wave detector daes monitor zation and the noise associated with the meter’s quantization

— . 5 s . are truly independerithough closely linkegd and will illus-
the time-evolving test-mass positior(t). Rather, it only trate how under some circumstances they can add, producing

monitorsclassical change x(t) induced by the classical a doubling of the noise power. Then, in Sec. Il B, we will
gravitational-wave fieldh(t) and other classichlforces analyze the use of a sequence of these idealized, instanta-
(thermal, seismic, . ).acting on the test masses, and it doesneous position measurements to monitor a classical force
so without extracting information about the actual quantizedhat acts on the test mass. This example will illustrate the
positionX(t). The detector has a classical inf(t)] and a vanishing self-commutator of the output data samples, which

classical outpugh(t) contaminated by noise thés we shall arises from a cancellation of the test-mass-position commu-

o : ) tator by the measurement-noise commutator; it also will il-
seg commutes with itself at different times and that there- rate how signal processing can remove all influence of

fore can be regarded as a time-evolviognumbel. The  test.mass quantization and test-mass state reduction from the
quantum properties of the test masses and the light argutput data stream. Our third examg®ec. 11 O will be a
merely intermediaries through which the classical signaHeisenberg-microscope-like realization of these instanta-
must pass. This would not be the case for a device designeskous, idealized position measurements, in which a pulse of
to make a sequence of absolute measurements of the quamear-monochromatic light is reflected off the test mass,
tum mechanical positior(t). thereby encoding the test-mass position in a phase shift of

Our answers), (i), (iii ) hold true for a far wider range of the light. This example will give reality to the idealized ex-
measuring devices than just interferometric gravitational2mples in Secs. Il A and 11 B, and will help connect them to
wave detectors. They hold quite generally for any well-the subsequent discussion of interferometric gravitational-
designed device that measures a classical force acting on al¥pve detectors.

quantum mechanical system. In particular, they remain true " S€C- Il we will use the insights from our pedagogical
if the device makes measurements thatimear in the sense  ©Xamples to prove and elucidate our three ansiers(ii),
(iii) abovd for gravitational-wave interferometers, and also

g{ﬁﬁﬁﬁgﬂ;ﬁoﬁ z?dtﬁgenglttfrr; t?rigjgri?essOg]:[ptlﬁ]tetoq{;nn]?uvrﬁfor a w!de_range of other cIassmaI force measurements. The
\ . o . underpinnings for our answers will bé) a proof that for a
system's dynamlc(se._g. atits eigenfrequency if the quantum guantized electromagnetic wave, such as that entering the
system is a harmonic oscillafor , . final photodetector of an interferometer, the photon number
(While this paper was under consideration for publication g, gperator commutes with itself at different timésis
we became aware of a beautiful path-integral analysis byj,x is the output data streamand (b) a proof that all influ-
Caves(Sec. 1ll C of[26]) which elucidates answers like our ence of the test-mass quantum observables can be removed
(i), (ii), (iii) for a wide class of measurements of a harmonicfrom the output data stream by appropriate filtering, and for
oscillator, on which a classical force is acting. Caves’ Ref.conventional interferometers it is sufficient to remove all
[26] contains important insights. We strongly recommend itdata near the test masses1 Hz swinging frequency, e.g.
to all readers of our papégr. by the kind of high-pass filtering that is routinely used in
In Sec. Il we will elucidate our answef$), (i), (i) by  gravitational-wave detectors. Our analysis will also elucidate
considering pedagogical examples of idealized devices th&@ND interferometer designs based Oh) squeezed-input
make discrete, quick measurements on a test mass. Thesttes for light andB) variational-output measurements.
examples will reveal two central underpinnings of our an- The issues studied in this paper are most efficiently ana-
swers: (a) the vanishing of the measurement’s “output lyzed in the Heisenberg picture, and the Heisenberg picture
commutators’—i.e., the commutators of the observablegives particularly clear insights into them. For this reason,
(Hermitian operatopsthat represent the entries in the output We Will use the Heisenberg picture throughout the body of
data stream, andb) a data-processing procedure that re-this paper. Readers who are uncomfortable with the Heisen-

moves from the data all influence of the test-mass quanturR€9 Picture may find Appendix A reassuring; there we will
- LA - ~ give a detailed Schdinger-picture analysis of the most im-
observableginitial position x, and initial momentunyp,).

. : . . portant of our pedagogical examples, that of Sec. Il B.
Our examples will also elucidate two strategies for beatmgp pedagog P

the SQL:(A) put the measuring apparat(sneters”) into Il. PEDAGOGICAL EXAMPLES
specially chosen initial statéthe analog of squeezed states ] - _
and (B) measure a wisely chosen linear combination of po- A. A single position measurement:

“Double” uncertainty relation

We begin with a simple pedagogical example of a single

Al these forces—gravitational-wave, thermal, seismic, etc.—measurement of the position of a single test mass. The

actually do have a quantum component, but in practice their leveléleisenberg microscope is a famous realization of this ex-
of excitation are so large that we can regard them as classical. ample; see Sec. Il C.
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The measurement is idealized as instantaneous and as @pply to any sufficiently quick,“linear” measurement; see
curring at timet=0. At times arbitrarily close ta=0, the  Egs.(5.2), (5.14) and(5.23 of Ref.[3], and see Appendix B
Hamiltonian for the test magsvith position and momentum below.

x andp) and the measuring devicthe meter with general- The initial test-mass position and momentum and the ini-
ized position® and generalized momentuf) is t!al meter position and momentum have the usual commuta-
tion relations,
p2 p2 A A A A
H=2>—- 5(t)XP+ oM " (2.1 [ Xpefore: Pbetorel = 17 = [ Qbefore: Pheforel (2.9

2u
The second of these and Ed2.5 imply that the measure-

ment nmseé‘xmeasand the back-action |mpulsépBA have
this same standard commutator, but with the sign reversed

Here 6(t) is the Dirac delta functiony is the test mass’s
mass andV is the generalized mass of the meter. For peda

gogical simplicity we makeV arbitrarily large soQ and P
do not evolve in the Heisenberg picture except at the moment
of interaction, and correspondingly we rewrite the Hamil-
tonian as

[ Xmeas OPpal = — i 2.7

This has an important implication: The measured value of
the test-mass position and the final value of the test-mass
H= 2 — 8(t)XP. 2.2 momentum commute:

[ Xmeas Pafter] = 0. (2.9
A simple calculation in the Heisenberg picture gives the meas Fafter

following expressions for the positions and momenta imme-Thijs result, like the simple measurement and back-action
diately after the measurement, in terms of those immediatelgquationg2.4a, (2.4b), is true not only for this pedagogical

before: example, but also for any other sufficiently quick, linear
R R measurement; see, e.g., Sec. Il C below.
Patter™ Phefores (2.39 It is evident from Eqs(2.4) and(2.5) that the variances of
i i Xmeas@Nd Paser are influenced by the initial states of both the
Xafter= Xbefores (2.3  meter and the test mass:
Qafter: Qbefore_ ;(before (2_3@ (Axmeas}zz (Axbefore;'2+ (AQbefore)zl (2-9)

[A)after: E’before"' Isbefore- (2.30) (A pafter)2: (Apbefore)2+ (A Pbefore)z-

(2.10

The meter’s generalized positi@yg, is amplified and read Here we have assumed, as is easy to arrange, that the initial
out classically immediately after the interaction, to determinestates of the meter and the test mass are uncorrelated. Now,
the test-mass position. The resulting measured position, exhe initial states of the test mass and meter are constrained by
pressed as an operator, 3Snea= — Qafier= Xpefors— Quefore ~ tE UNCETtaiNty relations

[Eq.(2.30], and the measurement leaves the actual test-mass

osition operator unperturbgéq. (2.3b] but it perturbs the f
Fest-masspmomentugEq. (220)(]1. (2301 P AXpefore A Ppefore™ 2 (2.1
It is instructive to rewrite Eqs(2.3¢ and (2.3d in the
form 3
AQbefore'APbefore; Ev (2-12)
Xmeas Xbefore+ 5Xmeas: (2-43
R R R which follow from the commutators2.6). From the view-
P aster= Ppefore™ OPgA » (2.4b point of the measurement equatiois4q, (2.4b), the meter
equatlon(Z 12 is an uncertainty relation between the noise
with Mmeas= — Quefore that the meter superimposes on the output
A A ~ A signal, and the back-action impul =P that the
OXmeas™ ~ Qbefore:  OPBA= T Phefore- (2.9 mgeter gives to the test mass. Ir? thsemagiser?ggrz microscope,

SXmeas Would be photon shot noise anépg, would be

The simple equation$2.439, (2.4 embody the measure- neas .
radiation-pressure impulse.

ment result and its back actioR;,e.sis the measured value
Of Xpetore= Xatter» OXmeaslS the noise superposed on that mea-

sured value by the meter, anipg, is the back-action im-  2.e., quick compared to the evolution of the wave function of the
pulse given to the test mass by the meter. Equati@ are  measured quantity, so it can be regarded as constant during the
actually much more general than our simple example; theyneasurement.
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The test-mass uncertainty relati¢h11) and meter uncer-
tainty relation(2.12) both constrain the product of the mea-
surement error(2.9) and the final momentum uncertainty
(2.10, and by equal amounts. The result is a “doubling” of
the uncertainty relation, so

and E), their values immediatelgfter interacting with meter
r, at timet=r 7. The momentum of metaris a constant of

the motion, so we denote it b?, at all times. The meter
coordinate changes due to the interaction; we denote its

value before the interaction BP*°"®and after the interac-
(213  tion by 0,.
It is easy to show, from the Heisenberg equations for the

) ) . ) ) ) Hamiltonian (2.14), that the test-mass position immediately
This doubling of the uncertainty relation relies crucially gfter itsr’th interaction is

on our assumption that the initial states of the test mass and N ;
meter are uncorrelated. Correlations can produce a violation =%+ &r S B

; ) e r=Xo T+ Py
of the uncertainty relatiof2.13. For example, initial corre- M $=0
lations can be arranged so as to proddice principle) a
vanishing total measurement errdx,.,=0 and a finite
ADasier SO the product X eas A Patter Vanishes—a result per-
mitted by the vanishing commutat@2.8).

N

AXmeas' A Pafter= 2

(r—s)7
y73

Here the first two terms are the free evolution of the test
mass, the thirdwith the sun is the influence of the meters’
back-action forceganalog of radiation-pressure force in an
interferometey, and the fourth,

B. Monitoring a classical force: £ = ifrTftF(t')dt,dt:Ef”(rT—t')F(t')dt'
' MJo Jo M Jo ’

“Single” uncertainty relation

As we emphasized in Sec. |, the goal of LIGO-type de- (2.16
tectors isnotto measure any observables of a test mass, bus the effect of the classical force. The for€ét) is encoded
rather to monitor an external force that acts on it. Corredin the sequence of classical displacem€ts &5, . . . ,&n}-
spondingly, it is desirable to design the measurement so thi¢is also easy to show from the Heisenberg equations that the
output is devoid of any information about the test mass’smeter’s generalized coordinate after interaction with the test
initial state. As we shall see, this is readily done in a way thamass is
removes the initial-state information during data processing. O, = (pefore_x
The result is a “single” uncertainty relation: the measure- s '
ment result is influenced only by the quantum properties of - r

~ Po 2 p (r=s)r

the meter and not by those of the test mass. = Qpefore_x — —rr—
Y73

+& . (219

1. Von Neumann’s thought experiment (2.17)

We illustrate this by a variant of a thought experiment
devised by von Neumanf80] and often used to illustrate
issues in the quantum theory of measurement; see,[81g., The set of final meter  coordinates Q
and references therein. We analyze this thought experiment ¢, &, ... Qy_,} forms the final data string for data

using the Heisenberg picture in the body of this paper, angma|ysis_ It has vanishing self-commutator,
we give a Schrdinger-picture analysis in Appendix A.

2. Vanishing of the output’s self-commutator

Our von Neumann thought experiment is a simple gener- [Q.,0,]=0 forall s and r (2.18
alization of the position measurement described above. Spe-
cifically, we consider a free test mass, with massposition =~ —a result that can be deduced from the vanishing single-

x and momentunp, on which acts a classical foréqt). To  measurement commutat§Xmeas Paerd =0 [Eq. (2.8)] for
monitor F(t), we probe the test mass instantaneously athe earlier of the two measurements.

timest=0, 7, ..., (N—1)7 usingN independent meters la- It is instructive to see explicitly how this vanishing com-
beledr=0,1,... N—1. Each meter is prepared in a care- mutator arises, without explicit reference to our single-
fully chosen state, it then interacts with the test mass, antheasurement analysis. The test-mass contributions Q'the
then is measured. We filter the measurement results to d@%o and f)o in Eq. (2.17)] produce

duceF(t). Meterr has generalized coordinate and momen-

tum Q, and P,, and its free Hamiltonian is vanishingly

small, soQ, andP, do not evolve except at the moment of
interaction. The total Hamiltonian for test mass plus classical

~ ~ A~ o] (o)
[Qs Qrliestmass| —Ko— 7, —Xo= —r7
S rltest mass (0] M (0] M

force plus meters is _if(r—=9)7 o1
62 N—1 - ILL 1 ( . 9)
H=-——F(t)x— >, st—rnxP,. (214 o ,
2u r=0 which is the analog of Eq(l1.4) for an interferometer test

- - N mass. This must be cancelled by a contribution from the
We denote byx, and p, the test-mass position and Mo- meters. Indeed it is. Iffor concreteness >s, then the can-
mentum at timé=0 when the experiment begins, andXyy  celling contribution comes from a commutator 6j the
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Q2" piece ofQ, (the noise superposed on the output signadnd p,), while retaining the influence df(t). In fact, we
sby meters) and(ii) the P term in®, (the noise in the later can do so rather easily, regardless of what the test-mass ini-

measurement produced by the back-action of the earlier med@! State might have been. As we shall see, our ability to do
so relies crucially on théinearity of our measurements; in

surement -
particular, on the fact that the output observablgs are
o poetoe a (T=9)7 linear inx, andp,, .
[Qs.Qrlmete=| Qs+~ Ps P To bring out the essence, we shall restrict ourselves to just
three meterdN=3. The generalization to largé is straight-
—ifi(r—s)r forward.
N o ' (2.20 The measured data samgide is equal to the freely evolv-

ing test-mass position at timerr, Xgedt=r7)=X,
In this example, one can trace these cancellations to the (p,/u)r 7 (Which is linear inx,, p,), plus noise. Since the

bilinear formfdf’S and;(le‘r of each piece of the interaction free evolution satisfies the equation of motidAXee/dt?
Hamiltonian. However, this type of cancellation is far more =0, it is a reasonable guess that we can remove the influ-

general than just biIinear.HamiItonians:d:nery sequence of gpce ofx, andp, from the dated), by applying to them the
measurements on any kind of systdiy the time a human  giscrete version of a second time derivafivevhich is a

looks at the output data stream, its entries have all beefear signal processing proceduréccordingly, from the

amplified to classical size, and therefore they must all bemeasured value®y,Q;,Q,} of {Qo,Q1,Q,} in arepresen-

classical quantities and must commuiQs,Qr1=[Qs.Qr]  tative experiment, we construct the discrete second time de-
=0. Remarkably, quantum mechanics is so constructed thaty,ative

for a wide variety of measurements, the measured values L L _ L

(regarded as Hermitian observablemmmute even before R=(Q,—Q1)—(Q1—Qp)=Qp—2Q;+Q,. (2.2)

the amplification to classical size. This is true in the above ) _

example. It is true in a realistic variant of this example in- | h€ following argument shows that all the statistical proper-

volving pulsed-light measuremertSec. Il O. Itis true ina  t€S of this quantity, in a large series of experimefits

variant of this example involving continuous measurementdVhich the initial statesin) of the test mass and meters are

by an electromagnetic wave in an idealized transmission lin@lways the sameare, indeed, devoid of any influence xf

[32]. And, as we shall see in Sec. Ill A and Appendix C, it is and f)o, and thus are unaffected by the test-mass initial

also true for gravitational-wave interferometers—and indeedtate?

for all measurements in which the measured results are en-

coded in the photon number flux of (guantized electro-

magnetic wave; i.e., all measurements based on photodetec3|n Sec. 111 C of Ref.[26], Caves uses his path-integral formula-

tion. More generally, it is true for anjinear measurement tion of measurement theory to analyze measurements of the discrete

[Appendix B below, Ref[3], and Eq.(2.34 of Ref.[17]]; second time derivative of the position of a free particle on which a

and, in fact, all the measurements discussed above, includingassical force acts. His analysis reveals the same conclusion as we

gravitational-wave measurements, are linear. obtain in our pedagogical example: the measured quantity contains
The classical nature of the output sigfidle commutation information about the force and is devoid of any influence from the

of the data entrigsguarantees that, when a human looks atparticle’s initial state.

one data entry, the resulting reduction of the state of the “The crucial idea of avoiding the influence of the test-mass initial

measured system cannot have any influence on the observete by monitoring differences of observab[é€,— Q1) —(Q

values of the other data entries. Correspondingly, we can Q) in our casgis contained in a paper and book by Alter and

carry out any data processing procedures we wish O@the Yamamoto[33,34]. Alter and Yamamoto point out that, for a test

without fear of introducing new quantum noise. mass on which a classical force acts, the momenth at timet
and the momentunp(0) at time O are correlated in tha(t)
3. Removal of test-mass influence from the output =p(0)+[idt’F(t’); so, if one measures p(t)—p(0)

_rt ’ ' . .
Our goal is to measure the classical fofg) that acted ~—Jodt'F(t'), one thereby can get information about the force
on the test mass, without any contamination from the tesﬁ”thom any contaminating influence of the test-mass initial state.
mass’s quantum broperties—more specifically, without any hey say(p. 96 of[34]) that this is so not only when one measures
contamination from uncertainty-principle aspects of the tesfirectly the differencep(t) —p(0) (as in Sec. 7.2.2 of thei34]),
mass’s initial state. The initial statbbesinfluence the mea- but also when the dlfferencg is deteArmlned computationally from
sured value®), of the output observable®, , since in the the results of m?asufemenfsmz andp(0) [an analog of our way
. ! ~ . " e of monitoring Q,— Q1) —(Q1—Qp)]. When going on to discuss
Heisenberg picture th®, contain the test mass’s initial po- o - N
. A position measurements, Alter and Yamamoto note xifgt— x(0)
sition X, and momentunp, [Eq. (2.17)]. Therefore, our goal — p(0)t/m+ [Ldt [ dt"F(t")/m, so a measurement OR(t)

translates into finding a data analysis procedure that will re—_;((o) is contaminatedvia p(0)t/m] by noise from the test-mass

move from the output data sg:,Q, . . .} all influence of  jyitia| state. Examining this contamination, they conclude that
the test-mass initial stat@r equivalently all influence of,, “force detection via position monitoring of a free mass is limited by
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These statistical properties are embodied in the means, This three-meter thought experiment is a prototype for our
over all the experiments, of arbitrary functio@R). The  discussion of gravitational-wave interferometers in Sec.

theory of measurement tells us that, becaus€Xseall com- l'B. Th_e're as hgre, thénearity of the_outpuun the test-
~ mass initial positions and momenta will enable us to find a
mute, the computed mean &{(R) is given by

linear signal processing procedure that removes the initial-
- . state influence. Here that procedure was a discrete second
[computed mean o5(R)]=(in|G(R)|in), (2.22  time derivative. For an interferometer it will be a discrete
Fourier transform of the measured photon flttxe output,

whereR is the operator corresponding B and a discarding of Fourier components at the test masses’
natural frequencie@he 1 Hz pendular swinging frequency in
ﬁ:@o_ 20,+0, the case of conventional interferometers

For an elegant path-integral analysis of the removal of

B ~before ~Abefore P17 Abefore test-mass initial conditions from the output of measurements

=~ (60— 26+ &) +| Qo —2Q1 o Q2 of any harmonic oscillator on which a classical force acts,
(2.23 see the last portion of Sec. Il C of CavEzs].

A

4. The SQL for the classical-force measurement

B e i, HOW Smalcan e testmass i be? A naive”cpi-
P ' ation of the meters leads to the standard quantum limit on

tistics of Rwill be completely independent of the test-masshe measured force, in the same way as a “naive” optimiza-
quantum mechani¢cand in particular independent of the test tjgn of a gravitational-wave interferometer’s desigarcing
mass’s initial stateMoreover, Eq(2.22 implies that, so far jt {o retain the conventional LIGO-I optical topology but
as mea§urement results and siat|st|cs are concerned, measyitimizing its laser poweérleads to the gravitational-wave
ing theQ’s and then computing is completely equivalent SQL. Specifically:
to measuringR directly. Let the three meters all be prepared in initial states that
5 oic ? o ; are “naive” in the sense that they have no correlations be-
AlthoughR is independent ok, andp, it contains tween their coordinates and morr?/enta. Then EZ23 and
1 (2r 2 (2.24 imply that the variance of the measured mean force is
Eg— 28+ §2=; . (r—|t—7))F(t)dt= ;F,

2
—, M
(2_24) (AI:)ZZF (AQgefor32+(2Ale)efor(s)2
whereF is a weighted mean of the classical fofe®@ver the P,7 2+ \ before)z 228
time interval 0<t<2r; cf. Eq.(2.16.° Thus, this measure- (AQ3 i _

ment of Ris actually a measurement of, Rnd is contami- ) ) ) ) N .
nated by quantum noise from the meters but not by quantuf@PViously, this variance is minimized by putting meters 0

noise from the test mas$he only role of the quantum me- 2nd 2 into (neaj eigenstates of their coordinates, so

- before__ before__ [ R
chanical test mass is to feed the classical sighand the AQp "=AQ," "=0. To minimize the noise from meter L
ter back-acti B /m into th Ut we require that it have the smallest variances compatible
meter back-action noise;7/m into the output.

) with its uncertainty relation,
For those readers who are uncomfortable with our use of

the Heisenberg picture to derive this very important result, before f
we present a Schdinger-picture derivation in Appendix A. AQTTAP, =3, (2.29

and we adjust the ratidQ*™9AP, so as to minimize
... the SQL"[33]. While this conclusion is correct when one moni- (AE)z The result is

tors x(t) —x(0) in the manner envisioned by Alter and Yamamoto,

it is incorrect for the alternative strategy embodied in our model —, 2uh
problem. Instead of monitoriné(t)—i(O), one should monitor (AF) 277 (2.27)

X(0)—2x(t) +X(2t), which for a free mass is independent of both

;(OE;((O) and f)osi)(o)_ Then the measurement output contains which is the SQL for measuring a classical force, up to a

information about the forc&(t), uncontaminated by any influence factor of order unity; cf. Sec. 8.1 of Ref3].

of the test-mass initial state. It is evident from this analysis thakhe true physical ori-
Notice that, aside from meter nois&, is equal to X(t,) gin of the SQL in classical force measurements is the meter’s

—p(O)t, /u [Eq. (2.15], which is a QND observabléas M.B. ~ NOis€ not the test-mass noise. On the other hand, the quan-

Mensky pointed out long agoTherefore, the quantitiR that we tum properties of the meter a”f_’ of the test mass are inti-

measure can be regarded as a discrete second time derivative ofately coupled through the requirement that the met_er com-

QND observable—which suggests that it can be the foundation fofutators — cancel  the test-mass commutator in the

a QND measurement; see Sec. |l B 5 below. measurement output, so tHad, ,Q;]=0 [Eqg. (2.18]. This
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intimate coupling—which, as we have discussed, has enokvidently, we should chooseda2= 7/ u, so the quantity mea-
mous generality—ensures that the SQL can be derivedured is

equally well from test-mass considerations and from meter

considerations. We saw this explicitly in Sec. | for an inter- -

ferometric gravitational-wave detector. 1=Q.+ Plﬂ' (2.32

5. Beating the SQL

Equation(2.23 suggests a way to beat the classical-forcel Nen Egs(2.31) and(2.24) imply that
SQL and, in fact, achieve arbitrarily high accuracy: As in our
“naive” optimization, before the measurement we place . P2 before = Abefore. A before
meters 0 and 2 itinea) eigenstates of their coordinates, so Rvar= — ;F+Qo —2Q; QT (2.33
AQy=AQ,=0, but instead of putting meter 1 in a “naive”

state with uncorrelated coordinate and momentum, we place

it in a (neay eigenstate of Therefore,by measuring our chosen linear combination of
meter 1's coordinate and momentum, and then computing the
Qsaueeze: before_ 1o (2.29 discrete second time derivative, we have succeeded in remov-

ing from our output observable g not only the test-mass
(This meter-1 state is analogous to the squeezed-vacuuariables %, p,, but also the back-action influence of the

statg, Whic.h Unruli18] has proposed b.e inserted into a CON" meters on the measurement (all thfeﬁﬂ?. Correspondingly,
vent!ongl |n|terferon;etﬁrs darSk polrltcmb cird\;}r] to pgqt Itheby putting the meters into “naive” initial statestates with
gravitational-wave SQL; see Sec. elpwhese initia no position-momentum correlationthat are near eigenstates
meter states, together with Eq2.23 and(%.22), guaran'iee of their coordinatesso AQ,, AQ,, AQ, are arbitrarily
that the variance of the computed quantityvanishesAR  small and the back-action fluctuatiod®®y, AP;, AP, are
=0, and thencgvia Eqgs.(2.24) and(2.23] that the variance arbitrarily large, then from the computed quantiﬁ/\,ar, we

of the measured mean force vanishk,=0. Thus, by put- §an infer the mean positida with arbitrarily good precision.
ting the initial state of meter 1 into the analog of a squeezed ™ i strategy was devised, in the context of optical mea-

vacuum state, we can achieve an arbitrarily accurate meg—uremems of test masses, by Watchanin, Matsko and Zubova

surement of~. [6-9], and is called ajuantum variational measuremem

The SQL can also be evaded by modifying the metersgrayitational-wave interferometer that utilizes (#@nd can
measured quantitiesAinsteadAof modifying their initial statespeat the SQL is called avariational output interferometer
Specifically, measur€), and Q, as before, but on meter 1 [13].

instead of measuring the coordin&g, measure the follow- Of course, one can also beat the SQL for force measure-
ing linear combination of the coordinate and momentumments by a combination of putting the meters into initially
(with the coefficienta to be chosen below squeezed states and performing a quantum variational mea-
surement on their outputs. A gravitational-wave detector
o var— Q.+ aP; based on this mixed strategy is calledqueezed variational

interferometer and may have practical advantages over
P p squeezed-input and variational-output interferomet&gs.
A - 0 0 A
= Qbefore—x,— L T TaPia. (229
C. Pulsed-light measurements of test-mass position

From Egs.(2.29, (2.17) and (2.18, we see that the output oy two pedagogical examplésingle position measure-

observables{Q,,Q}",Q,} all commute with each other. ment, Sec. Il A, and classical force measurement, Sec) Il B
Therefore, when we combine their measured values into thean be realized using pulsed-light measurements of the test-

discrete second time derivative mass position. We exhibit this realization in part to lend re-
5 5 5 5 ality to our highly idealized examples, and in part as a bridge
Rua=Qo—2Q*+Q,, (2.30 from those simple examples to gravitational-wave interfer-

ometers with their far greater complexitgec. 1l below.
its statistics will be the same as if we had directly measured In each pulsed-light measurement we reflect a laser light

the corresponding operator pulse, with carrier frequency, and Gaussian-profile dura-
R _ 5 _ tion 7,, off a mirror on the front face of the test mass, and
Rya=Qo—2Q7*+Q, from the light's phase change we deduce the test-mass posi-
tion x averaged over the pulse. This is a concrete realization

Qpefore_ o @before not only of the pulsed measurements of our pedagogical ex-
0 1 amples, but also of a Heisenberg microscope. We presume
that the pulse duratiorr, is long compared to the light's
2.31) period 2/ w,, but short compared to the time between
' measurements.

=—(&—2&+T&)+
p ..
+ 717'— 2aP;+ Qgefore]
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We shall analyze in detail one such pulsed measurement. o
The electric field of the reflected wave, at some fiducial lo- 5DBA=J dt
cation, is -

E(t)= 1 /T‘)( e oot CwOAO j dte—tZ/ZTS(%)_ (2.39

+H.c.), (2.34  The testmass momentum before and after the pulsed mea-
surement are related by

2W(t)
C

2| wqo
C

Aoe—tZ’ZT?J( 1+

%(t)) -

+a(t)

where A, is the pulse’s amplitudeS is its cross sectional
area,c is the speed of light, ZQO/C);((I) is the phase shift
induced by the test-mass displacemg(t), “H.c.” means The experimenter deduces the phase shifbdZ)X(t)

Hermitian conjugate, and(t) is the electric field’s ampli- and thence the test-mass displacement by measuring the

tude operator. Because we are concerned only about timegiectric field's phase quadratul?e¢ (e.g., via interferometry
cales of order the pulse duratiag or longer, which means homodyne detection More precisely, the experimenter

side-band frequencies 1/7o<w, we can use thquasimo-  measures the phase quadrature integrated over the pulse, ob-
nochromaticapproximation to the commutation relation for aining a result proportional to

ﬁaﬁer: E’before"' 5bBA . (2.40

a(t) [35]:
2o ot Y = ¢S ¢ ch 7t2/zr§|”5 t)dt
[a(t),af(t)]=s(t—t'). (2.39 Xmeas™ \ 27 o Zmrwgrohg) o © o)
Note that, when decomposed into quadratures with respect to .
the carrier frequency, this electric field is =X+ Xmeas (241
E(t)zEA(t)COSth+E¢(t)sin wol, (2.36 cf. Eq. (2.37D. Herex is the mirror position averaged over

the short pulSeXeasis the measured value & and SXpeas

whereE, andE,,, the amplitude and phase quadratuiess,  is the measurement noise superposed on the output by the
the quadrature components oriented along and perpendicul@ght pulse

to the amplitude direction in the quadrature plrage given
by c fw dte—t/275 (a(t)—aT(t) -

5§(meas: ;
R 2ahwy| 2,2 [A(D)+al(D) 2\m woro Ag 2i
EAZZ T AOe t Tod+| —mM8MM ——

> } (2.373 (2.42
E —2\/2Wﬁw° 2A
¢ cS

~ [ Xmeas OPsal= — 1% (2.43
The powerW(t) in the incident wave can be written as
the sum of a mean powéw(t)) and a fluctuatingnoise  as for the idealized single measurement of Sec. |[EA.
part W(t): (2.7)], and correspondingly the mirror’s measured position
and its final momentum commute,

) . It is straightforward, from the commutatdr(t),a’(t’)]
a(t)—a'(t) =5§(t—t'), to show that the measurement noise and the
2i ' back-action impulse have the same commutator

Wy .2/, 2A
OTG tlerX(t)-l—(

(2.37b

- E2(t - .
W(t)=Sc 457) =<W(t)>+W(t), (2.383 [ Xmeas Pafter] = 0- (2.44
- The fundamental equation&.41), (2.40, (2.43 and
(W(t))=ﬁwoA§e*t I7o, (2.38h (2.49 for this pulsed-light measurement are the same as
those Eqs(2.4), (2.7), (2.8) for our idealized single measure-
_ 2 ol a(t)+af(t) ment, and this measurement is thus a realistic variant of the
W(t)=2hwoAge 7?70l ————|. idealized one. Similarly, a sequence of pulsed-light measure-

(2.389 mgnts can be used to monitor a clgssical force acting on a
mirror, and the fundamental equations for such measure-
Here the over bar means “average over the carrier period_ments are the same as for the idealized example of Sec. Il B.
The light-pressure force on the mirror E(t)=2W(t)/c. i In such pulsed-light experiments, the measurement noise
The fluctuating part of thisF(t)=2W(t)/c, is the back- OXmeas!S prpportional to the fluctuations of the light's phase
action of the measurement on the test mass, and it producégadraturee,, [Egs.(2.370 and(2.42], and the back-action
the back-action momentum change impulse 8pgp is proportional to the fluctuations of its ampli-
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tude quadratur&, [Egs.(2.373 and(2.39]. Of course, ex- Heret;=jq is the time of sampl¢, ands(t) is a sampling
perimenters can measure any quadrature of the reflected ligftnction approximately equal to unity during a time interval
pulse that they wish. To achieve a QN‘Dantum variational At= ) centered ortj and zero outside that time interval.
measurement of a classical force acting on the test mass The photon number samplé{kj are the analogs, for an
[6-9], the experimenter should measuré‘{ar: Ql interferometer or other force-monitoring device, of the meter

+P,7/2u in the language of our idealized thought experi- coordinatesQ; in the idealized example of Sec. Il B.

ment [Eq. (2.32)], which [by Egs. (2.5] translates into |nbAPF]2|e”d|X C we ShOV\ll tha’gr anyfffeedhglht bean;], the I

< - e o - tor, evaluated at a fixed plane orthogona
OXmeast OPea™/2p0 plus the light's signal and carrier, number fiux opera

which in turn is a specific linear combination of the light's to the optic axis (e.g. at the entrance to the photodetector)

amplitude and phase quadratuigg and E, [Egs. (2.37), self commutes

(2.42, (2.39]. The experimenter can also prepare the inci- [/V(t),ﬁ/(t’)]=0. (3.2
dent pulse in aqueezed statén the manner required for an

Unruh-type[ 18] QND measurement of the classical force. In This guarantees, in turn, that all the output photon-number
the language of our idealized thought experiment, the desiredata sample$3.1) commute with each other

squeezed state is dnea) eigenstate of QSIePEQ,

— P, 721 [Eq. (2.28], which translates into a near eigen-

state 0f6Xmeast SPea/2u [cf. Eqs.(2.5)], or equivalently a  As we shall see beloWEg. (3.9, the initial position and
Qear eigenstate of a SDECifiC linear CombinatiorEQf and momentum of the test ma§§) andﬁo, appear |inear|y in the

Es- output variablesﬂ/(t) and Nj . They obviously will produce
nonzero contributions to the output commutators. As in our
simple examplesgSec. l), these nonzero test-mass contribu-

lIl. GRAVITATIONAL-WAVE INTERFEROMETERS tions must be canceled by identical nonzero contributions
AND OTHER PHOTODETECTION-BASED DEVICES from noncommutation of the measurement noipboton

We now turn our attention to gravitational-wave interfer- Shot nois¢ and the back-action noiseradiation-pressure

ometers and other real, high-precision devices for monitoring©iS®-
classical forces that act on test masses. Our goal is to prove . . .
that for these devices, as for our idealized examples, the B. Devising a filter to remove test-mass quantum noise

force-measurement precision can be made completely inde- The vanishing output commutators constitute our first un-
pendent of the test mass’s quantum properties, including itgerpinning for freeing the measurements from the influence
initial state and that this can be achieved by an appropriatgs test-mass quantization. As in the idealized measurements
filtering of the output data stream. of Sec. Il B, the vanishing commutators guarantee a key

As in our examples, this conclusion relies on the vanishprgperty of the data analysis: If, from each specific realiza-

ing commutator of the observables that constitute the outpu&on of the output data strea{lﬁ] N }. our data analy
1:0N2, v vy, -

data stream. We shall now_discuss the nature o_f the outpLétiS produces a new set of quantitiéhe “filtered output
data stream and show that its commutator does, indeed, Vaoériables’)

ish.

[N;,N,]=0. (3.3

Ry(Ny, Ny, .+ . ), (3.4
A. Vanishing commutator of the output L ~ . . .
then the statistics of thes$®, will be identically the same as

~ For interferometers and many other force-monitoring de-f we had directly measured the corresponding observables
vices, the data stream, shortly before amplification to classi-

cal size, is encoded in an output light beam, and that beam is R, (
sent into a photodetector which monitors its photon number

flux A(t). The photodetector and associated electronics inrather than computing them from the measulTﬁt.t. There-
tegrate upA[(t) over time intervals with duration long  fore, we can regard our interferomet@r other devicg as
compared to the light beam’s carrier period>27/w, measuring the filtered output observablgR,,R,, ...},
~10 s, but short compared to the shortest timescales owhatever those observables may be.
which the classical force changes< gy~ 10 3 s for the By analyzing the test-mass dynamics of the interferometer
gravitational waves sought by interferomejeisor LIGO-I  (or other measuring devigén the Heisenberg picture, one
interferometers, the integration time has been chosen to k& |earn how the test-mass initial positinn and momen-

a = 4 ; . ! nitia
7=5X 10> s. The result is a discretized output data stream_tum P, influence the operatofd; ,R,, . . .}. One can then

whose Hermitian observables are the numbers of photons in i N i )
the successive data samples, deduce a set of filtered observablg®; ,R,, . ..} in which

X, andp, do not appear but the gravitational-wave or other
classical force information is retaine@These will be the

analogues oR=Q,—20,+Q, [Eq. (2.23] in our simple

=2

N, L), (3.5

N;= f:s(t—tj)ﬁf(t)dt. (3.2
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model problem). The filter that leads fromjN;,N,, ...} to  order a year or mor¢l4,36, which is far longer than the

5 B ; data segments used in the data analysis.
R1,R5, ...}, when applied to the output (c-number) data . .
iN ! N2 }} 0 bro dLE)fe {"R & ) pis (uarantee<)j o Superimposed on the free test-mass dynait8c8 are(i)
152y - e P 12y - 1S Y the influencetgy(t) of the gravitational-wave signd(ij) the

remove all influence ofxand p,, and thence all influence of .« - - tion” influencexga(t) of the light's fluctuating ra-

the test-mass initial state. . S . . .2 .
diation pressuréwhich is linear in the input fieldg, and is

1. Influence of %, and p, on the output data the analog p__f thésr_and dpga Of our discrete. model prob-
_ - . . lems, and (iii) the influenceéo(t) of a variety of other
To make this more specific, let us explore heyandp,  forces—low-frequency feedback forces from servo systems,

influence the output data train. thermal-noise forces, seismic vibration forces, etc:
To very high accuracysufficient for our purposesinter-
ferometergand most other force-measuring devicaselin- X(1) = Xgree 1) + Equ(t) + Xga(t) + Eomef 1) (3.9

ear. The inputs arefi) the test-mass positiox(t) [actually, ) _ )
the difference between four test-mass positions in the case of Inserting Eq.(3.7) into Eq. (3.8) and then Eq(3.8) into

an interferometer; Eq1.2)], and(ii) the electric field opera- Ed.(3.6) we see that, for a test-mass with pendular dynam-
tors E (t), a=1.2 for thefield fluctuations that enter [CS: the initial test-mass position and momentum operators
a H 16y o0

the interferometer at the bright port, at the dark port, and agPpearin the output flux operator in the form

all light-dissipation locationge.g., at mirrors where bits of .

light scatter out of the optical train and reciprocally new bits {74\ _ Y
. . . . X N(1) Ky(t—t")

of field fluctuations scatter into )it see, e.g., the detailed

analysis of interferometers in R€fL3]. The output photon

flux is a linear functional of these inputs,

- Po .
X,COSwt’ + ——sinwyt’ |dt’
Wm

—o0

+ (other contributions (3.9

A R The interferometer’s transfer functidg, (t—t’) is indepen-
Kx(t—t’)x(t’)+2 Ka(t—t")E,(t") |dt’; dent of absolute time and thus transforms frequeagyn-
2 (3.6) puts into frequencys,,, outputs. Thereforé(O and E)O appear
in the output solely at frequency,,/2m~1 Hz. Now, be-
cause the output data generally have large n@esmic and
othep at frequencies below-10 Hz, it is routine, in inter-
ferometers, to high-pass filter the output data so as to remove
frequencies below-10 Hz. When one does sone auto-

matically removes all influence of,xand p, from the filtered
data Ry [Eq. (3.4)]. This is a precise analog of applying the

t
—

ﬁ/(t)=f

cf. the discussion in Appendix C. Trﬁ.:a terms constitute the

photon shot noisdanalogs ofQ™™ in our idealized ex-
ample, Sec. Il B

The test-mass initial observablas and p, enter A(t)

and thence{N;,N,, ...}, throughx(t) in a manner gov-
?r:eneeddsgaﬁ?c;ezter;(?:jsso;retigyig?en:flgfolggteern?jtg;iegr?f thescrete second time derivative to the gutput gata in our
shall consider two examples in turn: interferometers withSimPle e.xamplle(.Sec. Il B so as to remove, andp, from
pendular dynamics, and signal-recycled interferometerdN® data; and itis a realization of a general class of measure-
These examples should be easily extendable to any oth&pent procedures, for a harmonic oscillator on which a clas-

type of interferometer than might be conceived in the futureSical force acts, that is analyzed by Caves using his path

integral formalism(last part of Sec. Il C of Ref{26]).

2. Interferometers with pendular dynamics . )
3. Signal-recycled interferometers

In conventional gravitational-wave interferometdisg.

LIGO-I, VIRGO and TAMA) and in the QND interferom- A signal-recycling mirror, placed at an interferometer’s
eters analyzed by Kimblet al. [13], the test masses swing output port, sends information about the test-mass position

sinusoidally at~1 Hz frequency in response to their suspen-X(t) back into the interferometer as part of the back-action

sions’ pendular restoring forc@s modified slightly by the (radiation-pressupeforce, and thereby alters the free test-
optical cavities’ radiation-pressure fojce mass dynamics. The altered free dynamics have been ana-

lyzed in detail by Buonanno and ChgL7]; they find that the
test masses and the interferometer’s side-band light form a

sinwpt. (3.7 coupled system with four degrees of freedomxsand p,

appear inX;e(t), and thence ix(t) and thence in\{t) at
Here o is the reduced madd/4 the actual mass of one test four discrete frequencies (A=1,2,3,4). Correspondingly,
mass in the case of an interferomet@ndw,,~27xX1 Hzis in the output data train, the influence of the test-mass initial
the pendular swinging frequency. There is no significantstate is confined to the Fourier components at the frequencies
damping of the free motiofB3.7) because the experimenters wp .

take great pains to liberate the test masses from all damping; If these frequencies were real, then one could remove the
the typical damping times in LIGO-I are of order a day, andinfluence of the test-mass initial state from the data by filter-
in advanced interferomete(slGO-1l and beyond will be of  ing out the data’s Fourier components at these four frequen-

- - Po
X 1) =X,COSw,t+
fred(t) 0 Wm “o

m
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cies. However, as Buonanno and Chdr] discuss, such 9900776, PHY-0098715, and PHY-0099568, by the Russian
filtering is not necessary: The frequencies are actually comFoundation for Fundamental Research grants No. 96-02-
plex with imaginary parts that produce damping on timel6319a and No. 97-02-0421g, affdr V.B.B., F.Ya.K. and
scales<1 secondwhen a servo is introduced to control an S.P.V) by the NSF through Caltech’s Institute for Quantum

instability). Therefore, the influence of, andp, on the out-  Information.

put flux operatorA/{t) damps out quickly, and correspond-
ingly (see the end of Sec. lllAthe influence of the test- APPENDIX A: TRIPLE MEASUREMENT
mass initial state on the output data train damps out quickly IN THE SCHRO DINGER PICTURE

without any filtering. In this appendix we present a ScHiager-picture analysis

of the most important of this paper’s pedagogical thought
IV. CONCLUSIONS experimentgSec. Il B): a triple measurement of the position
To reiterate: In an interferometéand many other force- ©Of @ free test mass, using three independent meters, with the
measuring devicesthe output signal is encoded in the pho- goal of determining the mean classical fofeecting on the
ton number flux operatoA(t) of a light beam, which is test mass without any contaminating noise whatsoever from

converted into discrete photon number samﬁlg—:-by a pho- the te.s'g mass’s initial state. Our analysis will proceed in three
Eeps.(l) an analysis of one of the position measurements

todetector and electronics. These outputs have vanishin ny one of the thréeAppendix A 1:(ii) [relying on stefi)]

commutators[A(t),M(t")]=0 and [N;,N,]=0 and thus o i LR T
can be thought of as classical quantities. These outputs a&denvatlon of th? probability densig/(Qo,Q1, Qo) for th_e )
outcome of the triple measurement procedure, Appendix A 2;

linear in the initial test-mass position, and momentunb, 41 (jii) a use of this probability density to show that the
and involve no other test-mass variables. The output commu- L~ ~ =
mbinationR=Q,—2Q; + Q, of the measurement results

tators manage to vanish because the photon back-actidt? )

noise and photon shot noise have commutators that cancépntains the desired information abdtituincontaminated by
those ofx, andp any noise from the test-mass initial state, Appendix A 3.
(0} 0"

In the outputA{t) of any interferometer with pendular

dynamics,>A<O and fJO appear only at the pendular frequency
wm/27~1 Hz, and all influences of, andp, (including all Let |¥) be the state of the test mass before the measure-

influences of the test-mass initial statre removed com- Mentand

pletely from the data by the high-pass filtering that is routine "

for interferometers. For other types of interferometers, with |1/,>:f #(Q)|Q) dQ (A1)
different test-mass dynamics, other data filtering procedures -

will remove the influence ok, and p, and the test-mass o ]

1. Single position measurement

ferometey no filtering is needed at all. are normalized by
This complete removal of all influence &f andp, from e ,
the filtered data implies the answers to the three questions (Q'lQ)=4(Q-Q"). (A2)

posed in the introduction of this pap€&sec. ): (i) The test-

mass quantum mechanics has no influence on the interferonfVe leave the test-mass stat#) completely unspecified
eter’s noise; the On'y quantum noise is that arising from théince our goal is to show that it has no influence at all on the
light. (i) Therefore, when analyzing a candidate interferom-Mmeasurement outcome. For concreteness we specify the
eter design, one need not worry about the test-mass quantufeter’s initial wave function/(Q) to be Gaussian:

mechanics, except for using it to feed the gravity-wave sig-

nal and the back-action noise through the test mass to the 1 Q% (1 iAgp
photon-flux output(iii) Similarly, when conceiving new de- PY(Q)= expg — —— . (A3)
signs for interferometers, one need not worry about the test- Vv2m Ag ZAé 2 h
mass quantum mechanics—except for devising appropriate
data filters to remove, andp, from the data. HereAq (denotedA QP¢™"¢in the tex} is the initial variance
of Q and
ACKNOWLEDGMENTS
, , (QP+PQ)
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Orly Alter, Alessandra Buonanno, Carlton Caves, Yanbei
Chen, Crispin Gardiner, William Unruh, Yoshihisa Yama-
moto, and the members of the 1998-1999 Caltech QNDs the initial cross correlation of the meter’s position and
Reading Group, most especially Constantin Brif, Bill Kells, momentum. For this Gaussian initial state, the variaige
Jeff Kimble, Yuri Levin and John Preskill. This research wasof the meter’s momentunidenotedA PP¢"¢ in the tex is
supported in part by NSF grants PHY-9503642, PHY-given by the minimum-uncertainty relation
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AZAZ A2 h? (A5) where we have used the shift-operator relatit"|Q)
QTP TPQT 4 =1Q-%)=/7..dx|x)(x|Q—x) and the relation{Q|Q—x)

, : - =06(Q=x=Q).

The first stage of the measurement process is the interac- e will need below the following formulagsome are

tion of the test mass and the meter. In the Sdiger pic-  ayident, and for the others we provide outlines of the proofs
ture this interaction puts the meter and test mass into the

entangled state

. Jm 01(Q)0(Q)dQ=1, (A12)
Uly)| W), (A6) w
e [* ar@oaaie-— 13
. ixP
UZEX[{T) (A7) B
|” 0'@a@)5a0-x+ a3, (AL4)

is the evolution operator associated with the interaction”
(delta function part of the Hamiltoniar(2.14).

The next stage is a precise measurement of the meter’foc
generalized positio). This measurement disentangles the ) ..
guantum states of the test mass and meter: the meter gets
reduced to the eigenstd@®) of Q, whereQ is thec number . A
obtained as a result of this measurement, and the test ma{s O1(Q)xQ(Q)QdQ=—x?, (A16)
gets reduced to the state o

AT O)x"Q(Q)dO=x" (n=0,1,..), (A15)

<Q|U|¢>|‘P>:Q(Q)|‘1’>’ 8 flﬂT(é)ﬁQ@d@
YWQ YW@
where = f ﬁ@)( 02(Qp+[p.2(QDAQ
0(Q)=(Q|U A9 A = . dQNQ) .
(Q=(QlUI%) (A9) :f,xm(Q)mQ)de"ﬁLQ(Q) de>dQ
is the reduction operator describing the entire two-stage mea- X
surement procedure, and =p, (A17)
WQ=(¥[Q"QQQ)¥) A10) ..
B f 2"(Q)p?Q(Q)dQ
is the probability density for obtaining the res@it o
An explicit form for the reduction operator can be ob-
tained b bstituting Eq9Al), (A3 d (A7) into Eq. A A~ g A A e A A A ~
O the vt ng EASAL) (A3) and (A7) into Ba. - _ | 601 @+10"@ p1@®)p+ 15,0160
o ixP| [~ e A
Q)= — d (P Ay = A = = dQ(Q) d -
(Q) <Q|eXP( 7 )f_wlﬂ(Q)lQ) Q :pf_wQT(Q)Q(Q)deMZJ_x d;((Q) d(;(Q)dQ
=@l [~ potxim@lo-xaxda :
- ~n2 1 (% 2 ~n2 2
=p +A—é Z‘FAQP =p +AP1 (A18)
=f_w|x><xlw(<3+x>dx .
| 0@po@add
1 { Q+%)2/1 |AQP)
=Xy ————— | =~ ,
\/Z_A 2Aé2 h I P P APPSR
™ Aq . | 0'@1@®)p+15.0@1300
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® oAk Ao o o ) (4) Second free evolution of the test mass with the evolu-
- j_xQ (Q(Q)QAQp—ih tion operatoi)l. After this stage the test-mass wave function
is
= - dQ"Q). -
<] 0= od o
e dx U1 Q1 (Q1)UQo(Qo) | W)

(A26)

27 % 7 Thee
(A19)

An ﬁ(l AQP) ;(h'f‘b;( VWl(éO!bl)
=—Xp+i =—

(5) Finally, a third position measurement using a new
meter, number 2, with the resu,. After this measurement
o the test-mass state is
f_ QT(Q)(xp+px)Q2(Q)dQ=xp+px.  (A20)

Qo(Q) U121 (Q)UQo(Qo) | W)

2. The triple measurement procedure =~ = = '
P P VW,(Q0,Q1.Q>)

The triple measurement procedure described in Sec. [ B 1
of the text consists of the following five stages. where
(1) An initial position measurement of the type we have

just analyzed, using meter number 0. This measurement re- 2R R AT A NTOT DN TOTE
duces the test mass’s wave function to W,(Qo,Q1,Q2) = (¥[Q4(Qo)pQ1(Q1) U Q5(Q5)

(A27)

X ﬁz(éz)&lﬁl(él)z:{OQO(QO)|q,>

00(Qo)[ W)
A (A21) (A28)
VWo(Qo) is the joint probability distribution for all three measurement
P ) outcomes.
[Eq. (A8)], where (Q4(Qo) is the reduction operatdiEq. Equation(A28) is the principal result of this subsection.
(A9)], and Qq is the result of this measurement. The prob-We shall use it to study the statistics of the measurement
ability density for obtaining this result is equal to outcomes. In that study we shall need the following expres-
sion for each of the three reduction operatidts. (A11)]:
Wo(Qo) =(¥[Q§(Q0)Q0(Qo)| W) (A22) o
Y 1 (Qs+x)?(1 iA
[Eq. (A10)]. _ . . 0,0 = ex{— s : - ;Ps ,
(2 .Free evolution of t.he test mgss during tt]e time NN Ags 203
Denoting the corresponding evolution operator iy, the (A29)
test-mass wave function after this stage is given by
wheres=1,2,3.
LM. (A23) 3. Statistics of the measurement results
VWo(Qo) If an explicit form for the initial wave functiof¥) were

. specified, then the probability densi#28) could be calcu-
(3) Second position measurement of the same type as iRjted directly. However, that calculation would be very cum-

the first stage, bqt using a new meter, nu.mber 1. The ME%ersome, the final result would be quite complicated, and we
surement result is denote@,, the reduction operator is have no need for it. Our final goal is not to study, but

04(0,), and the measurement reduces the test-mass stateigher to analyze the statistics of the quaniy Qy—2Q;
+Q,, which the experimenter computes from the three mea-

Q1(QD U (Qo) | W) surement outcome®; after the triple measurement proce-
— ; (A24)  dure is complete. Specifically, we wish to verify the results
VW1(Qo,Q1) of the text’s Heisenberg-picture analysi§: That the mean

value of Fe_over a large number of experiments (&)
=(—7%/u)F, wherer is the time between each pair of mea-
~ = At S TAAT R A R S, A= surementsy is the mass of the test mass, dnds the mean
Wi(Q0,Q1) = (W[ Qg(Qu)%21(Q1) A1(Qu)io20(Qo) W) f(;Jrce that zfctls on the test mg&xs.(2.24 and(2.23 of the
(A25) text]. (i) That the variance dR (and thence of the measured

is the joint probability distribution for the first two measure- vajue ofF) is independent of the test-mass initial stafe),
ment resultsQ, and Q. and is given by Eq2.25 when the meters’ individual initial

where
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states have no position-momentum correlatiohg,ps=0,
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is the displacement of the test mass during st&he(the

and can be made to vanish by a clever, “squeezed” choice afecond interval of free evolutipncaused by the external

the meters’ initial states.

force F(t), expressionA31) can be further reduced to the

a. Mean valueThe mean value oR over a large number form

of experiments is determined by the joint probability distri-

bution W5 for the measurement outcomes:
(Ry=(Qo—2Q;+Q,)

= J_Z(éo_ 261‘*’ (52)
X W,(Qo,Q1,Q,)dQed Q;d Q. (A30)

Using Eqgs.(A12), (A13), we bring this into the form

Fo= [ vy @ouini@.| 020,

T

—2—% —Xg 1) 01(Q1)U00(Q0) | ¥)dQud Q; .
(A35)

The next calculations are just a repetition of the previous
ones, with only the addition of Eq$A15), (A17) and

- o N A g ~ - ~ pr
(R)= f (V]QHQUOI(QDIA(Qo—2Q1—%) Uil =X+~ =+ Xro, (A36)
XU 1(Q1) U o( Qo) | W) d Qpd Q; . A31 .
121(Q1)Upo(Qo) [ W) dQud Q; (A31) Ulplo=p+ Pro. (A37)
Taking into account that
where
Ul,=1, (A32)
1 T
- pr Xpo=— f(T—t)F(t)dt, (A38)
Z[{xulzx+7+xF 1, (A33) w Jo
where u is the mass of the test mass and Peo= fTF(t)dt. (A39)
0
1 (2r
=— 27—t)F(t)dt A34
XFlMT(T PO (A34) They give
~ o np ~ . pbr A~ ~
<R>:Jl (¥[Q{Qou} Qo+2X_X_7_XFl)UoQO(Qo)W)on
_ |- AT RV D L Pro7 A (T =
= (P[] Qo(Qo)lUp| QotX+Xeg— —— —Xg1| Qo(Qo)|[¥)d Qg
ProT Pro7
:<\P|<XFO_ : _XF1)|\P>:XFO_ 3 —Xg1
1 rar 7'2_
=——f (7—|t—7))F(H)dt=— —F. (A40)
mJo M

This agrees with the Heisenberg-picture predicfigns. (2.24) and(2.23 of the text, where we must note that the meters’

initial states havéQg)=(Ps)=0].

b. Variance The mean square value of the measurement outd®meer a large number of experiments is given by
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(R =((Qo-20,+027)= | (B0 20,7+ 0 Wil@5,0:,8,)00,00,00,. (na)
Using Egs.(A12)—(A20), (A32), (A33), (A36), and(A37), we obtain

<(éo_261+ 62)2>

(R%)

f (IO QoH O QT (Qo= 21307+ ABILL Q) o(Qo)| ¥) 40D

o ~ —_ ~ —_ _ —_ D 2 ~ —_ ~ ~ —_ —_ _
= f_;xlﬂﬂé(q&uéﬂk@ﬂ{(QO—ZQl—X—%—xFl +Aéz}Ql(Ql)UoQo(Qo)l‘I’>ondQ1

2
2
+4AQ] +

. P7
Qo+ X—"——Xr1

AAopiT [ ApyT
£+( P1

2
1 ) + Aéz}aoﬂo(éo)m’)dbo

[ noi@ouy

4AQP17'
m

2
~ o~ Pro7 2
QO+X+XFO_W_XF1 +4AQ1+

* Ay A 2 A~ ~
f_ﬂlﬂé(Qo)[ +(%) +A62}QO(Q0)|‘I’>on
2

2
=(¥| +AS+AA, +

we_ PFOT
FO m F1

4AQP1T+<AP1T

+Azqz}|‘l'>

=(Qo—2Q:+ Q)2+ A%, +4A%, +

4A 7 [Apqy7\?
QP +( P A, (A42)

o

Subtracting off the square of the mea(,ﬁy:((go_gél gravitational-wave detectors, is that they all irear mea-
+0,)2, we obtain for the variance of the computed quantitysurementsm the sense of Ref.3]; i.e., they all satisfy the

R over manv experiments following two conditions:
' y exp ' (i) Linearity of the outputThe meter’s output can be writ-

A _ R ten as the sum of the operator for the test object's measured
—(AF)?=(AR)*=(R?) —(R)? variable and the operator for the meter’s additive npife
K Eqg. (2.43], and the additive noise does not depend on the
, ,  MAgpT (Apyr 2 , initial state of the test object. Formally this sum is an opera-
=AQet4AG:+ ( +AG2; tor, but it can be treated as a classical variable because it

(A43) turns out to commute with itself at different times.

(i) Linearity of the back action The measurement-
see Eq(A40) for the first equalityThis variance is indepen- induced perturbations of all the test-object observables that
dent of the test-mass initial stat#), in accord with predic- are involved in the measurement procedure can be described
tion of the Heisenberg-picture analydisassage following by linear formulas similar to Eq(2.4b), and the perturba-
Eqg. (2.22 of the tex]. When the three meters are all pre- tions[e.qg. the second term on the right side(®fb)] do not
pared in “naive” initial states, i.e. in states with uncorrelated depend on the initial state of the test object.
generalized positioan and momentumlss, i.e. when This second condition requires discussion: The perturba-
Aqps=0, then the varianceA43) has the form that we de- tions’ independence of the test-object initial state is particu-
duced using the Heisenberg pictuieg. (2.25]. When the larly important when several test-object variables are mea-
meters are prepared in the more clever “squeezed” mannegured consecutively—for example, if the same Heisenberg-
i.e. in near eigenstates @,, QS***&Q,—P,7/2u and Picture variable is measured quickly and repetitively at
Q,. then the variancéA43) vanishes, in accord with the different moments of time as in our pedagogical examples
Heisenberg-picture prediction[passage following Eq. (Sec. I), or if a variable is measured continuously as in a

(2.28)]. gravitational-wave detectdfec. ). Suppose, for example,
that the variablex; is measured with precisiomx]'®®
APPENDIX B: LINEAR MEASUREMENTS thereby perturbing, via back-action, some other variable

An important feature of our pedagogical exampl6ec.  Then the accuracy of a subsequent measuremery ofil
I1), and of measurements performed by interferometridoe constrained by the perturbation
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7 o (=10 ®cm). Hence, the signal phase shift of the output
AxEe= (X1, %20 (B1)  optical beam depends linearly on the displacem@&hird,
2Ax; the measurement of the photon flux out the dark port is vir-
tually equivalent to the measurement of the phase of the

Our condition(ii) of back-action linearity requires that this output beam becaug@ the signal phase shift is much less

perturbation not depend on the initial state of the test objecthan one radian ani) the mean value of the amplitude of

A sufficient condition for this is that the commutafor; ,x,]  the optical pumping field is much larger than the quantum

be ac-number, and that this requirement be fulfilled for all uncertainties of its quadrature amplitudes.

the operators involved in the measurentent. For a detailed presentation of the theory of linear mea-

Linear measurements are closely related to linear systengirements see Chaps. 5 and 6 of R&i. For a detailed

(those for which the equations of motion for the generalizedapplication of this theory to interferometric gravitational-

coordinates and momenta are linear; for example, a free maggve detectors see R¢fL7].

and a harmonic oscillatpbecause the commutators of such

systems’ coordinates and momenta edeumbers. APPENDIX C: VANISHING SELF-COMMUTATOR
In norlinear measurement®.g. measurements of a par- OF THE PHOTON NUMBER FLUX
ticle in a double-welled potentiglsome very strange phe-
nomena can arise, for example the quantum Zeno effect. ~ For any light beam(or other electromagnetic wave with

Strictly speaking, all real meters are nonlinear. Howeverconfined cross sectignthe number flux operator at some
in most cases they can be regarded as linear to high accuraglosen transverse plage.g. the entry to a photodetectads
For example, if one measures displacements of a mirror of a
Fabry-Perot cavity by monitoring the phase of light that Mt):f“d_w *do’ 3Ta eilo-wt
passes through the cavifas is done in LIGQ then the 2w)o 2m ¢ '
measurements are linear so long as the displacements are
much smaller than the Wi_dth of a cavity resonance, i.e. mucrﬁereéi is the creation operator ardd, the annihilation op-
smaller tham/fwherex Is the wavelength of the light and erator for photons of frequenay, and their commutators are
Fis the cavity finesse.

If, by contrast, the displacements are comparable to or
much larger thal\/F, then the measurements are strongly
nonlinear. An example is a proposadll-detectortechnique
[37] for measuring the phase of a mechanical oscillator, in, . . .
which the oscillati?lg maF;s is an end mirror of a Fabry-Perorlt Is straightforward to verify from Eq€(C1) and(C2) that
cavity, and the times at which the mirror passes through N N
cavity-resonant positions are measured with high accuracy [Mt), Mt")]=0. (€3
by the cavity’s momentary transmissivity. These measure- ) ) o )
ments are highly nonlinear because, in the proposed design, Although this result is completely general, it is instructive
not only are the mirror displacements large compared to th& derive the vanishing self commutator for the specialized
cavity's linearity regime,\/F; the mechanical oscillator's tyPe of light beam that is used in interferometers and other
amplitude of zero-point oscillationsx,, is also large com- force-measuring devices: a beam consisting of a monochro-
pared ton/F. State reduction plays an important role in this Matic carrier with frequency, plus sidebands embodied in
null detector’'s measurements: it drives the mechanical oscila, andaz,. In this case to high accuracy we can linearize in
lator into a squeezed-phase state, thereby facilitating a highhe product of the carrier field and the side-band fields, ob-
precision monitoring of the oscillator’s phag&7]. It would  taining for the relevantside-band photon flux
be instructive to analyze the use of this highly nonlinear

(CD

[a,.2,/]=[a] ,a’,1=0, [a,,a] ,]=278(w—w").
(C2

meter to monitor a classical force that acts on the oscillator’s Nl(t) = \/JT/O[é(t) +af(1)]. (C4)
mass. Does the oscillator’s initial quantum state influence the
accuracy of the monitoring? Here[in the notation of Eqs(2.34—(2.37)] Np=A3 is the

Three properties of an interferometric gravitational-wave
detector(interferometric position metgrallow one to con-
sider it as linear with sufficiently high precision to justify the
linear analysis given in this papéiirst, its test-mass mirrors
can be regarded as free masg&msas harmonic oscillators if

carrier’s photon flux anda(t), a'(t) are the time-domain
side-band annihilation and creation operators with commuta-
tion relations[time-domain versions of EC2)]

significant electromagnetic rigidity exists in the sysjem [a(t),a(t)]=0, [a'(t),a'(t")]=0,
Second its linearity range/F~10"° cm is much greater o
than the wave-induced displacements of the test masses [a(t),a’(t")]=8(t—t"). (CH

It is straightforward, using these commutation relations, to
81t can be shown that a slightly weaker condition is sufficient: verify that

second-order commutation of all these operatpxs,[X; ,%]]1=0

for all i,j,k. [AN(1),Nq(t")]=0. (Co)
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It is interesting to note that, although the photon number

flux self commutes, the energy flignergy passing a fixed
transverse surface per unit tilme

é(t):ﬁJ dwf do’Joo' ala,e*tt") (C7)
0 0

doesnot self-commute,

PHYSICAL REVIEW D 67, 082001 (2003

[&(t),&(t")]#0. (C9
This can be thought of as due to the energy-time uncertainty
relation for photons. On the other hand, whéas in
gravitational-wave interferometegrshe light consists of a
monochromatic carrier plus signals encoded in side bands
with frequencyQ =w— w,<w,, then for all practical pur-

posesZ(t) doesself commute.
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